高中數(shù)學解題思路和方法+高中所有數(shù)學公式.doc
《高中數(shù)學解題思路和方法+高中所有數(shù)學公式.doc》由會員分享,可在線閱讀,更多相關《高中數(shù)學解題思路和方法+高中所有數(shù)學公式.doc(58頁珍藏版)》請在裝配圖網(wǎng)上搜索。
58目 錄王力平博士根據(jù)多年教學經(jīng)驗總結出以下參考方法,望廣大師生受益前言 2第一章 高中數(shù)學解題基本方法 3一、 配方法 3 二、 換元法 7三、 待定系數(shù)法 14四、 定義法 19五、 數(shù)學歸納法 23六、 參數(shù)法 28七、 反證法 32八、 消去法 九、 分析與綜合法 十、 特殊與一般法 十一、 類比與歸納法 十二、 觀察與實驗法 第二章 高中數(shù)學常用的數(shù)學思想 35一、 數(shù)形結合思想 35二、 分類討論思想 41三、 函數(shù)與方程思想 47四、 轉化(化歸)思想 54第三章 高考熱點問題和解題策略 59一、 應用問題 59二、 探索性問題 65三、 選擇題解答策略 71四、 填空題解答策略 77附錄 一、 高考數(shù)學試卷分析 二、 兩套高考模擬試卷 三、 參考答案 32頁以后為公式大全前 言美國著名數(shù)學教育家波利亞說過,掌握數(shù)學就意味著要善于解題。而當我們解題時遇到一個新問題,總想用熟悉的題型去“套”,這只是滿足于解出來,只有對數(shù)學思想、數(shù)學方法理解透徹及融會貫通時,才能提出新看法、巧解法。高考試題十分重視對于數(shù)學思想方法的考查,特別是突出考查能力的試題,其解答過程都蘊含著重要的數(shù)學思想方法。我們要有意識地應用數(shù)學思想方法去分析問題解決問題,形成能力,提高數(shù)學素質,使自己具有數(shù)學頭腦和眼光。高考試題主要從以下幾個方面對數(shù)學思想方法進行考查: 常用數(shù)學方法:配方法、換元法、待定系數(shù)法、數(shù)學歸納法、參數(shù)法、消去法等; 數(shù)學邏輯方法:分析法、綜合法、反證法、歸納法、演繹法等; 數(shù)學思維方法:觀察與分析、概括與抽象、分析與綜合、特殊與一般、類比、歸納和演繹等; 常用數(shù)學思想:函數(shù)與方程思想、數(shù)形結合思想、分類討論思想、轉化(化歸)思想等。數(shù)學思想方法與數(shù)學基礎知識相比較,它有較高的地位和層次。數(shù)學知識是數(shù)學內容,可以用文字和符號來記錄和描述,隨著時間的推移,記憶力的減退,將來可能忘記。而數(shù)學思想方法則是一種數(shù)學意識,只能夠領會和運用,屬于思維的范疇,用以對數(shù)學問題的認識、處理和解決,掌握數(shù)學思想方法,不是受用一陣子,而是受用一輩子,即使數(shù)學知識忘記了,數(shù)學思想方法也還是對你起作用。數(shù)學思想方法中,數(shù)學基本方法是數(shù)學思想的體現(xiàn),是數(shù)學的行為,具有模式化與可操作性的特征,可以選用作為解題的具體手段。數(shù)學思想是數(shù)學的靈魂,它與數(shù)學基本方法常常在學習、掌握數(shù)學知識的同時獲得??梢哉f,“知識”是基礎,“方法”是手段,“思想”是深化,提高數(shù)學素質的核心就是提高學生對數(shù)學思想方法的認識和運用,數(shù)學素質的綜合體現(xiàn)就是“能力”。為了幫助學生掌握解題的金鑰匙,掌握解題的思想方法,本書先是介紹高考中常用的數(shù)學基本方法:配方法、換元法、待定系數(shù)法、數(shù)學歸納法、參數(shù)法、消去法、反證法、分析與綜合法、特殊與一般法、類比與歸納法、觀察與實驗法,再介紹高考中常用的數(shù)學思想:函數(shù)與方程思想、數(shù)形結合思想、分類討論思想、轉化(化歸)思想。最后談談解題中的有關策略和高考中的幾個熱點問題,并在附錄部分提供了近幾年的高考試卷。在每節(jié)的內容中,先是對方法或者問題進行綜合性的敘述,再以三種題組的形式出現(xiàn)。再現(xiàn)性題組是一組簡單的選擇填空題進行方法的再現(xiàn),示范性題組進行詳細的解答和分析,對方法和問題進行示范。鞏固性題組旨在檢查學習的效果,起到鞏固的作用。每個題組中習題的選取,又盡量綜合到代數(shù)、三角、幾何幾個部分重要章節(jié)的數(shù)學知識。第一章 高中數(shù)學解題基本方法一、 配方法配方法是對數(shù)學式子進行一種定向變形(配成“完全平方”)的技巧,通過配方找到已知和未知的聯(lián)系,從而化繁為簡。何時配方,需要我們適當預測,并且合理運用“裂項”與“添項”、“配”與“湊”的技巧,從而完成配方。有時也將其稱為“湊配法”。最常見的配方是進行恒等變形,使數(shù)學式子出現(xiàn)完全平方。它主要適用于:已知或者未知中含有二次方程、二次不等式、二次函數(shù)、二次代數(shù)式的討論與求解,或者缺xy項的二次曲線的平移變換等問題。配方法使用的最基本的配方依據(jù)是二項完全平方公式(ab)a2abb,將這個公式靈活運用,可得到各種基本配方形式,如:ab(ab)2ab(ab)2ab;aabb(ab)ab(ab)3ab(a)(b);abcabbcca(ab)(bc)(ca)abc(abc)2(abbcca)(abc)2(abbcca)結合其它數(shù)學知識和性質,相應有另外的一些配方形式,如:1sin212sincos(sincos);x(x)2(x)2 ; 等等。、再現(xiàn)性題組:1. 在正項等比數(shù)列a中,asa+2asa+aa=25,則 aa_。2. 方程xy4kx2y5k0表示圓的充要條件是_。 A. k1 B. k1 C. kR D. k或k13. 已知sincos1,則sincos的值為_。 A. 1 B. 1 C. 1或1 D. 04. 函數(shù)ylog (2x5x3)的單調遞增區(qū)間是_。 A. (, B. ,+) C. (, D. ,3)5. 已知方程x+(a-2)x+a-1=0的兩根x、x,則點P(x,x)在圓x+y=4上,則實數(shù)a_。【簡解】 1小題:利用等比數(shù)列性質aaa,將已知等式左邊后配方(aa)易求。答案是:5。 2小題:配方成圓的標準方程形式(xa)(yb)r,解r0即可,選B。 3小題:已知等式經(jīng)配方成(sincos)2sincos1,求出sincos,然后求出所求式的平方值,再開方求解。選C。4小題:配方后得到對稱軸,結合定義域和對數(shù)函數(shù)及復合函數(shù)的單調性求解。選D。5小題:答案3。、示范性題組:例1. 已知長方體的全面積為11,其12條棱的長度之和為24,則這個長方體的一條對角線長為_。 A. 2 B. C. 5 D. 6【分析】 先轉換為數(shù)學表達式:設長方體長寬高分別為x,y,z,則 ,而欲求對角線長,將其配湊成兩已知式的組合形式可得。【解】設長方體長寬高分別為x,y,z,由已知“長方體的全面積為11,其12條棱的長度之和為24”而得:。長方體所求對角線長為:5所以選B?!咀ⅰ勘绢}解答關鍵是在于將兩個已知和一個未知轉換為三個數(shù)學表示式,觀察和分析三個數(shù)學式,容易發(fā)現(xiàn)使用配方法將三個數(shù)學式進行聯(lián)系,即聯(lián)系了已知和未知,從而求解。這也是我們使用配方法的一種解題模式。例2. 設方程xkx2=0的兩實根為p、q,若()+()7成立,求實數(shù)k的取值范圍?!窘狻糠匠蘹kx2=0的兩實根為p、q,由韋達定理得:pqk,pq2 ,()+()7, 解得k或k 。又 p、q為方程xkx2=0的兩實根, k80即k2或k2綜合起來,k的取值范圍是:k 或者 k?!咀ⅰ?關于實系數(shù)一元二次方程問題,總是先考慮根的判別式“”;已知方程有兩根時,可以恰當運用韋達定理。本題由韋達定理得到pq、pq后,觀察已知不等式,從其結構特征聯(lián)想到先通分后配方,表示成pq與pq的組合式。假如本題不對“”討論,結果將出錯,即使有些題目可能結果相同,去掉對“”的討論,但解答是不嚴密、不完整的,這一點我們要尤為注意和重視。例3. 設非零復數(shù)a、b滿足aabb=0,求()() ?!痉治觥?對已知式可以聯(lián)想:變形為()()10,則 (為1的立方虛根);或配方為(ab)ab 。則代入所求式即得。【解】由aabb=0變形得:()()10 ,設,則10,可知為1的立方虛根,所以:,1。又由aabb=0變形得:(ab)ab ,所以 ()()()()()()2 ?!咀ⅰ?本題通過配方,簡化了所求的表達式;巧用1的立方虛根,活用的性質,計算表達式中的高次冪。一系列的變換過程,有較大的靈活性,要求我們善于聯(lián)想和展開?!玖斫狻坑蒩abb0變形得:()()10 ,解出后,化成三角形式,代入所求表達式的變形式()()后,完成后面的運算。此方法用于只是未聯(lián)想到時進行解題。假如本題沒有想到以上一系列變換過程時,還可由aabb0解出:ab,直接代入所求表達式,進行分式化簡后,化成復數(shù)的三角形式,利用棣莫佛定理完成最后的計算。、鞏固性題組:1. 函數(shù)y(xa)(xb) (a、b為常數(shù))的最小值為_。A. 8 B. C. D.最小值不存在2. 、是方程x2axa60的兩實根,則(-1) +(-1)的最小值是_。A. B. 8 C. 18 D.不存在3. 已知x、yR,且滿足x3y10,則函數(shù)t28有_。A.最大值2 B.最大值 C.最小值2 B.最小值4. 橢圓x2ax3ya60的一個焦點在直線xy40上,則a_。A. 2 B. 6 C. 2或6 D. 2或65. 化簡:2的結果是_。A. 2sin4 B. 2sin44cos4 C. 2sin4 D. 4cos42sin4 6. 設F和F為雙曲線y1的兩個焦點,點P在雙曲線上且滿足FPF90,則FPF的面積是_。7. 若x1,則f(x)x2x的最小值為_。8. 已知,cos(-),sin(+),求sin2的值。(92年高考題)9. 設二次函數(shù)f(x)AxBxC,給定m、n(m0; 是否存在一個實數(shù)t,使當t(m+t,n-t)時,f(x)1,t1,mR,xlogtlogs,ylogtlogsm(logtlogs), 將y表示為x的函數(shù)yf(x),并求出f(x)的定義域; 若關于x的方程f(x)0有且僅有一個實根,求m的取值范圍。二、換元法解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結論聯(lián)系起來。或者變?yōu)槭煜さ男问?,把復雜的計算和推證簡化。它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應用。換元的方法有:局部換元、三角換元、均值換元等。局部換元又稱整體換元,是在已知或者未知中,某個代數(shù)式幾次出現(xiàn),而用一個字母來代替它從而簡化問題,當然有時候要通過變形才能發(fā)現(xiàn)。例如解不等式:4220,先變形為設2t(t0),而變?yōu)槭煜さ囊辉尾坏仁角蠼夂椭笖?shù)方程的問題。三角換元,應用于去根號,或者變換為三角形式易求時,主要利用已知代數(shù)式中與三角知識中有某點聯(lián)系進行換元。如求函數(shù)y的值域時,易發(fā)現(xiàn)x0,1,設xsin ,0,,問題變成了熟悉的求三角函數(shù)值域。為什么會想到如此設,其中主要應該是發(fā)現(xiàn)值域的聯(lián)系,又有去根號的需要。如變量x、y適合條件xyr(r0)時,則可作三角代換xrcos、yrsin化為三角問題。均值換元,如遇到xyS形式時,設xt,yt等等。我們使用換元法時,要遵循有利于運算、有利于標準化的原則,換元后要注重新變量范圍的選取,一定要使新變量范圍對應于原變量的取值范圍,不能縮小也不能擴大。如上幾例中的t0和0,。、再現(xiàn)性題組:1.ysinxcosxsinx+cosx的最大值是_。2.設f(x1)log(4x) (a1),則f(x)的值域是_。3.已知數(shù)列a中,a1,aaaa,則數(shù)列通項a_。4.設實數(shù)x、y滿足x2xy10,則xy的取值范圍是_。5.方程3的解是_。6.不等式log(21) log(22)2的解集是_?!竞喗狻?小題:設sinx+cosxt,,則yt,對稱軸t1,當t,y;2小題:設x1t (t1),則f(t)log-(t-1)4,所以值域為(,log4;3小題:已知變形為1,設b,則b1,b1(n1)(-1)n,所以a;4小題:設xyk,則x2kx10, 4k40,所以k1或k1;5小題:設3y,則3y2y10,解得y,所以x1;6小題:設log(21)y,則y(y1)2,解得2y0,求f(x)2a(sinxcosx)sinxcosx2a的最大值和最小值?!窘狻?設sinxcosxt,則t-,,由(sinxcosx)12sinxcosx得:sinxcosx f(x)g(t)(t2a) (a0),t-,t-時,取最小值:2a2a當2a時,t,取最大值:2a2a ;當00恒成立,求a的取值范圍。(87年全國理)【分析】不等式中l(wèi)og、 log、log三項有何聯(lián)系?進行對數(shù)式的有關變形后不難發(fā)現(xiàn),再實施換元法?!窘狻?設logt,則loglog3log3log3t,log2log2t,代入后原不等式簡化為(3t)x2tx2t0,它對一切實數(shù)x恒成立,所以:,解得 t0即log001,解得0a0恒成立,求k的范圍?!痉治觥坑梢阎獥l件1,可以發(fā)現(xiàn)它與ab1有相似之處,于是實施三角換元。【解】由1,設cos,sin,即: 代入不等式xyk0得:3cos4sink0,即k3cos4sin5sin(+) 所以k0 k 平面區(qū)域本題另一種解題思路是使用數(shù)形結合法的思想方法:在平面直角坐標系,不等式axbyc0 (a0)所表示的區(qū)域為直線axbyc0所分平面成兩部分中含x軸正方向的一部分。此題不等式恒成立問題化為圖形問題:橢圓上的點始終位于平面上xyk0的區(qū)域。即當直線xyk0在與橢圓下部相切的切線之下時。當直線與橢圓相切時,方程組有相等的一組實數(shù)解,消元后由0可求得k3,所以k0),則f(4)的值為_。A. 2lg2 B. lg2 C. lg2 D. lg42. 函數(shù)y(x1)2的單調增區(qū)間是_。A. -2,+) B. -1,+) D. (-,+) C. (-,-13. 設等差數(shù)列a的公差d,且S145,則aaaa的值為_。A. 85 B. 72.5 C. 60 D. 52.54. 已知x4y4x,則xy的范圍是_。5. 已知a0,b0,ab1,則的范圍是_。6. 不等式ax的解集是(4,b),則a_,b_。7. 函數(shù)y2x的值域是_。8. 在等比數(shù)列a中,aaa2,aaa12,求aaa。 y D C A B O x9. 實數(shù)m在什么范圍內取值,對任意實數(shù)x,不等式sinx2mcosx4m10,y0)上移動,且AB、AD始終平行x軸、y軸,求矩形ABCD的最小面積。 三、待定系數(shù)法要確定變量間的函數(shù)關系,設出某些未知系數(shù),然后根據(jù)所給條件來確定這些未知系數(shù)的方法叫待定系數(shù)法,其理論依據(jù)是多項式恒等,也就是利用了多項式f(x)g(x)的充要條件是:對于一個任意的a值,都有f(a)g(a);或者兩個多項式各同類項的系數(shù)對應相等。待定系數(shù)法解題的關鍵是依據(jù)已知,正確列出等式或方程。使用待定系數(shù)法,就是把具有某種確定形式的數(shù)學問題,通過引入一些待定的系數(shù),轉化為方程組來解決,要判斷一個問題是否用待定系數(shù)法求解,主要是看所求解的數(shù)學問題是否具有某種確定的數(shù)學表達式,如果具有,就可以用待定系數(shù)法求解。例如分解因式、拆分分式、數(shù)列求和、求函數(shù)式、求復數(shù)、解析幾何中求曲線方程等,這些問題都具有確定的數(shù)學表達形式,所以都可以用待定系數(shù)法求解。使用待定系數(shù)法,它解題的基本步驟是:第一步,確定所求問題含有待定系數(shù)的解析式;第二步,根據(jù)恒等的條件,列出一組含待定系數(shù)的方程;第三步,解方程組或者消去待定系數(shù),從而使問題得到解決。如何列出一組含待定系數(shù)的方程,主要從以下幾方面著手分析: 利用對應系數(shù)相等列方程; 由恒等的概念用數(shù)值代入法列方程; 利用定義本身的屬性列方程; 利用幾何條件列方程。比如在求圓錐曲線的方程時,我們可以用待定系數(shù)法求方程:首先設所求方程的形式,其中含有待定的系數(shù);再把幾何條件轉化為含所求方程未知系數(shù)的方程或方程組;最后解所得的方程或方程組求出未知的系數(shù),并把求出的系數(shù)代入已經(jīng)明確的方程形式,得到所求圓錐曲線的方程。、再現(xiàn)性題組:1. 設f(x)m,f(x)的反函數(shù)f(x)nx5,那么m、n的值依次為_。A. , 2 B. , 2 C. , 2 D. ,22. 二次不等式axbx20的解集是(,),則ab的值是_。A. 10 B. 10 C. 14 D. 143. 在(1x)(1x)的展開式中,x的系數(shù)是_。A. 297 B.252 C. 297 D. 2074. 函數(shù)yabcos3x (b0,7x0,x0。設V(15aax)(7bbx)x (a0,b0) 要使用均值不等式,則解得:a, b , x3 。 從而V()(x)x()27576。所以當x3時,矩形盒子的容積最大,最大容積是576cm。【注】均值不等式應用時要注意等號成立的條件,當條件不滿足時要湊配系數(shù),可以用“待定系數(shù)法”求。本題解答中也可以令V(15aax)(7x)bx 或 (15x)(7aax)bx,再由使用均值不等式的最佳條件而列出方程組,求出三項該進行湊配的系數(shù),本題也體現(xiàn)了“湊配法”和“函數(shù)思想”。、鞏固性題組:1. 函數(shù)ylogx的x2,+)上恒有|y|1,則a的取值范圍是_。A. 2a且a1 B. 0a或1a2 C. 1a2或0a2. 方程xpxq0與xqxp0只有一個公共根,則其余兩個不同根之和為_。A. 1 B. 1 C. pq D. 無法確定 3. 如果函數(shù)ysin2xacos2x的圖像關于直線x對稱,那么a_。A. B. C. 1 D. 14. 滿足C1C2CnC500的最大正整數(shù)是_。A. 4 B. 5 C. 6 D. 75. 無窮等比數(shù)列a的前n項和為Sa , 則所有項的和等于_。A. B. 1 C. D.與a有關6. (1kx)bbxbxbx,若bbbb1,則k_。7. 經(jīng)過兩直線11x3y90與12xy190的交點,且過點(3,-2)的直線方程為_。 8. 正三棱錐底面邊長為2,側棱和底面所成角為60,過底面一邊作截面,使其與底面成30角,則截面面積為_。9. 設yf(x)是一次函數(shù),已知f(8)15,且f(2)、f(5)、(f14)成等比數(shù)列,求f(1)f(2)f(m)的值。10. 設拋物線經(jīng)過兩點(-1,6)和(-1,-2),對稱軸與x軸平行,開口向右,直線y2x7和拋物線截得的線段長是4, 求拋物線的方程。四、定義法所謂定義法,就是直接用數(shù)學定義解題。數(shù)學中的定理、公式、性質和法則等,都是由定義和公理推演出來。定義是揭示概念內涵的邏輯方法,它通過指出概念所反映的事物的本質屬性來明確概念。定義是千百次實踐后的必然結果,它科學地反映和揭示了客觀世界的事物的本質特點。簡單地說,定義是基本概念對數(shù)學實體的高度抽象。用定義法解題,是最直接的方法,本講讓我們回到定義中去。、再現(xiàn)性題組:1. 已知集合A中有2個元素,集合B中有7個元素,AB的元素個數(shù)為n,則_。A. 2n9 B. 7n9 C. 5n9 D. 5n72. 設MP、OM、AT分別是46角的正弦線、余弦線和正切線,則_。A. MPOMAT B. OMMPAT C. ATOMMP D. OMATMP3. 復數(shù)za2,z2,如果|z| |z|,則實數(shù)a的取值范圍是_。A. 1a1 C. a0 D. a14. 橢圓1上有一點P,它到左準線的距離為,那么P點到右焦點的距離為_。A. 8 C. 7.5 C. D. 35. 奇函數(shù)f(x)的最小正周期為T,則f()的值為_。A. T B. 0 C. D. 不能確定6. 正三棱臺的側棱與底面成45角,則其側面與底面所成角的正切值為_?!竞喗狻?小題:利用并集定義,選B;2小題:利用三角函數(shù)線定義,作出圖形,選B;3小題:利用復數(shù)模的定義得0得:0x1設xx, x+x (x+x)( x+x)1 f(x)f(x)0即f(x)在(,1)上是減函數(shù) 0的解集是(1,2),則不等式bxcxab0)的兩個焦點,其中F與拋物線y12x的焦點重合,M是兩曲線的一個焦點,且有cosM FFcosMFF,求橢圓方程。五、數(shù)學歸納法歸納是一種有特殊事例導出一般原理的思維方法。歸納推理分完全歸納推理與不完全歸納推理兩種。不完全歸納推理只根據(jù)一類事物中的部分對象具有的共同性質,推斷該類事物全體都具有的性質,這種推理方法,在數(shù)學推理論證中是不允許的。完全歸納推理是在考察了一類事物的全部對象后歸納得出結論來。數(shù)學歸納法是用來證明某些與自然數(shù)有關的數(shù)學命題的一種推理方法,在解數(shù)學題中有著廣泛的應用。它是一個遞推的數(shù)學論證方法,論證的第一步是證明命題在n1(或n)時成立,這是遞推的基礎;第二步是假設在nk時命題成立,再證明nk1時命題也成立,這是無限遞推下去的理論依據(jù),它判斷命題的正確性能否由特殊推廣到一般,實際上它使命題的正確性突破了有限,達到無限。這兩個步驟密切相關,缺一不可,完成了這兩步,就可以斷定“對任何自然數(shù)(或nn且nN)結論都正確”。由這兩步可以看出,數(shù)學歸納法是由遞推實現(xiàn)歸納的,屬于完全歸納。運用數(shù)學歸納法證明問題時,關鍵是nk1時命題成立的推證,此步證明要具有目標意識,注意與最終要達到的解題目標進行分析比較,以此確定和調控解題的方向,使差異逐步減小,最終實現(xiàn)目標完成解題。運用數(shù)學歸納法,可以證明下列問題:與自然數(shù)n有關的恒等式、代數(shù)不等式、三角不等式、數(shù)列問題、幾何問題、整除性問題等等。、再現(xiàn)性題組:1. 用數(shù)學歸納法證明(n1)(n2)(nn)212(2n1) (nN),從“k到k1”,左端需乘的代數(shù)式為_。 A. 2k1 B. 2(2k1) C. D. 2. 用數(shù)學歸納法證明11)時,由nk (k1)不等式成立,推證nk1時,左邊應增加的代數(shù)式的個數(shù)是_。 A. 2 B. 21 C. 2 D. 213. 某個命題與自然數(shù)n有關,若nk (kN)時該命題成立,那么可推得nk1時該命題也成立?,F(xiàn)已知當n5時該命題不成立,那么可推得_。 (94年上海高考)- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高中數(shù)學 解題 思路 方法 高中 所有 數(shù)學公式
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.italysoccerbets.com/p-1570404.html