向量代數(shù)與空間解析幾何ppt課件
《向量代數(shù)與空間解析幾何ppt課件》由會員分享,可在線閱讀,更多相關《向量代數(shù)與空間解析幾何ppt課件(64頁珍藏版)》請在裝配圖網上搜索。
7.5 曲面及其方程,一、曲面方程的概念,二、柱面,四、二次曲面,三、旋轉曲面,五、小結,1,水桶的表面、臺燈的罩子面等.,曲面在空間解析幾何中被看成是點的幾何軌跡.,1、曲面方程的定義,曲面的實例:,一、曲面方程的概念,若曲面 S 與三元方程 F ( x, y, z ) = 0 有下述關系:,(1) 曲面 S 上任一點的坐標都滿足此方程;,(2) 不在曲面 S 上的點的坐標都不滿足此方程,則稱方程 F( x, y, z ) = 0 為曲面 S 的方程, 而曲面 S 稱 為方程 F ( x, y, z ) = 0 的圖形.,2,2、常見曲面的方程,解,則由題意知,所求球面方程為,若球心在原點, 則球面方程為,例 1 建立球心在點 M0 (x0 , y0 , z0)、半徑為 R 的球 面的方程.,設 M (x, y, z) 是球面上的任一點,即,3,則由題意知,所求平面方程為,解,例 2 設有點 A (1, 2, 3) 和 B (2, -1, 4), 求線段 AB 的垂直平分面的方程.,設 M (x, y, z) 為所求平面上的任一點,即,4,(1) 已知一曲面作為點的幾何軌跡時, 建立這曲面 的方程;,以上幾例表明, 研究空間曲面有兩個基本問題:,(2) 已知坐標 x、y 和 z 間的一個方程時, 研究這方 程所表示的曲面的形狀.,(討論旋轉曲面),(討論柱面、二次曲面),5,例 3 方程 表示怎樣的曲 面?,原方程可化為,解,原方程表示球心在點 M0 (1, -2, 0)、半徑為 R = 的球面.,6,說明: 如下形式的三元二次方程,都可通過配方來研究它的圖形,其圖形可能是一個球面,或者點, 或者虛軌跡.,7,二、柱面,引例 方程,表示怎樣的曲面.,的坐標也滿足方程,解,表示圓 C,沿圓周 C 平行于 z 軸的一切直線所形成的曲面稱為,故在空間,過此點作,圓柱面.,對任意 z, 點,平行 z 軸的直線 l ,表示圓柱面.,在圓 C 上任取一點,其上所有點的坐標都滿足此方程,在 xOy 面上,8,播放,定義: 直線 L 沿定曲線 C 平行移動形成的軌跡稱 為柱面. 定曲線 C 稱為柱面的準線, 動直線 L 稱為柱面 的母線.,觀察柱面的形成過程:,9,柱面舉例,拋物柱面,平面,10,柱面的特征:,(其他類推),實 例,橢圓柱面 / 軸,雙曲柱面 / 軸,拋物柱面 / 軸,只含 x、y 而缺 z 的方程 F (x, y) = 0 在空間直角 坐標系中表示母線平行于 z 軸的柱面, 其準線是 xOy 面上的曲線 C: F (x, y) = 0.,11,三、旋轉曲面,定義: 以一條平 面曲線繞其平面上的 一條直線旋轉一周所 成的曲面稱為旋轉曲 面,旋轉曲線和定直線 分別稱為旋轉曲面的 母線和軸.,播放,12,設 M1(0, y1, z1)為曲線 C 上的任一點,設在 yOz 坐標面上有一已知曲線 C, 它的方程為,將這曲線繞 z 軸旋一周, 就得到一個以 z 軸為軸的旋轉 曲面.,則有,當曲線 C 繞 z 軸旋轉 時, 點 M1 (0, y1, z1) 繞 z 軸 轉到另一點 M (x, y, z),13,這時,(1) z = z1;,(2) 點 M 到 z 軸的距離為,將 代入 f (y1 , z1) = 0, 得,這就是所求旋轉曲面的方程.,14,同理, 曲線 C 繞 y 軸旋轉所成的旋轉曲面的方程為,由此可知, 在曲線 C 的方程 f (y, z) = 0 中將 y 改成 , 便得曲線 C 繞 z 軸旋轉所成的旋轉曲面的 方程.,15,例 4 直線 L 繞另一條與 L 相交的直線旋轉一周, 所得旋轉曲面稱為圓錐面. 兩直線的交點稱為圓錐面 的頂點, 兩直線的夾角 ( ) 稱為圓錐面的半 頂角. 試建立頂點在坐標原點 O, 旋轉軸為 z 軸, 半頂 角為 的圓錐面的方程.,16,解,所求圓錐面的方程為,在 yOz 坐標面上, 直線 L 的方程為,旋轉軸為 z 軸,或,其中 a = cot.,17,例 5 將下列各曲線繞對應的軸旋轉一周, 求所生 成的旋轉曲面的方程.,旋轉雙曲面,(1) 雙曲線 分別繞 x 軸和 z 軸;,若繞 x 軸旋轉, 則得,若繞 z 軸旋轉, 則得,18,旋轉橢球面,旋轉拋物面,(2) 橢圓 分別繞 y 軸和 z 軸;,若繞 y 軸旋轉, 則得,若繞 z 軸旋轉, 則得,(3) 拋物線 繞 z 軸.,若繞 z 軸旋轉, 則得,19,四、二次曲面,三元二次方程 F (x, y, z) = 0 所表示的曲面稱為二 次曲面.,相應地, 平面被稱為一次曲面.,1、二次曲面的定義,其基本類型:,橢球面、拋物面、雙曲面、錐面.,2、研究二次曲面性狀的截痕法,平面 z = t 與曲面 F (x, y, z) = 0 的交線稱為截痕. 通過綜合截痕的變化來了解曲面形狀的方法稱為截痕 法.,20,1、橢球面,(1) 范圍,由方程可知,即,這說明橢球面包含在由平面 x = a, y = b, z = c 圍 成的長方體內.,21,橢圓,(2) 橢球面與三個坐標面的交線:,22,橢圓截面的大小隨平面位置的變化而變化.,(3) 截痕:,同理, 橢球面與平面 x = x1 和 y = y1 的交線為橢圓,橢球面與平面 z = z1 的交線為橢圓,23,橢球面的幾種特殊情況:,(旋轉橢球面),由橢圓 繞 軸旋轉而成,方程可寫為, 若 a = b, 則橢球面變?yōu)?24,(球面),截面上圓的方程,方程可寫為, 若 a = b = c, 則橢球面變?yōu)?旋轉橢球面與橢球面的區(qū)別:,與平面 的交線為圓,25,2、拋物面,原點也叫橢圓拋物面的頂點., 用坐標面 xOy (z = 0) 與曲面相截, 得坐標原點 O (0, 0, 0).,與平面 z = z1 (z1 0) 的交線為橢圓,與平面 z = z1 (z1 0) 不相交.,(1) 橢圓拋物面,當 z1 變動時, 這種橢圓的中心都在 z 軸上.,26, 用坐標面 xOz (y = 0) 與曲面相截, 得拋物線,與平面 y = y1 的交線為拋物線,它的軸平行于 z 軸,頂點為, 用坐標面 yOz (x = 0), 平面 x = x1 與曲面相截, 均可得拋物線.,27,綜上所述, 橢圓拋物面的圖形如下:,28,特別地, 當 a = b = 時, 方程變?yōu)?旋轉拋物面,由 zOx 面上的拋物線 x 2 = 2pz 繞它的軸旋轉而成的.,與平面 z = z1 (z1 0) 的交線為圓,當 z1 變動時, 這種圓的中心都在 z 軸上.,29,雙曲拋物面又稱馬鞍面,也可用截痕法討論, 其圖形如下:,(2) 雙曲拋物面,30,3、雙曲面, 用坐標面 xOy (z = 0) 與曲面相截, 得中心在原點 O (0, 0, 0) 的橢圓,與平面 z = z1 的交線為橢圓,(1) 單葉雙曲面,當 z1 變動時, 這種橢圓的中心都在 z 軸上.,31,實軸與 軸相合, 虛軸與 軸相合., 用坐標面 xOz (y = 0) 與曲面相截, 得中心在原 點 O (0, 0, 0) 的雙曲線,與平面 y = y1 (y1 b) 的交線為雙曲線,雙曲線的中心都在 軸上.,32,則截痕為一對相交于點 (0,b,0) 的直線,(i) 若 | y1 | b,則實軸與 x 軸平行, 虛軸與 z 軸平行;,(ii) 若 | y1 | b,則實軸與 z 軸平行, 虛軸與 x 軸平行;,(iii) 若 | y1 | = b,33,綜上所述, 單葉雙曲面的圖形如下:,平面 x = a 與曲面的截痕是兩對相交直線., 用坐標面 yOz (x = 0), 平面 x = x1 與曲面相截, 均可得雙曲線.,34,(2) 雙葉雙曲面,35,1、曲面方程的概念,2、柱面的概念 (母線、準線).,3、旋轉曲面的概念及求法.,五、小結,4、橢球面、拋物面、雙曲面、錐面、截痕法.,(熟知這幾個常見曲面的特性),36,思考題一,指出下列方程在平面解析幾何中和空間解析幾何 中分別表示什么圖形?,37,思考題一解答,平面解析幾何中,空間解析幾何中,方程,平行于 y 軸的直線,平行于 yOz 面的平面,圓心在 (0, 0), 半徑 為 2 的圓,以 z 軸為中心軸的圓柱面,斜率為 1 的直線,平行于 z 軸的平面,38,思考題二,方程,表示怎樣的曲線?,39,思考題二解答,表示雙曲線.,40,三、旋轉曲面,定義,以一條平面 曲線繞其平面上的 一條直線旋轉一周 所成的曲面稱為旋 轉曲面.,這條定直線叫旋轉 曲面的軸,41,三、旋轉曲面,定義,以一條平面 曲線繞其平面上的 一條直線旋轉一周 所成的曲面稱為旋 轉曲面.,這條定直線叫旋轉 曲面的軸,42,三、旋轉曲面,定義,以一條平面 曲線繞其平面上的 一條直線旋轉一周 所成的曲面稱為旋 轉曲面.,這條定直線叫旋轉 曲面的軸,43,三、旋轉曲面,定義,以一條平面 曲線繞其平面上的 一條直線旋轉一周 所成的曲面稱為旋 轉曲面.,這條定直線叫旋轉 曲面的軸,44,三、旋轉曲面,定義,以一條平面 曲線繞其平面上的 一條直線旋轉一周 所成的曲面稱為旋 轉曲面.,這條定直線叫旋轉 曲面的軸,45,三、旋轉曲面,定義,以一條平面 曲線繞其平面上的 一條直線旋轉一周 所成的曲面稱為旋 轉曲面.,這條定直線叫旋轉 曲面的軸,46,三、旋轉曲面,定義,以一條平面 曲線繞其平面上的 一條直線旋轉一周 所成的曲面稱為旋 轉曲面.,這條定直線叫旋轉 曲面的軸,47,三、旋轉曲面,定義,以一條平面 曲線繞其平面上的 一條直線旋轉一周 所成的曲面稱為旋 轉曲面.,這條定直線叫旋轉 曲面的軸,48,三、旋轉曲面,定義,以一條平面 曲線繞其平面上的 一條直線旋轉一周 所成的曲面稱為旋 轉曲面.,這條定直線叫旋轉 曲面的軸,49,三、旋轉曲面,定義,以一條平面 曲線繞其平面上的 一條直線旋轉一周 所成的曲面稱為旋 轉曲面.,這條定直線叫旋轉 曲面的軸,50,三、旋轉曲面,定義,以一條平面 曲線繞其平面上的 一條直線旋轉一周 所成的曲面稱為旋 轉曲面.,這條定直線叫旋轉 曲面的軸,51,三、旋轉曲面,定義,以一條平面 曲線繞其平面上的 一條直線旋轉一周 所成的曲面稱為旋 轉曲面.,這條定直線叫旋轉 曲面的軸,52,53,54,55,56,57,58,59,60,61,62,63,64,- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 向量 代數(shù) 空間 解析幾何 ppt 課件
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.italysoccerbets.com/p-1361108.html