購買設(shè)計(jì)請充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
汽車驅(qū)動(dòng)橋設(shè)計(jì) 專業(yè)班級: 學(xué)生姓名: 指導(dǎo)教師: 職稱:教授 摘要 驅(qū)動(dòng)橋位于傳動(dòng)系末端,其基本功用是增矩、降速,承受作用于路面和車架或車身 之間的作用力。它的性能好壞直接影響整車性能,而對于載重汽車顯得尤為重要。當(dāng)采 用大功率發(fā)動(dòng)機(jī)輸出大的轉(zhuǎn)矩以滿足目前載重汽車的快速、重載的高效率、高效益的需 要時(shí),必須搭配一個(gè)高效、可靠的驅(qū)動(dòng)橋,所以采用傳動(dòng)效率高的單級減速驅(qū)動(dòng)橋已經(jīng) 成為未來載重汽車的發(fā)展方向。驅(qū)動(dòng)橋設(shè)計(jì)應(yīng)主要保證汽車在給定的條件下具有最佳的 動(dòng)力性和燃油經(jīng)濟(jì)性。本設(shè)計(jì)根據(jù)給定的參數(shù),按照傳統(tǒng)設(shè)計(jì)方法并參考同類型車確定 汽車總體參數(shù),再確定主減速器、差速器、半軸和橋殼的結(jié)構(gòu)類型,最后進(jìn)行參數(shù)設(shè)計(jì) 并對主減速器主、從動(dòng)齒輪、半軸齒輪和行星齒輪進(jìn)行強(qiáng)度以及壽命的校核。驅(qū)動(dòng)橋設(shè) 計(jì)過程中基本保證結(jié)構(gòu)合理,符合實(shí)際應(yīng)用,總成及零部件的設(shè)計(jì)能盡量滿足零件的標(biāo) 準(zhǔn)化、部件的通用化和產(chǎn)品的系列化及汽車變型的要求,修理、保養(yǎng)方便,機(jī)件工藝性 好,制造容易。 關(guān)鍵字:輕型貨車 驅(qū)動(dòng)橋 主減速器 差速器 Automotive Drive Axle Design Abstract Drive axle is at the end of the powertrain, and its basic function is increasing the torque and reducing the speed, bearing the force between the road and the frame or body. Its performance will have a direct impact on automobile performance .Because using the big power engine with the big driving torque satisfied the need of high speed, heavy-loaded,high efficiency,high benefit today’ heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck’ developing tendency. Drive axle should be designed to ensure the best dynamic and fuel economy on given condition. According to the design parameters given, firstly determine the overall vehicle parameters in accordance with the traditional design methods and reference the same vehicle parameters, then identify the main reducer, differential, axle and axle housing structure type, finally design the parameters of the main gear, the driven gear of the final drive, axle gears and spiral bevel gear and check the strength and life of them. In design process of the drive axle, we should ensure a reasonable structure, practical applications, the design of assembly and parts as much as possible meeting requirements of the standardization of parts, components and products’ universality and the serialization and change convenience of repair and maintenance, good mechanical technology, being easy to manufacture. Key words: light truck; drive axle; single reduction final drive 目 錄 引言 ........................................................................1 第一章 總體方案論證 ......................................................2 1.1 非斷開式驅(qū)動(dòng)橋 .......................................................3 1.2 斷開式驅(qū)動(dòng)橋 .........................................................3 1.3 多橋驅(qū)動(dòng)的布置 .......................................................4 第二章 主減速器設(shè)計(jì) ......................................................5 2.1 主減速器結(jié)構(gòu)方案分析 .................................................6 2.1.1 螺旋錐齒輪傳動(dòng) ....................................................6 2.1.2 結(jié)構(gòu)形式 ..........................................................7 2.2 主減速器主、從動(dòng)錐齒輪的支承方案 .....................................7 2.2.1 主動(dòng)錐齒輪的支承 ..................................................7 2.2.2 從動(dòng)錐齒輪的支承 ..................................................8 2.3 主減速器錐齒輪設(shè)計(jì) ...................................................8 2.3.1 主減速比 i 的確定 .................................................80 2.3.2 主減速器錐齒輪的主要參數(shù)選擇 .....................................10 2.4 主減速器錐齒輪的材料 ................................................11 2.5 主減速器錐齒輪的強(qiáng)度計(jì)算 ............................................12 2.5.1 單位齒長圓周力 ...................................................12 2.5.2 齒輪彎曲強(qiáng)度 .....................................................13 2.5.3 輪齒接觸強(qiáng)度 .....................................................14 2.6 主減速器錐齒輪軸承的設(shè)計(jì)計(jì)算 ........................................14 2.6.1 錐齒輪齒面上的作用力 .............................................14 2.6.2 錐齒輪軸承的載荷 .................................................15 2.6.3 錐齒輪軸承型號的確定 .............................................18 第三章 差速器設(shè)計(jì) ........................................................19 3.1 差速器結(jié)構(gòu)形式選擇 ..................................................19 3.2 普通錐齒輪式差速器齒輪設(shè)計(jì) ..........................................20 3.3 差速器齒輪的材料 ....................................................22 3.4 普通錐齒輪式差速器齒輪強(qiáng)度計(jì)算 ......................................22 第四章 驅(qū)動(dòng)車輪的傳動(dòng)裝置設(shè)計(jì) ..........................................23 4.1 半軸的型式 ..........................................................23 4.2 半軸的設(shè)計(jì)與計(jì)算 ....................................................24 4.2.1 半浮式半軸的設(shè)計(jì)計(jì)算 .............................................25 4.3 半軸的結(jié)構(gòu)設(shè)計(jì)及材料與熱處理 ........................................27 第五章 驅(qū)動(dòng)橋殼設(shè)計(jì) .....................................................28 5.1 橋殼的結(jié)構(gòu)型式 ......................................................28 5.2 橋殼的受力分析及強(qiáng)度計(jì)算 ............................................29 第六章 結(jié)論 ...............................................................30 致 謝 ..................................................................31 參 考 文 獻(xiàn) ...............................................................31 附件清單 ..................................................................33 0 引言 本課題是對汽車驅(qū)動(dòng)橋的結(jié)構(gòu)設(shè)計(jì)。故本說明書將對驅(qū)動(dòng)橋及其主要零部件的結(jié)構(gòu) 型式與設(shè)計(jì)計(jì)算作一一介紹。 驅(qū)動(dòng)橋的設(shè)計(jì),由驅(qū)動(dòng)橋的結(jié)構(gòu)組成、功用、工作特點(diǎn)及設(shè)計(jì)要求講起,詳細(xì)地分 析了驅(qū)動(dòng)橋總成的結(jié)構(gòu)型式及布置方法;全面介紹了驅(qū)動(dòng)橋車輪的傳動(dòng)裝置和橋殼的各 種結(jié)構(gòu)型式與設(shè)計(jì)計(jì)算方法。 汽車驅(qū)動(dòng)橋是汽車的重大總成,承載著汽車的滿載簧荷重及地面經(jīng)車輪、車架及承 載式車身經(jīng)懸架給予的鉛垂力、縱向力、橫向力及其力矩,以及沖擊載荷;驅(qū)動(dòng)橋還傳 遞著傳動(dòng)系中的最大轉(zhuǎn)矩,橋殼還承受著反作用力矩。汽車驅(qū)動(dòng)橋結(jié)構(gòu)型式和設(shè)計(jì)參數(shù) 除對汽車的可靠性與耐久性有重要影響外,也對汽車的行駛性能如動(dòng)力性、經(jīng)濟(jì)性、平 順性、通過性、機(jī)動(dòng)性和操動(dòng)穩(wěn)定性等有直接影響。另外,汽車驅(qū)動(dòng)橋在汽車的各種總 成中也是涵蓋機(jī)械零件、部件、分總成等的品種最多的大總成。例如,驅(qū)動(dòng)橋包含主減 速器、差速器、驅(qū)動(dòng)車輪的傳動(dòng)裝置(半軸及輪邊減速器) 、橋殼和各種齒輪。由上述可 見,汽車驅(qū)動(dòng)橋設(shè)計(jì)涉及的機(jī)械零部件及元件的品種極為廣泛,對這些零部件、元件及 總成的制造也幾乎要設(shè)計(jì)到所有的現(xiàn)代機(jī)械制造工藝。因此,通過對汽車驅(qū)動(dòng)橋的學(xué)習(xí) 和設(shè)計(jì)實(shí)踐,可以更好的學(xué)習(xí)并掌握現(xiàn)代汽車設(shè)計(jì)與機(jī)械設(shè)計(jì)的全面知識和技能。 本課題的設(shè)計(jì)依據(jù): 發(fā)動(dòng)機(jī)排量 1997ML 最大功率/轉(zhuǎn)速 110/6000 KW/RPM 最大轉(zhuǎn)矩/轉(zhuǎn)速 186/5000 NM/RPM 最高車速 Vmax=180km/h 輪距 1450mm 車輪滾動(dòng)半徑 R=0.312m 主減速比 3.91 有以下兩大難題,一是將發(fā)動(dòng)機(jī)輸出扭矩通過萬向傳動(dòng)軸將動(dòng)力傳遞到后輪子上, 達(dá)到更好的車輪牽引力與轉(zhuǎn)向力的有效發(fā)揮,從而提高汽車的行駛能力。二是差速器向 兩邊半軸傳遞動(dòng)力的同時(shí),允許兩邊半軸以不同的轉(zhuǎn)速旋轉(zhuǎn),滿足兩邊車輪盡可能以純 1 滾動(dòng)的形式作不等距行駛,減少輪胎與地面的摩擦。 本課題的設(shè)計(jì)思路可分為以下幾點(diǎn):首先選擇初始方案,該轎車屬于普及型轎車, 采用后橋驅(qū)動(dòng),所以設(shè)計(jì)的驅(qū)動(dòng)橋結(jié)構(gòu)需要符合普及型轎車的結(jié)構(gòu)要求;接著選擇各部 件的結(jié)構(gòu)形式;最后選擇各部件的具體參數(shù),設(shè)計(jì)出各主要尺寸。 所設(shè)計(jì)的轎車驅(qū)動(dòng)橋制造工藝性好、外形美觀,工作更穩(wěn)定、可靠。該驅(qū)動(dòng)橋設(shè)計(jì) 大大降低了制造成本,同時(shí)驅(qū)動(dòng)橋使用維護(hù)成本也降低了。驅(qū)動(dòng)橋結(jié)構(gòu)符合其整體結(jié)構(gòu) 要求。設(shè)計(jì)的產(chǎn)品達(dá)到了結(jié)構(gòu)簡單,修理、保養(yǎng)方便;機(jī)件工藝性好,制造容易的要求。 目前我國正在大力發(fā)展汽車產(chǎn)業(yè),采用后輪驅(qū)動(dòng)汽車的平衡性和操作性都將會(huì)有很大 的提高。后輪驅(qū)動(dòng)的汽車加速時(shí),牽引力將不會(huì)由前輪發(fā)出,所以在加速轉(zhuǎn)彎時(shí),司機(jī) 就會(huì)感到有更大的橫向握持力,操作性能變好。維修費(fèi)用低也是后輪驅(qū)動(dòng)的一個(gè)優(yōu)點(diǎn), 盡管由于構(gòu)造和車型的不同,這種費(fèi)用將會(huì)有很大的差別。如果你的變速器出了故障, 對于后輪驅(qū)動(dòng)的汽車就不需要對差速器進(jìn)行維修,但是對于前輪驅(qū)動(dòng)的汽車來說也許就 有這個(gè)必要了,因?yàn)檫@兩個(gè)部件是做在一起的。 所以后輪驅(qū)動(dòng)必然會(huì)使得乘車更加安全、舒適,從而帶來可觀的經(jīng)濟(jì)效益。 第一章 總體方案論證 驅(qū)動(dòng)橋處于動(dòng)力傳動(dòng)系的末端,其基本功能是增大由傳動(dòng)軸或變速器傳來的轉(zhuǎn)矩,并 將動(dòng)力合理地分配給左、右驅(qū)動(dòng)輪,另外還承受作用于路面和車架或車身之間的垂直力 力和橫向力。驅(qū)動(dòng)橋一般由主減速器、差速器、車輪傳動(dòng)裝置和驅(qū)動(dòng)橋殼等組成。 驅(qū)動(dòng)橋設(shè)計(jì)應(yīng)當(dāng)滿足如下基本要求: a)所選擇的主減速比應(yīng)能保證汽車具有最佳的動(dòng)力性和燃料經(jīng)濟(jì)性。 b)外形尺寸要小,保證有必要的離地間隙。 c)齒輪及其它傳動(dòng)件工作平穩(wěn),噪聲小。 d)在各種轉(zhuǎn)速和載荷下具有高的傳動(dòng)效率。 e)在保證足夠的強(qiáng)度、剛度條件下,應(yīng)力求質(zhì)量小,尤其是簧下質(zhì)量應(yīng)盡量小,以 改善汽車平順性。 2 f)與懸架導(dǎo)向機(jī)構(gòu)運(yùn)動(dòng)協(xié)調(diào),對于轉(zhuǎn)向驅(qū)動(dòng)橋,還應(yīng)與轉(zhuǎn)向機(jī)構(gòu)運(yùn)動(dòng)協(xié)調(diào)。 g)結(jié)構(gòu)簡單,加工工藝性好,制造容易,拆裝,調(diào)整方便。 驅(qū)動(dòng)橋的結(jié)構(gòu)型式按工作特性分,可以歸并為兩大類,即非斷開式驅(qū)動(dòng)橋和斷開式 驅(qū)動(dòng)橋。當(dāng)驅(qū)動(dòng)車輪采用非獨(dú)立懸架時(shí),應(yīng)該選用非斷開式驅(qū)動(dòng)橋;當(dāng)驅(qū)動(dòng)車輪采用獨(dú) 立懸架時(shí),則應(yīng)該選用斷開式驅(qū)動(dòng)橋。因此,前者又稱為非獨(dú)立懸架驅(qū)動(dòng)橋;后者稱為 獨(dú)立懸架驅(qū)動(dòng)橋。獨(dú)立懸架驅(qū)動(dòng)橋結(jié)構(gòu)叫復(fù)雜,但可以大大提高汽車在不平路面上的行 駛平順性。 1.1 非斷開式驅(qū)動(dòng)橋 普通非斷開式驅(qū)動(dòng)橋,由于結(jié)構(gòu)簡單、造價(jià)低廉、工作可靠,廣泛用在各種載貨汽 車、客車和公共汽車上,在多數(shù)的越野汽車和部分轎車上也采用這種結(jié)構(gòu)。他們的具體 結(jié)構(gòu)、特別是橋殼結(jié)構(gòu)雖然各不相同,但是有一個(gè)共同特點(diǎn),即橋殼是一根支承在左右 驅(qū)動(dòng)車輪上的剛性空心梁,齒輪及半軸等傳動(dòng)部件安裝在其中。這時(shí)整個(gè)驅(qū)動(dòng)橋、驅(qū)動(dòng) 車輪及部分傳動(dòng)軸均屬于簧下質(zhì)量,汽車簧下質(zhì)量較大,這是它的一個(gè)缺點(diǎn)。 驅(qū)動(dòng)橋的輪廓尺寸主要取決于主減速器的型式。在汽車輪胎尺寸和驅(qū)動(dòng)橋下的最小 離地間隙已經(jīng)確定的情況下,也就限定了主減速器從動(dòng)齒輪直徑的尺寸。在給定速比的 條件下,如果單級主減速器不能滿足離地間隙要求,可該用雙級結(jié)構(gòu)。在雙級主減速器 中,通常把兩級減速器齒輪放在一個(gè)主減速器殼體內(nèi),也可以將第二級減速齒輪作為輪 邊減速器。對于輪邊減速器:越野汽車為了提高離地間隙,可以將一對圓柱齒輪構(gòu)成的 輪邊減速器的主動(dòng)齒輪置于其從動(dòng)齒輪的垂直上方;公共汽車為了降低汽車的質(zhì)心高度 和車廂地板高度,以提高穩(wěn)定性和乘客上下車的方便,可將輪邊減速器的主動(dòng)齒輪置于 其從動(dòng)齒輪的垂直下方;有些雙層公共汽車為了進(jìn)一步降低車廂地板高度,在采用圓柱 齒輪輪邊減速器的同時(shí),將主減速器及差速器總成也移到一個(gè)驅(qū)動(dòng)車輪的旁邊。 在少數(shù)具有高速發(fā)動(dòng)機(jī)的大型公共汽車、多橋驅(qū)動(dòng)汽車和超重型載貨汽車上,有時(shí) 采用蝸輪式主減速器,它不僅具有在質(zhì)量小、尺寸緊湊的情況下可以得到大的傳動(dòng)比以 及工作平滑無聲的優(yōu)點(diǎn),而且對汽車的總體布置很方便。 1.2 斷開式驅(qū)動(dòng)橋 3 斷開式驅(qū)動(dòng)橋區(qū)別于非斷開式驅(qū)動(dòng)橋的明顯特點(diǎn)在于前者沒有一個(gè)連接左右驅(qū)動(dòng)車 輪的剛性整體外殼或梁。斷開式驅(qū)動(dòng)橋的橋殼是分段的,并且彼此之間可以做相對運(yùn)動(dòng), 所以這種橋稱為斷開式的。另外,它又總是與獨(dú)立懸掛相匹配,故又稱為獨(dú)立懸掛驅(qū)動(dòng) 橋。這種橋的中段,主減速器及差速器等是懸置在車架橫粱或車廂底板上,或與脊梁式 車架相聯(lián)。主減速器、差速器與傳動(dòng)軸及一部分驅(qū)動(dòng)車輪傳動(dòng)裝置的質(zhì)量均為簧上質(zhì)量。 兩側(cè)的驅(qū)動(dòng)車輪由于采用獨(dú)立懸掛則可以彼此致立地相對于車架或車廂作上下擺動(dòng),相 應(yīng)地就要求驅(qū)動(dòng)車輪的傳動(dòng)裝置及其外殼或套管作相應(yīng)擺動(dòng)。 汽車懸掛總成的類型及其彈性元件與減振裝置的工作特性是決定汽車行駛平順性的 主要因素,而汽車簧下部分質(zhì)量的大小,對其平順性也有顯著的影響。斷開式驅(qū)動(dòng)橋的 簧下質(zhì)量較小,又與獨(dú)立懸掛相配合,致使驅(qū)動(dòng)車輪與地面的接觸情況及對各種地形的 適應(yīng)性比較好,由此可大大地減小汽車在不平路面上行駛時(shí)的振動(dòng)和車廂傾斜,提高汽 車的行駛平順性和平均行駛速度,減小車輪和車橋上的動(dòng)載荷及零件的損壞,提高其可 靠性及使用壽命。但是,由于斷開式驅(qū)動(dòng)橋及與其相配的獨(dú)立懸掛的結(jié)構(gòu)復(fù)雜,故這種 結(jié)構(gòu)主要見于對行駛平順性要求較高的一部分轎車及一些越野汽車上,且后者多屬于輕 型以下的越野汽車或多橋驅(qū)動(dòng)的重型越野汽車。 1.3 多橋驅(qū)動(dòng)的布置 為了提高裝載量和通過性,有些重型汽車及全部中型以上的越野汽車都是采用多橋 驅(qū)動(dòng),常采用的有 4×4、6×6、8×8 等驅(qū)動(dòng)型式。在多橋驅(qū)動(dòng)的情況下,動(dòng)力經(jīng)分動(dòng)器 傳給各驅(qū)動(dòng)橋的方式有兩種。相應(yīng)這兩種動(dòng)力傳遞方式,多橋驅(qū)動(dòng)汽車各驅(qū)動(dòng)橋的布置 型式分為非貫通式與貫通式。前者為了把動(dòng)力經(jīng)分動(dòng)器傳給各驅(qū)動(dòng)橋,需分別由分動(dòng)器 經(jīng)各驅(qū)動(dòng)橋自己專用的傳動(dòng)軸傳遞動(dòng)力,這樣不僅使傳動(dòng)軸的數(shù)量增多,且造成各驅(qū)動(dòng) 橋的零件特別是橋殼、半軸等主要零件不能通用。而對 8×8 汽車來說,這種非貫通式驅(qū) 動(dòng)橋就更不適宜,也難于布置了。 為了解決上述問題,現(xiàn)代多橋驅(qū)動(dòng)汽車都是采用貫通式驅(qū)動(dòng)橋的布置型式。 在貫通式驅(qū)動(dòng)橋的布置中,各橋的傳動(dòng)軸布置在同一縱向鉛垂平面內(nèi),并且各驅(qū)動(dòng) 橋不是分別用自己的傳動(dòng)軸與分動(dòng)器直接聯(lián)接,而是位于分動(dòng)器前面的或后面的各相鄰 兩橋的傳動(dòng)軸,是串聯(lián)布置的。汽車前后兩端的驅(qū)動(dòng)橋的動(dòng)力,是經(jīng)分動(dòng)器并貫通中間 4 橋而傳遞的。其優(yōu)點(diǎn)是,不僅減少了傳動(dòng)軸的數(shù)量,而且提高了各驅(qū)動(dòng)橋零件的相互通 用性,并且簡化了結(jié)構(gòu)、減小了體積和質(zhì)量。這對于汽車的設(shè)計(jì)(如汽車的變型)、制造 和維修,都帶來方便。 由于非斷開式驅(qū)動(dòng)橋結(jié)構(gòu)簡單、造價(jià)低廉、工作可靠,查閱資料,參照國內(nèi)相關(guān)轎 車的設(shè)計(jì),最后本課題選用非斷開式驅(qū)動(dòng)橋。 其結(jié)構(gòu)如圖 1-1 所示: 1 2 3 4 5 6 7 8 9 10 1-半軸 2-圓錐滾子軸承 3-支承螺栓 4-主減速器從動(dòng)錐齒輪 5-油封 6-主減速器主動(dòng)錐齒 輪 7-彈簧座 8-墊圈 9-輪轂 10-調(diào)整螺母 圖 1-1 驅(qū)動(dòng)橋 第二章 主減速器設(shè)計(jì) 主減速器是汽車傳動(dòng)系中減小轉(zhuǎn)速、增大扭矩的主要部件,它是依靠齒數(shù)少的錐齒 輪帶動(dòng)齒數(shù)多的錐齒輪。對發(fā)動(dòng)機(jī)縱置的汽車,其主減速器還利用錐齒輪傳動(dòng)以改變動(dòng) 力方向。由于汽車在各種道路上行使時(shí),其驅(qū)動(dòng)輪上要求必須具有一定的驅(qū)動(dòng)力矩和轉(zhuǎn) 速,在動(dòng)力向左右驅(qū)動(dòng)輪分流的差速器之前設(shè)置一個(gè)主減速器后,便可使主減速器前面 的傳動(dòng)部件如變速器、萬向傳動(dòng)裝置等所傳遞的扭矩減小,從而可使其尺寸及質(zhì)量減小、 操縱省力。 驅(qū)動(dòng)橋中主減速器、差速器設(shè)計(jì)應(yīng)滿足如下基本要求: 5 a)所選擇的主減速比應(yīng)能保證汽車既有最佳的動(dòng)力性和燃料經(jīng)濟(jì)性。 b)外型尺寸要小,保證有必要的離地間隙;齒輪其它傳動(dòng)件工作平穩(wěn),噪音小。 c)在各種轉(zhuǎn)速和載荷下具有高的傳動(dòng)效率;與懸架導(dǎo)向機(jī)構(gòu)與動(dòng)協(xié)調(diào)。 d)在保證足夠的強(qiáng)度、剛度條件下,應(yīng)力求質(zhì)量小,以改善汽車平順性。 e)結(jié)構(gòu)簡單,加工工藝性好,制造容易,拆裝、調(diào)整方便。 2.1 主減速器結(jié)構(gòu)方案分析 主減速器的結(jié)構(gòu)形式主要是根據(jù)齒輪類型、減速形式的不同而不同。 2.1.1 螺旋錐齒輪傳動(dòng) 圖 2-1 螺旋錐齒輪傳動(dòng) 按齒輪副結(jié)構(gòu)型式分,主減速器的齒輪傳動(dòng)主要有螺旋錐齒輪式傳動(dòng)、雙曲面齒輪 式傳動(dòng)、圓柱齒輪式傳動(dòng)(又可分為軸線固定式齒輪傳動(dòng)和軸線旋轉(zhuǎn)式齒輪傳動(dòng)即行星 齒輪式傳動(dòng))和蝸桿蝸輪式傳動(dòng)等形式。 在發(fā)動(dòng)機(jī)橫置的汽車驅(qū)動(dòng)橋上,主減速器往往采用簡單的斜齒圓柱齒輪;在發(fā)動(dòng)機(jī) 縱置的汽車驅(qū)動(dòng)橋上,主減速器往往采用圓錐齒輪式傳動(dòng)或準(zhǔn)雙曲面齒輪式傳動(dòng)。 為了減少驅(qū)動(dòng)橋的外輪廓尺寸,主減速器中基本不用直齒圓錐齒輪而采用螺旋錐齒 輪。因?yàn)槁菪F齒輪不發(fā)生根切(齒輪加工中產(chǎn)生輪齒根部切薄現(xiàn)象,致使齒輪強(qiáng)度大 大降低)的最小齒數(shù)比直齒輪的最小齒數(shù)少,使得螺旋錐齒輪在同樣的傳動(dòng)比下主減速 器結(jié)構(gòu)較緊湊。此外,螺旋錐齒輪還具有運(yùn)轉(zhuǎn)平穩(wěn)、噪聲小等優(yōu)點(diǎn),汽車上獲得廣泛應(yīng) 用。 近年來,有些汽車的主減速器采用準(zhǔn)雙曲面錐齒輪(車輛行業(yè)中簡稱雙曲面?zhèn)鲃?dòng)) 6 傳動(dòng)。準(zhǔn)雙曲面錐齒輪傳動(dòng)與圓錐齒輪相比,準(zhǔn)雙曲面齒輪傳動(dòng)不僅工作平穩(wěn)性更好, 彎曲強(qiáng)度和接觸強(qiáng)度更高,同時(shí)還可使主動(dòng)齒輪的軸線相對于從動(dòng)齒輪軸線偏移。當(dāng)主 動(dòng)準(zhǔn)雙曲面齒輪軸線向下偏移時(shí),可降低主動(dòng)錐齒輪和傳動(dòng)軸位置,從而有利于降低車 身及整車重心高度,提高汽車行使的穩(wěn)定性。但是,準(zhǔn)雙曲面齒輪傳遞轉(zhuǎn)矩時(shí),齒面間 有較大的相對滑動(dòng),且齒面間壓力很大,齒面油膜很容易被破壞。為減少摩擦,提高效 率,必須采用含防刮傷添加劑的雙曲面齒輪油,絕不允許用普通齒輪油代替,否則將時(shí) 齒面迅速擦傷和磨損,大大降低使用壽命。 查閱文獻(xiàn)[1]、[2],經(jīng)方案論證,主減速器的齒輪選用螺旋錐齒輪傳動(dòng)形式(如圖 2-1 示) 。螺旋錐齒輪傳動(dòng)的主、從動(dòng)齒輪軸線垂直相交于一點(diǎn),齒輪并不同時(shí)在全長上 嚙合,而是逐漸從一端連續(xù)平穩(wěn)地轉(zhuǎn)向另一端。另外,由于輪齒端面重疊的影響,至少 有兩對以上的輪齒同時(shí)捏合,所以它工作平穩(wěn)、能承受較大的負(fù)荷、制造也簡單。為保 證齒輪副的正確嚙合,必須將支承軸承預(yù)緊,提高支承剛度,增大殼體剛度。 2.1.2 結(jié)構(gòu)形式 為了滿足不同的使用要求,主減速器的結(jié)構(gòu)形式也是不同的。 按參加減速傳動(dòng)的齒輪副數(shù)目分,有單級式主減速器和雙級式主減速器、雙速主減 速器、雙級減速配以輪邊減速器等。雙級式主減速器應(yīng)用于大傳動(dòng)比的中、重型汽車上, 若其第二級減速器齒輪有兩副,并分置于兩側(cè)車輪附近,實(shí)際上成為獨(dú)立部件,則稱輪 邊減速器。單級式主減速器應(yīng)用于轎車和一般輕、中型載貨汽車。單級主減速器由一對 圓錐齒輪組成,具有結(jié)構(gòu)簡單、質(zhì)量小、成本低、使用簡單等優(yōu)點(diǎn)。 查閱文獻(xiàn)[1]、[2],經(jīng)方案論證,本設(shè)計(jì)主減速器采用單級主減速器。其傳動(dòng)比 i0 一般小于等于 7。 2.2 主減速器主、從動(dòng)錐齒輪的支承方案 主減速器中心必須保證主從動(dòng)齒輪具有良好的嚙合狀況,才能使它們很好地工作。 齒輪的正確嚙合,除了與齒輪的加工質(zhì)量裝配調(diào)整及軸承主減速器殼體的剛度有關(guān)以外, 還與齒輪的支承剛度密切相關(guān)。 3.2.1 主動(dòng)錐齒輪的支承 7 圖 2-2 主動(dòng)錐齒輪懸臂式 主動(dòng)錐齒輪的支承形式可分為懸臂式支承和跨置式支承兩種。查閱資料、文獻(xiàn),經(jīng) 方案論證,采用懸臂式支承結(jié)構(gòu)(如圖 2-2 示) 。圓錐滾子軸承大端向外,這樣可以增加 支撐間的距離 b,并可減小懸臂長度 a,可以改善支承剛度。 懸臂式支承的優(yōu)點(diǎn)是結(jié)構(gòu)簡單。缺點(diǎn)是支承剛度較差。這種結(jié)構(gòu)主要用在傳遞轉(zhuǎn)矩 較小的乘用車,輕型商用車的單級主減速器中。所以綜合得出本設(shè)計(jì)選用懸臂式支承。 圖 2-3 從動(dòng)錐齒輪支撐形式 2.2.2 從動(dòng)錐齒輪的支承 從動(dòng)錐齒輪采用圓錐滾子軸承支承(如圖 2-3 示) 。為了增加支承剛度,兩軸承的圓 錐滾子大端應(yīng)向內(nèi),以減小尺寸 c+d。為了使從動(dòng)錐齒輪背面的差速器殼體處有足夠的位 置設(shè)置加強(qiáng)肋以增強(qiáng)支承穩(wěn)定性,c+d 應(yīng)不小于從動(dòng)錐齒輪大端分度圓直徑的 70%。為了 使載荷能均勻分配在兩軸承上,應(yīng)是 c 等于或大于 d。 2.3 主減速器錐齒輪設(shè)計(jì) 主減速比 i 、驅(qū)動(dòng)橋的離地間隙和計(jì)算載荷,是主減速器設(shè)計(jì)的原始數(shù)據(jù),應(yīng)在0 汽車總體設(shè)計(jì)時(shí)就確定。 2.3.1 主減速比 i 的確定0 8 主減速比對主減速器的結(jié)構(gòu)型式、輪廓尺寸、質(zhì)量大小以及當(dāng)變速器處于最高 檔位時(shí)汽車的動(dòng)力性和燃料經(jīng)濟(jì)性都有直接影響。i 的選擇應(yīng)在汽車總體設(shè)計(jì)時(shí)和傳動(dòng)0 系的總傳動(dòng)比 i 一起由整車動(dòng)力計(jì)算來確定??衫迷诓煌?i 下的功率平衡田來研究 i0 對汽車動(dòng)力性的影響。通過優(yōu)化設(shè)計(jì),對發(fā)動(dòng)機(jī)與傳動(dòng)系參數(shù)作最佳匹配的方法來選擇0 i 值,可使汽車獲得最佳的動(dòng)力性和燃料經(jīng)濟(jì)性。 本設(shè)計(jì)給出了 i =3.910 從動(dòng)錐齒輪計(jì)算轉(zhuǎn)矩 Tcs Tcs= (2-3)2rmGin??? 式中: Tce—計(jì)算轉(zhuǎn)矩,N·m; n—計(jì)算驅(qū)動(dòng)橋數(shù),1; im—主減速器從動(dòng)齒輪到車輪間的傳動(dòng)比,i f=1; —滿載狀態(tài)下一個(gè)驅(qū)動(dòng)橋上的靜載荷(N) , =11858N;2G2G ηm—主減速器主動(dòng)齒輪到車輪間的傳動(dòng)效率,η=1; —汽車最大加速的時(shí)的后軸負(fù)荷轉(zhuǎn)移系數(shù), =1.3;2? 2m? —輪胎與路面間的附著系數(shù), =0.85;?? —車輪滾動(dòng)半徑, =0.312m;r r 代入式(3-3) ,有: Tcs=4088 N·m Tce=2941.7N·m 主動(dòng)斜齒圓柱齒輪的計(jì)算轉(zhuǎn)矩為 (2-5)GoziTce?? 式中: 為主動(dòng)斜齒圓柱齒輪的計(jì)算轉(zhuǎn)矩,Nm;zT 9 為主傳動(dòng)比,取 3.91;oi 為主、從動(dòng)斜齒圓柱齒輪間的傳動(dòng)效率。 (計(jì)算時(shí),對于弧齒斜齒圓柱齒輪副,G? 取 95%;對于雙曲面齒輪副,當(dāng) >6 時(shí), 取 85%,當(dāng) =e,由此得 X=0.4,Y=1.7。arF 18 另外查得載荷系數(shù) fp=1.2。 P=fp(XF r+YFa) (2-21) 將各參數(shù)代入式(3-21)中,有: P=78990N 軸承應(yīng)有的基本額定動(dòng)負(fù)荷 C′ r C′ r= (2-22) 10h36tnLPf 式中: ft—溫度系數(shù),查文獻(xiàn)[4],得 ft=1; ε—滾子軸承的壽命系數(shù),查文獻(xiàn)[4],得 ε=10/3; n—軸承轉(zhuǎn)速,426.3r/min; L′ h—軸承的預(yù)期壽命,5000h; 將各參數(shù)代入式(2-22)中,有; C′ r=59558N 初選軸承型號 查文獻(xiàn)[3],初步選擇 Cr =61500N> C′ r的圓錐滾子軸承 32304。 驗(yàn)算 32304 圓錐滾子軸承的壽命 Lh = (2-23) εtrf167nP?????? 將各參數(shù)代入式(2-21)中,有: Lh =4879h<5000h 所選擇 32304 圓錐滾子軸承的壽命低于預(yù)期壽命,故選 32304 軸承,經(jīng)檢驗(yàn)?zāi)軡M足。 軸承 B、軸承 C、軸承 D、軸承 E 強(qiáng)度都可按此方法得出,其強(qiáng)度均能夠滿足要求。 第三章 差速器設(shè)計(jì) 19 汽車在行使過程中,左右車輪在同一時(shí)間內(nèi)所滾過的路程往往是不相等的,左右兩 輪胎內(nèi)的氣壓不等、胎面磨損不均勻、兩車輪上的負(fù)荷不均勻而引起車輪滾動(dòng)半徑不相 等;左右兩輪接觸的路面條件不同,行使阻力不等等。這樣,如果驅(qū)動(dòng)橋的左、右車輪 剛性連接,則不論轉(zhuǎn)彎行使或直線行使,均會(huì)引起車輪在路面上的滑移或滑轉(zhuǎn),一方面 會(huì)加劇輪胎磨損、功率和燃料消耗,另一方面會(huì)使轉(zhuǎn)向沉重,通過性和操縱穩(wěn)定性變壞。 為此,在驅(qū)動(dòng)橋的左右車輪間都裝有輪間差速器。 差速器是個(gè)差速傳動(dòng)機(jī)構(gòu),用來在兩輸出軸間分配轉(zhuǎn)矩,并保證兩輸出軸有可能以 不同的角速度轉(zhuǎn)動(dòng),用來保證各驅(qū)動(dòng)輪在各種運(yùn)動(dòng)條件下的動(dòng)力傳遞,避免輪胎與地面 間打滑。差速器按其結(jié)構(gòu)特征可分為齒輪式、凸輪式、蝸輪式和牙嵌自由輪式等多種形 式。 3.1 差速器結(jié)構(gòu)形式選擇 汽車上廣泛采用的差速器為對稱錐齒輪式差速器,具有結(jié)構(gòu)簡單、質(zhì)量較小等優(yōu)點(diǎn), 應(yīng)用廣泛。它可分為普通錐齒輪式差速器、摩擦片式差速器和強(qiáng)制鎖止式差速器。 普通齒輪式差速器的傳動(dòng)機(jī)構(gòu)為齒輪式。齒輪差速器要圓錐齒輪式和圓柱齒輪式兩 種。 強(qiáng)制鎖止式差速器就是在對稱式錐齒輪差速器上設(shè)置差速鎖。當(dāng)一側(cè)驅(qū)動(dòng)輪滑轉(zhuǎn)時(shí), 可利用差速鎖使差速器不起差速作用。差速鎖在軍用汽車上應(yīng)用較廣。 查閱文獻(xiàn)[5]經(jīng)方案論證,差速器結(jié)構(gòu)形式選擇對稱式圓錐行星齒輪差速器。 普通的對稱式圓錐行星齒輪差速器由差速器左、右殼,2 個(gè)半軸齒輪,4 個(gè)行星齒輪 (少數(shù)汽車采用 3 個(gè)行星齒輪,小型、微型汽車多采用 2 個(gè)行星齒輪),行星齒輪軸(不少 裝 4 個(gè)行星齒輪的差逮器采用十字軸結(jié)構(gòu)),半軸齒輪及行星齒輪墊片等組成。由于其結(jié) 構(gòu)簡單、工作平穩(wěn)、制造方便、用在公路汽車上也很可靠等優(yōu)點(diǎn),最廣泛地用在轎車、 客車和各種公路用載貨汽車上.有些越野汽車也采用了這種結(jié)構(gòu),但用到越野汽車上需 要采取防滑措施。例如加進(jìn)摩擦元件以增大其內(nèi)摩擦,提高其鎖緊系數(shù);或加裝可操縱 的、能強(qiáng)制鎖住差速器的裝置——差速鎖等。 3.2 普通錐齒輪式差速器齒輪設(shè)計(jì) 20 a) 行星齒輪數(shù) n 通常情況下,轎車的行星齒輪數(shù) n=2。 b) 行星齒輪球面半徑 Rb 行星齒輪球面半徑 Rb反映了差速器錐齒輪節(jié)錐矩的大小和承載能力。 Rb=Kb (3-1)3dT 式中: Kb—行星齒輪球面半徑系數(shù),K b=2.5~3.0,對于有兩個(gè)行星齒輪的轎車取最大值; 取 3.0 Td—差速器計(jì)算轉(zhuǎn)矩,2941.7N·m; 將各參數(shù)代入式(3-1) ,有: Rb=44 mm 行星齒輪節(jié)錐距 A0=43.5mm c)行星齒輪和半軸齒輪齒數(shù) z1和 z2 為了使輪齒有較高的強(qiáng)度,z 1一般不少于 10。半軸齒輪齒數(shù) z2在 14~25 選用。大 多數(shù)汽車的半軸齒輪與行星齒輪的齒數(shù)比 在 1.5~2.0 的范圍內(nèi),且半軸齒輪齒數(shù)和必21z 須能被行星齒輪齒數(shù)整除。 查閱資料,經(jīng)方案論證,初定半軸齒輪與行星齒輪的齒數(shù)比 =2,半軸齒輪齒數(shù)21z z2=24,行星齒輪的齒數(shù) z 1=12。 d) 行星齒輪和半軸齒輪節(jié)錐角 γ 1、γ 2及模數(shù) m 行星齒輪和半軸齒輪節(jié)錐角 γ 1、γ 2分別為 γ 1= (3-2)2zarctn?????? γ 2= (3-3)1rtz 將各參數(shù)分別代入式(3—2)與式(3—3) ,有: γ 1=27°,γ 2=63° 21 錐齒輪大端模數(shù) m 為 m= (3-4)012Asinγz 將各參數(shù)代入式(3-4) ,有: m=3.29mm 查閱文獻(xiàn)[3],取模數(shù) m=3.3 e)半軸齒輪與行星齒輪齒形參數(shù) 按照文獻(xiàn)[3]中的設(shè)計(jì)計(jì)算方法進(jìn)行設(shè)計(jì)和計(jì)算,結(jié)果見表 3-1。 f)壓力角 α 汽車差速齒輪大都采用壓力角 α=22°30′,齒高系數(shù)為 0.8 的齒形。 表 3-1 半軸齒輪與行星齒輪參數(shù) 參 數(shù) 符 號 半軸齒輪 行星齒輪 分度圓直徑 d 100 50 齒頂高 ha 2.7 3.51 齒根高 hf 4.11 3.3 齒頂圓直徑 da 110.5 54 齒根圓直徑 df 98 46 齒頂角 θ a 3.14° 5.53° 齒根角 θ f 5.53° 3.14° 分度圓錐角 δ 63° 27° 頂錐角 δ a 66.1° 32.5° 根錐角 δ f 57.5° 24° 錐距 R 47 46 分度圓齒厚 s 6.45 6.67 齒面寬 b 12 12 g)行星齒輪軸用直徑 d 行星齒輪軸用直徑 d(mm)為 22 d= (3-5)??30cdT×1.σnr 式中: T0—差速器殼傳遞的轉(zhuǎn)矩,2941.7Nm; n—行星齒輪數(shù),2; rd—行星齒輪支承面中點(diǎn)到錐頂?shù)木嚯x,mm; [σ c]—支承面許用擠壓應(yīng)力,取 98 MPa; 將各參數(shù)代入式(3-5)中,有: d=21.2mm,取 22mm。 行星齒輪在軸上的支承長度 L 為 L=1.1d=24.2mm 3.3 差速器齒輪的材料 差速器齒輪和主減速器齒輪一樣,基本上都是用滲碳合金鋼制造,目前用于制造差 速器錐齒輪的材料為 20CrMnTi、20CrMoTi、22CrMnMo 和 20CrMo 等。由于差速器齒輪輪 齒要求的精度較低,所以精鍛差速器齒輪工藝已被廣泛應(yīng)用。 3.4 普通錐齒輪式差速器齒輪強(qiáng)度計(jì)算 差速器齒輪的尺寸受結(jié)構(gòu)限制,而且承受的載荷較大,它不像主減速器齒輪那樣經(jīng) 常處于嚙合傳動(dòng)狀態(tài),只有當(dāng)汽車轉(zhuǎn)彎或左、右輪行使不同的路程時(shí),或一側(cè)車輪打滑 而滑轉(zhuǎn)時(shí),差速器齒輪才能有嚙合傳動(dòng)的相對運(yùn)動(dòng)。因此,對于差速器齒輪主要應(yīng)進(jìn)行 彎曲強(qiáng)度計(jì)算。輪齒彎曲應(yīng)力 σ w(MPa)為 σ w= (3-6)3smv2Tk×10bdJn 式中: n—行星齒輪數(shù),2; J—綜合系數(shù),取 0.224; b2—半軸齒輪齒寬,mm; 23 d2—半軸齒輪大端分度圓直徑,mm; T—半軸齒輪計(jì)算轉(zhuǎn)矩(Nm) ,T=0.6 T 0 ,1765; ks、k m、k v按照主減速器齒輪強(qiáng)度計(jì)算的有關(guān)轉(zhuǎn)矩選?。?將各參數(shù)代入式(4-6)中,有: σ w=938.5 MPa 按照文獻(xiàn)[1], 差速器齒輪的 σ w≤[σ w]=980 MPa,所以齒輪彎曲強(qiáng)度滿足要求。 第四章 驅(qū)動(dòng)車輪的傳動(dòng)裝置設(shè)計(jì) 驅(qū)動(dòng)車輪的傳動(dòng)裝置位于汽車傳動(dòng)系的末端,其功用是將轉(zhuǎn)矩由差速器半軸齒輪傳 給驅(qū)動(dòng)車輪。在斷開式驅(qū)動(dòng)橋和轉(zhuǎn)向驅(qū)動(dòng)橋中,驅(qū)動(dòng)車輪的傳動(dòng)裝置包括半軸和萬向節(jié) 傳動(dòng)裝置且多采用等速萬向節(jié)。在一般非斷開式驅(qū)動(dòng)橋上,驅(qū)動(dòng)車輪的傳動(dòng)裝置就是半 軸,這時(shí)半軸將差速器半軸齒輪與輪轂連接起來。在裝有輪邊減速器的驅(qū)動(dòng)橋上,半軸 將半軸齒輪與輪邊減速器的主動(dòng)齒輪連接起來。 4.1 半軸的型式 普通非斷開式驅(qū)動(dòng)橋的半軸,根據(jù)其外端的支承型式或受力狀況的不同而分為半浮 式、3/4 浮式和全浮式三種。 半浮式半軸以靠近外端的軸頸直接支承在置于橋殼外端內(nèi)孔中的軸承上,而端部則 以具有錐面的軸頸及鍵與車輪輪轂相固定,或以突緣直接與車輪輪盤及制動(dòng)鼓相聯(lián)接)。 因此,半浮式半軸除傳遞轉(zhuǎn)矩外,還要承受車輪傳來的彎矩。由此可見,半浮式半軸承 受的載荷復(fù)雜,但它具有結(jié)構(gòu)簡單、質(zhì)量小、尺寸緊湊、造價(jià)低廉等優(yōu)點(diǎn)。用于質(zhì)量較 小、使用條件較好、承載負(fù)荷也不大的轎車和輕型載貨汽車。 3/4 浮式半軸的結(jié)構(gòu)特點(diǎn)是半軸外端僅有一個(gè)軸承并裝在驅(qū)動(dòng)橋殼半軸套管的端部, 直接支承著車輪輪轂,而半軸則以其端部與輪轂相固定。由于一個(gè)軸承的支承剛度較差, 因此這種半軸除承受全部轉(zhuǎn)矩外,彎矩得由半軸及半軸套管共同承受,即 3/4 浮式半軸 還得承受部分彎矩,后者的比例大小依軸承的結(jié)構(gòu)型式及其支承剛度、半軸的剛度等因 素決定。側(cè)向力引起的彎矩使軸承有歪斜的趨勢,這將急劇降低軸承的壽命??捎糜谵I 24 車和輕型載貨汽車,但未得到推廣。 全浮式半軸的外端與輪轂相聯(lián),而輪轂又由一對軸承支承于橋殼的半軸套管上。多 采用一對圓錐滾子軸承支承輪轂,且兩軸承的圓錐滾子小端應(yīng)相向安裝并有一定的預(yù)緊, 調(diào)好后由鎖緊螺母予以鎖緊,很少采用球軸承的結(jié)構(gòu)方案。 由于車輪所承受的垂向力、縱向力和側(cè)向力以及由它們引起的彎矩都經(jīng)過輪轂、輪 轂軸承傳給橋殼,故全浮式半軸在理論上只承受轉(zhuǎn)矩而不承受彎矩。但在實(shí)際工作中由 于加工和裝配精度的影響及橋殼與軸承支承剛度的不足等原因,仍可能使全浮式半軸在 實(shí)際使用條件下承受一定的彎矩,彎曲應(yīng)力約為 5~70MPa。具有全浮式半軸的驅(qū)動(dòng)橋的 外端結(jié)構(gòu)較復(fù)雜,需采用形狀復(fù)雜且質(zhì)量及尺寸都較大的輪轂,制造成本較高,故轎車 及其他小型汽車不采用這種結(jié)構(gòu)。但由于其工作可靠,故廣泛用于輕型以上的各類汽車 上。 4.2 半軸的設(shè)計(jì)與計(jì)算 半軸的主要尺寸是它的直徑,設(shè)計(jì)與計(jì)算時(shí)首先應(yīng)合理地確定其計(jì)算載荷。 半軸的計(jì)算應(yīng)考慮到以下三種可能的載荷工況: a)縱向力 X2最大時(shí)(X 2=Z 2 )附著系數(shù)尹取 0.8,沒有側(cè)向力作用;? b)側(cè)向力 Y2最大時(shí),其最大值發(fā)生于側(cè)滑時(shí),為 Z2 中, ,側(cè)滑時(shí)輪胎與地面?zhèn)认?? 附著系數(shù) ,在計(jì)算中取 1.0,沒有縱向力作用;1? c)垂向力 Z2最大時(shí),這發(fā)生在汽車以可能的高速通過不平路面時(shí),其值為(Z 2-gw) kd,k d是動(dòng)載荷系數(shù),這時(shí)沒有縱向力和側(cè)向力的作用。 由于車輪承受的縱向力、側(cè)向力值的大小受車輪與地面最大附著力的限制,即: 2=X+Y? 故縱向力 X2最大時(shí)不會(huì)有側(cè)向力作用,而側(cè)向力 Y2最大時(shí)也不會(huì)有縱向力作用。 4.2.1 全浮式半軸的設(shè)計(jì)計(jì)算 本課題采用全浮式半軸,其詳細(xì)的計(jì)算校核如下: a)全浮式半軸計(jì)算載荷的確定 全浮式半軸只承受轉(zhuǎn)矩,其計(jì)算轉(zhuǎn)矩按下式進(jìn)行: 25 T=ξ Temaxig1i0 (4-1) 式中:ξ——差速器的轉(zhuǎn)矩分配系數(shù),對圓錐行星齒輪差速器可取 =0.6;? ig1——變速器 1 擋傳動(dòng)比; i0——主減速比。 已知:T emax=186Nm;i g1=4.17; i 0=3.91 ; =0.6ξ 計(jì)算結(jié)果: T=0.6×186×4.17×3.91 =1819.6N.m 在設(shè)計(jì)時(shí),全浮式半軸桿部直徑的初步選取可按下式進(jìn)行: (4-2) 33310(2.5~.18).96[]TdT????? 式中 d——半軸桿部直徑,mm; T——半軸的計(jì)算轉(zhuǎn)矩,Nrn; [ ]——半軸扭轉(zhuǎn)許用應(yīng)力,MPa。? 根據(jù)上式帶入 T=1819.6Nm,得: 32mm≤d≤32.6mm ?。篸=32mm 給定一個(gè)安全系數(shù) k=1.5 d=k×d =1.5×26 =48mm 全浮式半軸支承轉(zhuǎn)矩,其計(jì)算轉(zhuǎn)矩為: (4-3)22LrRrTX?? 三種半軸的扭轉(zhuǎn)應(yīng)力由下式計(jì)算: (4-4)3160d?? 26 式中 ——半軸的扭轉(zhuǎn)應(yīng)力,MPa;? T—一半軸的計(jì)算轉(zhuǎn)矩,T=1819.6Nm; d——半軸桿部直徑,d=32mm。 將數(shù)據(jù)帶入式(4-3) 、 (4-4)得: =528MPa? 半軸花鍵的剪切應(yīng)力為 (4-5) 310()/4bpBATzLjDd???? 半軸花鍵的擠壓應(yīng)力為 (4-6)2/)(]4/)[(10 3ABABpc ddLzT????????? 式中 T——半軸承受的最大轉(zhuǎn)矩,T=12215Nm; DB——半軸花鍵(軸)外徑,D B=48mm; dA——相配的花鍵孔內(nèi)徑,d A=42mm; z——花鍵齒數(shù); Lp——花鍵工作長度,L p=48mm; B——花鍵齒寬,B=6qqmm; ——載荷分布的不均勻系數(shù),取 0.75。? 將數(shù)據(jù)帶入式(4-5) 、 (4-6)得: =68Mpab? =169MPac? 半軸的最大扭轉(zhuǎn)角為 (4-7)3108????GJTl 式中 T——半軸承受的最大轉(zhuǎn)矩,T=12215Nm; l——半軸長度,l =725mm; G——材料的剪切彈性模量,MPa; 27 J——半軸橫截面的極慣性矩, mm 4。 將數(shù)據(jù)帶入式(4-7)得: = 8°? 半軸計(jì)算時(shí)的許用應(yīng)力與所選用的材料、加工方法、熱處理工藝及汽車的使用條 件有關(guān)。當(dāng)采用 40Cr,40MnB,40MnVB,40CrMnMo,40 號及 45 號鋼等作為全浮式半軸的 材料時(shí),其扭轉(zhuǎn)屈服極限達(dá)到 784MPa 左右。在保證安全系數(shù)在 1.3~1.6 范圍時(shí),半軸 扭轉(zhuǎn)許用應(yīng)力可取為[ =490~588MPa。]? 對于越野汽車、礦用汽車等使用條件差的汽車,應(yīng)該取較大的安全系數(shù),這時(shí)許用 應(yīng)力應(yīng)取小值;對于使用條件較好的公路汽車則可取較大的許用應(yīng)力。 當(dāng)傳遞最大轉(zhuǎn)矩時(shí),半軸花鍵的剪切應(yīng)力不應(yīng)超過 71.05MPa;擠壓應(yīng)力不應(yīng)該超過 196MPa,半軸單位長度的最大轉(zhuǎn)角不應(yīng)大于 8°/m。 4.3 半軸的結(jié)構(gòu)設(shè)計(jì)及材料與熱處理 為了使半軸的花鍵內(nèi)徑不小于其桿部直徑,常常將加工花鍵的端部做得粗些,并適 當(dāng)?shù)販p小花鍵槽的深度,因此花鍵齒數(shù)必須相應(yīng)地增加,通常取 10 齒(轎車半軸)至 18 齒(載貨汽車半軸)。半軸的破壞形式多為扭轉(zhuǎn)疲勞破壞,因此在結(jié)構(gòu)設(shè)計(jì)上應(yīng)盡量增大 各過渡部分的圓角半徑以減小應(yīng)力集中。重型車半軸的桿部較粗,外端突緣也很大,當(dāng) 無較大鍛造設(shè)備時(shí)可采用兩端均為花鍵聯(lián)接的結(jié)構(gòu),且取相同花鍵參數(shù)以簡化工藝。在 現(xiàn)代汽車半軸上,漸開線花鍵用得較廣,但也有采用矩形或梯形花鍵的。 半軸多采用含鉻的中碳合金鋼制造,如 40Cr,40CrMnMo,40CrMnSi,40CrMoA,35CrMnSi,35CrMnTi 等。40MnB 是我國研制出的 新鋼種,作為半軸材料效果很好。半軸的熱處理過去都采用調(diào)質(zhì)處理的方法,調(diào)質(zhì)后要 求桿部硬度為 HB388—444(突緣部分可降至 HB248)。近年來采用高頻、中頻感應(yīng)淬火的 口益增多。這種處理方法使半軸表面淬硬達(dá) HRC52~63,硬化層深約為其半徑的 1/3, 心部硬度可定為 HRC30—35;不淬火區(qū)(突緣等)的硬度可定在 HB248~277 范圍內(nèi)。由于 硬化層本身的強(qiáng)度較高,加之在半軸表面形成大的殘余壓應(yīng)力,以及采用噴丸處理、滾 壓半軸突緣根部過渡圓角等工藝,使半軸的靜強(qiáng)度和疲勞強(qiáng)度大為提高,尤其是疲勞強(qiáng) 28 度提高得十分顯著。由于這些先進(jìn)工藝的采用,不用合金鋼而采用中碳(40 號、45 號)鋼 的半軸也日益增多。 第五章 驅(qū)動(dòng)橋殼設(shè)計(jì) 驅(qū)動(dòng)橋橋殼是汽車上的主要零件之一,非斷開式驅(qū)動(dòng)橋的橋殼起著支承汽車荷重的 作用,并將載荷傳給車輪.作用在驅(qū)動(dòng)車輪上的牽引力,制動(dòng)力、側(cè)向力和垂向力也是 經(jīng)過橋殼傳到懸掛及車架或車廂上。因此橋殼既是承載件又是傳力件,同時(shí)它又是主減 速器、差速器及驅(qū)動(dòng)車輪傳動(dòng)裝置(如半軸)的外殼。 在汽車行駛過程中,橋殼承受繁重的載荷,設(shè)計(jì)時(shí)必須考慮在動(dòng)載荷下橋殼有足夠 的強(qiáng)度和剛度。為了減小汽車的簧下質(zhì)量以利于降低動(dòng)載荷、提高汽車的行駛平順性, 在保證強(qiáng)度和剛度的前提下應(yīng)力求減小橋殼的質(zhì)量.橋殼還應(yīng)結(jié)構(gòu)簡單、制造方便以利 于降低成本。其結(jié)構(gòu)還應(yīng)保證主減速器的拆裝、調(diào)整、維修和保養(yǎng)方便。在選擇橋殼的 結(jié)構(gòu)型式時(shí),還應(yīng)考慮汽車的類型、使用要求、制造條件、材料供應(yīng)等。 5.1 橋殼的結(jié)構(gòu)型式 橋殼的結(jié)構(gòu)型式大致分為可分式 a)可分式橋殼 可分式橋殼的整個(gè)橋殼由一個(gè)垂直接合面分為左右兩部分,每一部分均由一個(gè)鑄件 殼體和一個(gè)壓入其外端的半軸套管組成。半軸套管與殼體用鉚釘聯(lián)接。在裝配主減速器 及差速器后左右兩半橋殼是通過在中央接合面處的一圈螺栓聯(lián)成一個(gè)整體。其特點(diǎn)是橋 殼制造工藝簡單、主減速器軸承支承剛度好。但對主減速器的裝配、調(diào)整及維修都很不 方便,橋殼的強(qiáng)度和剛度也比較低。過去這種所謂兩段可分式橋殼見于輕型汽車,由于 上述缺點(diǎn)現(xiàn)已很少采用。 b)整體式橋殼 整體式橋殼的特點(diǎn)是將整個(gè)橋殼制成一個(gè)整體,橋殼猶如一整體的空心梁,其強(qiáng)度 及剛度都比較好。且橋殼與主減速器殼分作兩體,主減速器齒輪及差速器均裝在獨(dú)立的 主減速殼里,構(gòu)成單獨(dú)的總成,調(diào)整好以后再由橋殼中部前面裝入橋殼內(nèi),并與橋殼用 29 螺栓固定在一起。使主減速器和差速器的拆裝、調(diào)整、維修、保養(yǎng)等都十分方便。 整體式橋殼按其制造工藝的不同又可分為鑄造整體式、鋼板沖壓焊接式和鋼管擴(kuò)張 成形式三種。 5.2 橋殼的受力分析及強(qiáng)度計(jì)算 我國通常推薦:計(jì)算時(shí)將橋殼復(fù)雜的受力狀況簡化成三種典型的計(jì)算工況(與前述 半軸強(qiáng)度計(jì)算的三種載荷工況相同) 。 當(dāng)牽引力或制動(dòng)力最大時(shí),橋殼鋼板彈簧座處危險(xiǎn)端面的彎曲應(yīng)力 和扭轉(zhuǎn)應(yīng)力 為:?? (5-1)vhMσ=W? (5-2)Tτ 式中 ——地面對車輪垂直反力在橋殼板簧座處危險(xiǎn)端面引起的垂直平面內(nèi)的彎矩,vM ;hx2=Fb? ——橋殼板簧座到車輪面的距離;b ——牽引力或制動(dòng)力 (一側(cè)車輪上的)在水平平面內(nèi)引起的彎矩,h x2 ;hx2M=Fb? ——牽引或制動(dòng)時(shí),上述危險(xiǎn)斷面所受的轉(zhuǎn)矩, ;T Tx2r=F? 、 ——分別為橋殼危險(xiǎn)斷面垂直平面和水平面彎曲的抗彎截面系數(shù);vWh ——危險(xiǎn)斷面的抗扭截面系數(shù)。T 將數(shù)據(jù)帶入式(5-2) 、 (5-3)得: =400 N/mm2 σ =250 N/mm2 τ 橋殼許用彎曲應(yīng)力為 300-500N/mm2,許用扭轉(zhuǎn)應(yīng)力為 150-400N/mm2??慑懺鞓驓と?30 較小值,鋼板沖壓焊接橋殼取最大值。 第六章 結(jié)論 本課題是汽車驅(qū)動(dòng)橋設(shè)計(jì),由于結(jié)構(gòu)簡單、主減速器造價(jià)低廉、工作可靠,可以被 廣泛用在各種轎車。 設(shè)計(jì)介紹了后橋驅(qū)動(dòng)的結(jié)構(gòu)形式和工作原理,計(jì)算了差速器、主減速器以及半軸的 結(jié)構(gòu)尺寸,進(jìn)行了強(qiáng)度校核,并繪制了有關(guān)零件圖和裝配圖。 本驅(qū)動(dòng)橋設(shè)計(jì)結(jié)構(gòu)合理,符合實(shí)際應(yīng)用,具有很好的動(dòng)力性和經(jīng)濟(jì)性,驅(qū)動(dòng)橋總成 及零部件的設(shè)計(jì)能盡量滿足零件的標(biāo)準(zhǔn)化、部件的通用化和產(chǎn)品的系列化及汽車變型的 要求,修理、保養(yǎng)方便,機(jī)件工藝性好,制造容易。 但此設(shè)計(jì)過程仍有許多不足,在設(shè)計(jì)結(jié)構(gòu)尺寸時(shí),有些設(shè)計(jì)參數(shù)是按照以往經(jīng)驗(yàn)值 得出,這樣就帶來了一定的誤差。另外,在一些小的方面,由于時(shí)間問題,做得還不夠 仔細(xì),懇請各位老師給予批評指正。 31 致 謝 近三個(gè)月時(shí)間的畢業(yè)課題設(shè)計(jì)是我大學(xué)生活中忙碌而又充實(shí)一段時(shí)光。這里有治學(xué) 嚴(yán)謹(jǐn)而又親切的老師,有互相幫助的同學(xué),更有積極、向上、融洽的學(xué)習(xí)生活氛圍。短 短的時(shí)間里,我學(xué)到了很多的東西。 首先,非常感謝我的畢業(yè)設(shè)計(jì)知道老師左老師。本次設(shè)計(jì)的課題是:汽車驅(qū)動(dòng)橋設(shè) 計(jì)。作為一個(gè)本科生的畢業(yè)設(shè)計(jì),由于經(jīng)驗(yàn)的匱乏,難免有許多考慮不周全的地方,如 果沒有導(dǎo)師的督促指導(dǎo),想要完成這個(gè)設(shè)計(jì)是難以想象的。通過指導(dǎo)老師左老師的講解, 終于把設(shè)計(jì)的思路搞清楚了。對于具體的細(xì)節(jié)問題,涉及到一些經(jīng)驗(yàn)方面的問題,指導(dǎo) 老師總是不厭其煩的講解。給了我很大的幫助。在這里我非常敬佩左老師的專業(yè)水平、 治學(xué)嚴(yán)謹(jǐn)和科學(xué)研究的精神,這將是我終身學(xué)習(xí)的榜樣,.并將積極影響我今后的學(xué)習(xí)和 工作。 其次,非常感謝我的同學(xué)。當(dāng)我在畢業(yè)設(shè)計(jì)過程中遇到問題和困難時(shí),是他們給我 提出許多細(xì)節(jié)的意見和建議,使我的畢業(yè)設(shè)計(jì)更加完善,并耐心的幫我解決了許多實(shí)際 問題,使我獲益良多。 最后,向我的父親、母親致謝,感謝他