《信號與系統(tǒng)》復習題及答案.doc
《《信號與系統(tǒng)》復習題及答案.doc》由會員分享,可在線閱讀,更多相關《《信號與系統(tǒng)》復習題及答案.doc(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
函數(shù)的單邊拉氏變換為()。象函數(shù)的拉氏反變換為()。序列的z變換為( )。電信號系統(tǒng)分連續(xù)系統(tǒng)、(離散系統(tǒng))、(混合系統(tǒng))、串聯(lián)系統(tǒng)、并聯(lián)系統(tǒng)、反饋系統(tǒng)按響應的不同起因響應分為(儲能響應)和(受激響應);卷積交換律是(f1( t ) * f2( t ) = f2( t ) * f1( t )) 卷積結(jié)合律是(f1( t ) * f2( t ) * f3( t ) = f1( t ) * f2( t ) * f3( t ) )卷積分配律是(f1( t ) + f2( t ) * f3( t ) = f1( t ) * f3( t ) +f2( t )* f3( t ))信號的帶寬與信號的持續(xù)時間(脈沖寬度)成(反比)。 f( t )為實偶函數(shù),F(xiàn)( w )為(實偶函數(shù));f( t )為奇函數(shù),F(xiàn)( w )為(純虛函數(shù));f( t )為非奇非偶函數(shù),F(xiàn)( w )為(復函數(shù));H( s )的零點只影響h( t )的(幅度)和相位, H( s )的極點才決定(時域特性的變化模式)。H(s)分子多項式N(s)=0的根叫零點。H(s)分母多項式D(s)=0的根叫極點。極點位于S平面原點,h( t )對應為(階躍)函數(shù);極點位于S平面負實軸上, h( t )對應為(衰減指數(shù))函數(shù);共軛極點位于虛軸上, h( t )對應為(正弦振蕩);共軛極點位于S的左半平面, h( t )對應為(衰減的正弦振蕩);在零狀態(tài)條件下,由單位序列d(n)引起的響應稱為(單位)響應,記為(h( n )。僅在離散時刻有定義的信號叫(離散時間)信號:。H(s)在虛軸上有單極點,其余極點均在S的左半平面時,系統(tǒng)處于(臨界穩(wěn)定)H(s)只要有一個極點位于S的右半平面,系統(tǒng)處于(不穩(wěn)定)。H(s)為系統(tǒng)(沖激響應)的拉氏變換。H(s)是一個實系數(shù)有理分式,它決定了系統(tǒng)的(特征根)(固有頻率);具有新內(nèi)容、新知識的消息叫(信息)。 時不變系統(tǒng)是系統(tǒng)的(元件參數(shù))不隨時間變化,或系統(tǒng)的方程為(常系數(shù))。 因果系統(tǒng)是在(激勵信號)作用之前系統(tǒng)不產(chǎn)生(響應)。解調(diào)是(從已被調(diào)制的信號中恢復原信號)的過程系統(tǒng)函數(shù)H(s)是零狀態(tài)(響應的象函數(shù))與(輸入信號的象函數(shù))之比信號(signal):物質(zhì)的運動形式或狀態(tài)的變化。(聲、光、電、力、振動、流量、溫度 )系統(tǒng)(system):由若干相互聯(lián)系、相互作用的單元組成的具有一定功能的整體。零輸入響應(儲能響應 ):從觀察的初始時刻起不再施加輸入信號,僅由該時刻系統(tǒng)本身的起始儲能狀態(tài)引起的響應稱為零輸入響應(ZIR)。 零狀態(tài)響應(受迫響應 ):當系統(tǒng)的儲能狀態(tài)為零時,由外加激勵信號(輸入)產(chǎn)生的響應稱為零狀態(tài)響應(ZSR) 。 階躍響應:LTI系統(tǒng)在零狀態(tài)下,由單位階躍信號引起的響應稱為單位階躍響應,簡稱階躍響應,記為s( t )。 沖激響應:儲能狀態(tài)為零的系統(tǒng),在單位沖激信號作用下產(chǎn)生的零狀態(tài)響應稱為沖激響應,記為h( t )。 8-5 試用卷和定理證明以下關系:(a) (b) 證明 (a) 因由卷和定理而故得 (b) 因為而所以1-4、1-8、2-1、2-2、2-15、3-1、3-2、3-4、3-7、4-1、4-3、4-4、4-7、5-6、5-7、5-8、7-6、7-7、7-81-4 如題1-4圖示系統(tǒng)由加法器、積分器和放大量為-a的放大器三個子系統(tǒng)組成,系統(tǒng)屬于何種聯(lián)接形式?試寫出該系統(tǒng)的微分方程。題1-4圖解 系統(tǒng)為反饋聯(lián)接形式。設加法器的輸出為x( t ),由于且故有即1-8 若有線性時不變系統(tǒng)的方程為若在非零f( t )作用下其響應,試求方程的響應。解 因為f( t ) ,由線性關系,則由線性系統(tǒng)的微分特性,有故響應2-1 如圖2-1所示系統(tǒng),試以uC( t )為輸出列出其微分方程。題2-1圖解 由圖示,有又故從而得2-2 設有二階系統(tǒng)方程在某起始狀態(tài)下的0+起始值為試求零輸入響應。解 由特征方程l2 + 4l + 4 =0得 l1 = l2 = -2則零輸入響應形式為由于yzi( 0+ ) = A1 = 1-2A1 + A2 = 2所以A2 = 4故有2-15 一線性時不變系統(tǒng),在某起始狀態(tài)下,已知當輸入f( t ) = e( t )時,全響應y1( t ) = 3e-3te( t );當輸入f( t ) = -e( t )時,全響應y2( t ) = e-3te( t ),試求該系統(tǒng)的沖激響應h( t )。解 因為零狀態(tài)響應e( t ) s( t ),-e( t ) -s( t )故有y1( t ) = yzi( t ) + s( t ) = 3e-3te( t )y2( t ) = yzi( t ) - s( t ) = e-3te( t )從而有y1( t ) - y2( t ) = 2s( t ) = 2e-3te( t )即s( t ) = e-3te( t )故沖激響應h( t ) = s ( t ) = d( t ) - 3e-3te( t )3-1 求題3-1圖所示周期信號的三角形式的傅里葉級數(shù)表示式。題3-1圖解 對于周期鋸齒波信號,在周期( 0,T )內(nèi)可表示為系數(shù) 所以三角級數(shù)為3-2 如圖所示周期矩形波信號,試求其復指數(shù)形式的傅里葉級數(shù)。圖中。題3-2圖解:該信號周期,故,在一個周期內(nèi)可得:因為為奇函數(shù),故,從而有指數(shù)形式: 3-4 求題3-4圖示信號的傅里葉變換。題3-4圖解 (a)因為f( t ) = 為奇函數(shù),故或用微分定理求解亦可。(b) f( t )為奇函數(shù),故 若用微分-積分定理求解,可先求出f ( t ),即f ( t ) = d( t + t ) + d( t - t ) - 2d( t )所以又因為F1( 0 ) = 0,故3-7 試求信號f( t ) = 1 + 2cost + 3cos3t的傅里葉變換。解 因為1 2pd(w) 2cost 2pd(w - 1) + d(w + 1) 3cos3t 3pd(w - 3) + d(w + 3) 故有F(w ) = 2pd(w) + d(w - 1) + d(w + 1) + 3pd(w - 3) + d(w + 3) 4-3 設系統(tǒng)的頻率特性為試用頻域法求系統(tǒng)的沖激響應和階躍響應。解 沖激響應,故而階躍響應頻域函數(shù)應為所以階躍響應4-4 如題圖4-4所示是一個實際的信號加工系統(tǒng),試寫出系統(tǒng)的頻率特性H( jw )。題4-4圖解 由圖可知輸出取上式的傅氏變換,得故頻率特性4-7 設f( t )為調(diào)制信號,其頻譜F( w )如題圖4-7所示,cosw0t為高頻載波,則廣播發(fā)射的調(diào)幅信號x( t )可表示為x( t ) = A 1 + m f( t ) cosw0t式中,m為調(diào)制系數(shù)。試求x( t )的頻譜,并大致畫出其圖形。F(w)題4-7圖解 因為調(diào)幅信號x( t ) = Acosw0t + mA f( t )cosw0t故其變換式中,F(xiàn)(w )為f( t )的頻譜。x( t )的頻譜圖如圖p4-7所示。X(w)圖p4-74-1 設信號f(t)的頻譜F(w )如題4-10圖(a)所示,當該信號通過圖(b)系統(tǒng)后,證明y(t)恢復為f(t)。F(w)j2w1t題4-10圖證明 因為故通過高通濾波器后,頻譜F1(w )為所以輸出即y(t)包含了f(t)的全部信息F(w ),故恢復了f(t)。5-6 設系統(tǒng)微分方程為已知。試用s域方法求零輸入響應和零狀態(tài)響應。解 對系統(tǒng)方程取拉氏變換,得從而由于故求反變換得全響應為5-7 設某LTI系統(tǒng)的微分方程為試求其沖激響應和階躍響應。解 對方程取拉氏變換,得系統(tǒng)函數(shù)當f( t ) = d( t )時,F(xiàn)( s ) =1,得從而當f( t ) = e( t )時,得故得5-8 試求題5-8圖示電路中的電壓u( t )。題5-8圖解 對應的s域模型如圖p5-8所示,則而,故有所以7-6 設有序列f1( n )和f2( n ),如圖7-6所示,試用乘法求二者的卷積。題7-6圖解:用“乘法”2 1.5 1 1 1.5 2 1 1 1 12 1.5 1 1 1.5 22 1.5 1 1 1.5 22 1.5 1 1 1.5 22 1.5 1 1 1.5 22 3.5 4.5 5.5 5 5.5 4.5 3.5 2即有7-7 設有一階系統(tǒng)為試求單位響應h( n )和階躍響應s( n ),并畫出s( n )的圖形。解 由方程知特征根l = 0.8,故階躍響應為s( n )的圖形如圖p7-7所示。圖p7-77-8 設離散系統(tǒng)的單位響應,輸入信號,試求零狀態(tài)響應y( n )。解 由給定的f( n )和h( n ),得因為故得12- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關 鍵 詞:
- 信號與系統(tǒng) 信號 系統(tǒng) 復習題 答案
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://m.italysoccerbets.com/p-12767268.html