實變函數(shù)與泛函分析基礎(chǔ)(程其襄張奠宙著)高等教育出版社課后答案.doc
《實變函數(shù)與泛函分析基礎(chǔ)(程其襄張奠宙著)高等教育出版社課后答案.doc》由會員分享,可在線閱讀,更多相關(guān)《實變函數(shù)與泛函分析基礎(chǔ)(程其襄張奠宙著)高等教育出版社課后答案.doc(65頁珍藏版)》請在裝配圖網(wǎng)上搜索。
_1.A (B C) = (A B) (A C).-可編輯修改-x (A (B C).x A,x A B, x A C,x (A B) (A C).x B C,x A Bx A C,x (A B) (A C),A (B C) (A B) (A C).x (A B) (A C). x A, x A (B C). x A,x A B x A C, x B x C, x B C, x A (B C),(A B) (A C) A (B C). A (B C) = (A B) (A C).2.(1)A B = A (A B) = (A B) B;(2)A (B C) = (A B) (A C);(3)(A B) C = A (B C);(4)A (B C) = (A B) (A C);(5)(A B) (C D) = (A C) (B D);(6)A (A B) = A B.(1)A (A B) = A s(A B) = A (sA sB) = (A sA) (A sB) = A B;(A B) B = (A B) sB = (A sB) (B sB) = A B;(2)(A B) (A C) = (A B) s(A C) = (A B) (sA sC) = (A B sA) (A B sC) = A (B sC) = A (B C);(3)(A B) C = (A sB) sC = A s(B C) = A (B C);(4)A (B C) = A (B sC) = A s(B sC) = A (sB C) = (A sB) (A C) =(A B) (A C);(5)(A B) (C D) = (A sB) (C sD) = (A C) s(B D) = (A C) (B D);(6)A (A B) = A s(A sB) = A (sA B) = A B.3.(A B) C = (A C) (B C);A (B C) = (A B) (A C).(A B) C = (A B) sC = (A sC) (B sC) = (A C) (B C);(A B) (A C) = (A sB) (A sC) = A sB sC = A s(B C) = A (B C). 4.s(Ai) =sAi.i=1i=1x s(i=1Ai),x S,x i=1Ai,i,x Ai,x sAi,1x i=1sAi.x i=1sAi,i,x sAi,x S,x Ai,x S,x i=1Ai,x s(i=1Ai).s(i=1Ai) =i=1sAi.5.(1) (A) B =(A B);(2)(A) B =(A B).(1)A B = (A) sB =(A sB) =(A B);(2)A B = (A) sB =(A sB) =(A B).n16.AnnnB1 = A1, Bn = An (=1A), n 1.Bn=1A =1B, 1 n .i = j,i j.Bi Ai(1 i n).j1Bi Bj Ai (Aj n=1nAn) = Ai Aj sA1 sA2 sAi sAj1 = .nBi Ai(1 = i = n)i=1Bi i=1Ai.nnx i=1Ai,x A1,x B1 i=1Bi.x A1,inx Ain,in1in1nnnx i=1Aix Ain.x Ain i=1Ai = Bin i=1Bi.i=1Ai =i=1Bi.7.A2n1 = 0, n1 , A2n = (0, n), n = 1, 2, ,n An = (0, );AnNx (0, ),N,x NAn,0 x N,x An.2n 1 Nx A2n1,0 x1n 0 N,x An,x m=n+1Am n=1 m=nAm,n An n=1 m=nAm.x n=1 m=nAm,n,x m=nAm,m n,x An,x n An.lim An =Am.nn=1 m=n2limx A2n,limlimlimlimlimn.limlimlimlim9.(1, 1)(, +)(, ) : (1, 1) (, +).x (1, 1), (x) = tan 2 x. (1, 1)10.(0, 0, 1)(x, y, z) S(0, 0, 1),xOyM(x, y, z) =x y,1 z 1 z M.SM11.AAzrzGG = z|zz,Gzrz,12.Annn = 1, 2, ,A =n=0An.Ann +1nn +106,An = a,13.A44,A = a.()4AA: (x, y, r).(x, y)rx, yr0A = a.14.f(, )E,(1)(2)x Ex (, ),xlim0+ f(x + x) = f(x + 0)f(x + 0) f(x 0).xlim f(x + x) = f(x 0)(3)x E,15.x1, x2 E,(0, 1)x1 x2,110, 13(3) E xS : x2 + y2 + (z 12)2 = ( 12 )20f(x1 0) f(x1 + 0) f(x2 0) f(x2 + 0),(f(x 0), f(x + 0),16.(0, 1)0,1 (0,1)AR = r1, r2, , (1) = r2,AAn.A = x1, x2, , AAn 2nA =A.An = x1, x2, , xn, AnAn, AAn=1A17.0, 1c.0,1B =A,0,12 2,2 3, ,2n, r1, r2, , A(2)=2n22n + 12,n +1) = rn,n = 1, 2, n = 1, 2, (x) = x,x B.18.xiA0,1Ac0,1Ac,c.Ac.A = ax1x2x3 ,EAi R i.ax1x2x3 A.(ax1x2x3) = (1(x1), 2(x2), 3(x3), ).A(ax1x2x3) = (ax1x2x3),i, i(xi) = i(xi).ixi =xi, ax1x2x3 = ax1x2x3.i(xi) = ai.ax1x2x3 A, (ax1x2) = (1(x1), 2(x2), ) =A E c.i19.Anc,n0,An0c.n=1E = c,n=1An = E.An c, n = 1, 2, .PiERx = (x1, x2, , xn, ) E,Pi(x) = xi.Ai = Pi(Ai), i = 1, 2, ,4 (0) = r1, (rn) = rn+2, n = 1, 2, (x) = x, x (0, 1)R),xi Ai, Ai = c, i = 1, 2, .xi Ai,(a1, a2, ),(a1, a2, a3, ) E, ai R, i = 1, 2, , A A c, i = 1, 2, .An.n=1 n=1An,i,i RAi ,i, = (i, 2, , n, ) E.i = Pi() Pi(Ai) = Ai , RAi n=1An = E, Ei0,Ai0 = c.20.01T ,Tc.T = 1, 2, | i = 0 or 1, i = 1, 2, .Tx (0, 1(0,1 TE f(0, 1)(0,1 2i 0 1,TE (T )f(x) = 1, 2, ,A = c.f5 Ai,i i : 1, 2, 2, 3, ,A E = c,x = 0.12 ,T (0, 1 = c.EoEE1.P0P0P0 EP1U(P, )(E (P0P0P1)U(P, ) (oU(P, ) E.P0)P0P0P1 E U(P0) E U(P, )E.U(P, ),P1 = P ,P0P0U(P0) U(P, ),P1P0P1P0E,P0P1E,P0U(P0)P0 Eo,U(P0) E.P0 U(P, ) E,U(P0) U(P, ) E,P0 Eo.2.E10, 1E1R1E1 , E1o, E1.E1 = 0, 1,E1o = ,E1 = 0, 1.3.E2 = (x, y)|x2 + y2 1.E2R2E2 , E2o, E2.E2 = (x, y)|x2 + y2 1,E1o = (x, y)|x2 + y2 aP0 E),P0 E,P0 E . sin 1 , o(, )x0 E,(, ),|x x0| a.f(x) a,f(x)x U(x0, )x E, 0,U(x0, ) E,Ex xn E,xn x0(n ).f(xn) a,f(x)f(x0) = n f(xn) a,x0 E,9.Ey0 F ,F11n11d(x0, F ) = inf d(x0, y) 1d(x0, F ) 0,x U(x0, ), d(x0, x) .d(x, y0) d(x0, x) + d(x0, y0) + = +1n =1n.d(x, F ) = inf d(x, y) d(x, y0) 1x Gn.U(x0, ) Gn,Gnx n=1Gn,n, x Gn, d(x, F ) 1n ,d(x, F ) = 0.Fx F (x F ,yn F,d(x, yn) 0,x F F ,),n=1Gn F.Gn F, n = 1, 2, ,n=1Gn F ,n=1Gn = F ,FGGGn,G =Gn,n=1GnGG = (G) = (n=1Gn) =n=1Gn,10.0,10,10,177(0.7,0.8).7(0.07, 0.08) (0.17, 0.18)(0.97, 0.98).0,1n7(0.a1a2 an17, 0.a1a2 an18),ai(i = 1, 2, , n 1)n 1097a1, a2, , an1Ann=12limGn = x|d(x, F ) ,Gny F, d(x0, y) d(x0, y0) = (n.n,x0 Gn, d(x0, F ) n,n,yFn,yFn.0,17n=1An (, 0) (1, ) .An, (, 0), (1, )0,1711. f(x)E1 = x|f(x) ca, bc,E = x|f(x) cf(x)a, b8EE1EE1x0 a, b. f(x)f(xn) f(x0) 0,f(x0) 0, xn x0, f(xn) f(x0) + 0c = f(x0) + ,f(x) a, b12.25:E = , E = Rn,E(E = ).P0 = (x1, x2, , xn) E, P1 = (y1, , yn) E.(1 t)x2, , tyn + (1 t)xn), 0 t 1.t0 = supt|Pt E.Pt = (ty1 + (1 t)x1, ty2 +Pt0 E.t0, tn t0 Ptn E, Ptn Pt0, Pt0 E.t0 = 1.Pt E.tn, 1 tn Pt0 E. E = .t0 = 0,tn, 0 tn t0, tn t0, Ptn Pt0, Ptn E,P13.c.P1,P1 2,3 31 2,9 97 8,9 9= (0.1, 0.2),= (0.01, 0.02),= (0.21, 0.22),(P ),n2n1(n)(n)= (0.a1a2 an11, 0.a1a2 an12),a1, a2, , an11, P02.0, 1 P1,x P ,xx =a13a2 an+ 32 + + 3n + ,anA P .02.aiA,A P .1,0, 1 PA 0, 1,A0, 1 P3x0 E(xn E = x|f(x) c,Pt0 E. t 0, 1 t0 t 1,Pt0 E,Ik , k = 1, 2, , 2n1IkAB: : x =n=1an3nn=112nan2,an = 0P c ,2,P = c.AB1-1Ac,A P ,P c,41.EmE +.EIE I.mE mI 0,Ii),i=1Ii,Ii E,xii=1 Ii,|Ii| = .|Ii| =mE = 0.3.EmE 0,mEc,EE1,a, ba = inf x, b = sup x,xEx 0E a, b.Ex = a, x E, a x b, f(x) = mEx| f(x + x) f(x) | =| mEx+x mEx | m(Ex+ E) | m(x, x + x = x.(x 0 f(x+x) f(x),f(x)f(x)a, bx 0, x 0f(a) = mEa = m(E a) = 0f(b) = m(E a, b) = mE.4.c,c mE,mE1 = c.S1, S2, , Snx0 a, bf(x0) = c.mEx0 = m(a, x0 E) = c., Ei Si, i = 1, 2. , n,m(E1 E2 En) = mE1 + mE2 + + mEn.T , S1, S2, , SnnSi) =i=1 i=1T =ni=1Ei,3T Si = (j=1n1,Ej) Si =Ei, T (i=1nSi) =ni=1Ei,nm(i=1Ei) = m(T (i=1nSi) =ni=1m(T Si) =ni=1mEi.5.mE = 0,ET ,T = (E T ) (T E),mT m(E T ) + m(T E).E T E, m(E T ) mE = 0.T E T, m(T E) mT,m(E T ) + m(T E) mT.1xi2i (m E1 = c.xEf x x) f(x),E1 = E a, x0 E.m (T m (T Si).2nmT = m(T E) + m(T E),E6.(Cantor)P0, 1n13n, .1P0, 1n=12n13n,n).m0, 1 = m(P (0, 1 P ) = mP + m(0, 1 P ).mP = m0, 1 m(0, 1 P ) = 1 1 = 0,0.7.A, B RpmB +.Am(AB) = mA+mB m(AB).Am(A B) = m(A B) A) + m(A B) A) = mA + m(B A).mB = m(B A) + m(B A),mB +,m(B A) +,m(B A) = mB m(A B),m(A B) = mA + mB m(A B).8. Em(G E) , m(E F ) 0,GF ,F E G,mE 0,Ii, i = 1, 2, ,i=1Ii E,i=1| Ii | mE + .G =i=1Ii,GG E,mE mG i=1mIi =i=1| Ii |mE + ,mG mE ,m(G E) .mE = EE =n=1En(mEn ),EnGn,Gn Enm(Gn En) G =i=1Gn, GG E,G E =n=1Gn n=1En n=1(Gn En).m(G E) n=1m(Gn En) 0G, G E,m(G E) .G E = G E = E (G) = E G,F = G,Fm(E F ) = m(G E) .E9.E Rq,An, Bn,An E Bnm(BnAn) 0(n ),223,9, 2= 1(2n .i,n=1Bn Bi,n=1Bn E Bi E.E Ai, Bi E Bi Ai,i,mn=1Bn E m(Bi E) m(Bi Ai) = m(Bi Ai).i ,m(Bi Ai) 0,mn=1Bn E= 0.n=1Bn EBnn=1BnE =n=1Bn n=1Bn E10.A, B Rp,m(A B) + m(A B) mA + mB.GG1mA = + mB = +,G2,mA +mG1 = mA, mG2 = mB.mB 0,F E,m(E F ) ,En,Fn E,m(E Fn) 1F =n=1Fn,FF E.n,m(E F ) = 0,12.E Fm(E F ) m(E Fn) rEf = rf(x)r,Ef r,rnEf a =Ef rn,Ef rnEf f(x)En=1Ef r,Ef = rx z, f(x) =2 = zf(x)3; x z, f(x) =f2,E = (, ), z (, )r,Ef = r = E2.f(x), fn(x)(n = 1, 2, )fn(x)-7f(x)k=1a, bn E | fn f |1kkA| fn(x) f(x) |1Efnx A,1x n E | fn f | Nkx k=1n E | fn f |1k.x k=1 n E | fn f | 0,k0,1k0 ,x n E | fn f | Nx E | fn f |1k0,| fn(x) f(x) |1k0 ,lim fn(x) = f(x),nx A.3.fnEA =k=1n E | fn f |1k.16, lim fn(x)nlim fn(x)nEEn fn = +- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
32 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 函數(shù) 分析 基礎(chǔ) 襄張奠宙著 高等教育出版社 課后 答案
鏈接地址:http://m.italysoccerbets.com/p-1588281.html