汽車變速箱三維設(shè)計(jì)與仿真【三軸式五擋手動變速器 五檔】【三維Creo+仿真動畫】[CAD高清圖紙和說明書]
【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,壓縮包內(nèi)文檔可直接點(diǎn)開預(yù)覽,需要原稿請自助充值下載,請見壓縮包內(nèi)的文件及預(yù)覽,所見才能所得,請細(xì)心查看有疑問可以咨詢QQ:414951605或1304139763
畢業(yè)設(shè)計(jì)-翻譯文三段式圓弧凸輪的解析設(shè)計(jì)(譯)摘要:本文對三段式圓弧凸輪輪廓進(jìn)行了理論性描述。提出了凸輪輪廓的解析式并為以之為尺寸參數(shù)討論。例舉了一些數(shù)值樣例來證明本理論描述的正確性并表明恰當(dāng)?shù)娜问綀A弧凸輪在工程上是可行的。1. 序言凸輪是一種通過與從動件的直接表面接觸來傳輸預(yù)定運(yùn)動的機(jī)構(gòu)。一般地,從運(yùn)動學(xué)1,2:來看,凸輪機(jī)構(gòu)由三部分組成:凸輪(主動件);從動件;機(jī)架。凸輪機(jī)構(gòu)廣泛用于現(xiàn)代機(jī)械中,特別是一些自動化機(jī)械裝備,內(nèi)燃機(jī)與控制系統(tǒng)3。凸輪機(jī)構(gòu)簡單而便宜,運(yùn)動部件少而且結(jié)構(gòu)緊湊。凸輪輪廓設(shè)計(jì)主要基于簡單的幾何曲線,比如:拋物線,諧函數(shù)曲線,擺線,梯形曲線2,5以及它們的復(fù)合曲線1,2,6,7。本文主要致力于基于圓弧輪廓的凸輪,即所謂圓弧凸輪。圓弧凸輪制造容易,用于低速機(jī)構(gòu)中,也可用于微機(jī)械與納米機(jī)械中,因?yàn)榫芗庸た梢酝ㄟ^利用初等幾何學(xué)準(zhǔn)確地達(dá)到。這種凸輪的缺點(diǎn)是:凸輪輪廓上不同半徑圓弧交接處會產(chǎn)生加速度的劇變。5因?yàn)橥ǔV挥杏邢迶?shù)量的圓弧,所以其設(shè)計(jì),制造以及運(yùn)動傳輸都不是很復(fù)雜,從而它成為經(jīng)濟(jì)與簡單的方案,這正是圓弧凸輪5,8的優(yōu)點(diǎn)8所在。最近,出于設(shè)計(jì)目的,有人開始用描述性視圖給予圓弧凸輪注意。本文通過討論其幾何設(shè)計(jì)參量描述了三段式圓弧凸輪。我們?yōu)槿⊥馆喬岢隽私馕鍪阶鳛閷σ郧拔墨I(xiàn)12中二弧凸輪解析式的擴(kuò)充。2. 三段式圓弧凸輪的解析模型三段式圓弧凸輪解析式中設(shè)計(jì)參量由圖18,圖2給出。三段式圓弧凸輪設(shè)計(jì)重要參量:圖1:推程運(yùn)動角,休止角,回程運(yùn)動角,動程角,最大舉升位移。圖1:普通三弧凸輪設(shè)計(jì)參量圖2:三弧凸輪特征軌跡 三段式圓弧凸輪特征軌跡如圖2所示:由凸輪上半徑1 輪廓形成的第一圓1,以及圓心 C1;由凸輪上半徑2 輪廓形成的第二圓2,以及圓心 C2;由凸輪上半徑3 輪廓形成的第三圓3,以及圓心 C3;由凸輪上半徑r輪廓形成的基圓4,以及圓心 O;由凸輪上半徑(r+h1)形成的舉升圓5,以及圓心 O;半徑的滾子圓,圓心定于從動件軸上。另外,重要的點(diǎn)有:D (,),C1和C5交匯點(diǎn); F (,) ,C1 和C3交匯點(diǎn); G (,),C3 和C2交匯點(diǎn);A (,),C2和C4交匯點(diǎn)。x 和 y 是與機(jī)架OXY坐標(biāo)系相關(guān)的笛卡爾坐標(biāo),機(jī)架原點(diǎn)就是凸輪轉(zhuǎn)軸。其他重要軌跡: t13 ,C1 和C3的公切線;t15 ,C1 和 C5的公切線;t23, C2 和 C3的公切線;t24 ,C2 和C4的公切線。由圖1與圖2可以得出式子,這對于表現(xiàn)并設(shè)計(jì)三段式圓弧凸輪很有用處。當(dāng)這些圓被以恰當(dāng)?shù)男问奖磉_(dá)時,解析描述即可得出:半徑滿足的圓 C1通過F點(diǎn)時滿足: (1)半徑滿足的圓 C2通過A點(diǎn)時滿足: (2)半徑滿足的圓 C3通過G點(diǎn)時滿足: (3)半徑滿足的圓 C4通過F點(diǎn)時滿足: (4)半徑滿足的圓 C5通過G點(diǎn)時滿足: (5)半徑r 的圓 C4滿足 (6)半徑的圓 C5 滿足 (7)其他特殊情況可以表示如下: 圓 C1 與圓 C5在D點(diǎn)有公切線滿足: 基圓 C4 與圓 C2在D點(diǎn)有公切線滿足: 圓 C2 與圓 C3在D點(diǎn)有公切線滿足: 圓 C1 與圓 C2在D點(diǎn)有公切線滿足:由式(1)(11) 可以得到關(guān)于三段式圓弧凸輪的描述并可用于畫出圖2所示的設(shè)計(jì)。3解析設(shè)計(jì)過程由式(1)(11) 可以推出一系列等式,當(dāng)C1, C2, C3, F 和 G被賦予合適的值時 ,相關(guān)坐標(biāo)即可得出。這樣就可以根據(jù)所舉解析描述來區(qū)分4個不同的設(shè)計(jì)情況。第一種情況我們假設(shè)參數(shù)以及A,C1,C2, D和G的坐標(biāo)已知,而點(diǎn)C3, F 坐標(biāo)未知。當(dāng)運(yùn)動角 時,A點(diǎn)橫坐標(biāo)為0 。由于A點(diǎn)是圓C2和C4的交匯點(diǎn),故C2圓心處于Y軸上,從而C2圓心橫坐標(biāo)也為0。由等式(1)(11) 可得關(guān)于C3 和 F坐標(biāo)的一系列方程。解析程式表示如下: 通過點(diǎn)F和D的圓 C1表達(dá)式: 通過點(diǎn)F和G的圓 C3表達(dá)式:圓C1和圓C3在F點(diǎn)公切線表達(dá)式:圓C2和圓C3在G點(diǎn)公切線表達(dá)式:若,則等式(12)(15) 可表示為: (16)若圓心 C2 未知圓心C1位于直線OD上,我們參考圖2得到第二個問題:即參量 以及點(diǎn) C2, A, D 和G坐標(biāo)均已知,而點(diǎn)C1, F 和 C3 未知。并再設(shè),而且由上已知,與式(9)聯(lián)立可以得到另外2方程: 通過點(diǎn)G和A的圓 C2表達(dá)式: 通過點(diǎn)O和A的圓心 C2的直線的表達(dá)式:由等式(17),(18)可解決第2種情況。若圓心C1 處于直線OD上某處,這便是第3種情況:即參量 以及A, D 和G點(diǎn)坐標(biāo)已知。點(diǎn) C1, C2, F 和 C3 未知。并再設(shè),而且由上已知,與式(16)(18)聯(lián)立可以得到另外2方程: 過點(diǎn)D的圓C1滿足方程: (19) 過點(diǎn) O, D 和 C1 三點(diǎn)直線滿足:最后我們得到第4種情況:即當(dāng), ,并且 。圖1中角 間于點(diǎn) A 與 Y 軸。 參量以及點(diǎn)A, D 和 G 坐標(biāo)已知,點(diǎn) C1, C2, C3 和 F 未知。方程組(16)第4式可表示為: (21)綜上,三段式圓弧凸輪的一般設(shè)計(jì)可由式 (12)(14)與(17)(21) 得到解決。一般的設(shè)計(jì)過程中的參量計(jì)算??捎缮厦娴哪J降玫?。這一模式在運(yùn)用MAPLE解決未知設(shè)計(jì)量時優(yōu)勢更是明顯。4.數(shù)字樣例一些數(shù)字樣例的計(jì)算有力地證明了上文模式的正確性與高效率。只有一個方法可以代表固定程式的圓弧凸輪設(shè)計(jì)。以圖3中例1作為設(shè)計(jì)樣例1。數(shù)據(jù)如下: 圖三顯示了由等式(16)得出的設(shè)計(jì)結(jié)果。特別的,圖3(a)顯示的是解析式第一種解決方式的結(jié)果:應(yīng)注意到,對應(yīng)于凸輪輪廓第一,第二圓弧,點(diǎn) F, C1 和 C3 按 F, C1 和 C3 的順序排列,而點(diǎn) G, C3 和 C2 按 G, C3 和 C2 的順序排列。圖3(b)顯示了解析式第二種解決方式的結(jié)果。凸輪輪廓無法辨別,點(diǎn)F也不在圓上。重要點(diǎn)F, C1 和 C3 按圖3(a)相同順序排列;而點(diǎn) G, C2 和 C3 是按照 C2, G 和 C3 的順序排列這與圖3(a)不同,并且也沒有給出凸輪輪廓。圖3(c)顯示了解析式第三種解決方式,類似于圖 3(b)。圖 3(d) 顯示了解析式第三種解決方式。我們注意到D點(diǎn)對應(yīng)一尖點(diǎn),另外點(diǎn) F 和 G與圓心 C3 靠得很近,所以正如圖3(d)所示,該處曲率變化特別大。故僅有圖3(a)的方案是切實(shí)可行的。各點(diǎn)次序應(yīng)為 F, C1 ,C3 和 G, C3 , C2 相應(yīng)點(diǎn)。圖3-例1與例2:方程(16)與方程(16)(18)設(shè)計(jì)方案的圖示僅(a) 為可行方案。圖 3(a)方案由以下值確定:圖3例2,數(shù)據(jù)如下:其中圖 3 表示的也是由方程(16)(18)得到的第2方案??尚袛?shù)字方案取值如下在圖4例3中,由設(shè)計(jì)情況3,數(shù)據(jù)給定如下:圖4展示了由方程 (16)(20)得到的方案。圖4(a)展示的是第一方案結(jié)果,類似于圖3(d),圖4(b) 展示了解析式第二種解決方案。我們注意到點(diǎn) F 位于點(diǎn) D 下方,故點(diǎn) F, C1 , C3 不可排列。 圖4(c)展示的于圖3(a)一樣,也是解析式的第3方案。圖4例3: 方程組(16)(20)方案的圖形展示。僅圖(c)方案 可行從而僅有圖4(c)方案可行。可行數(shù)字方案由以下值限定:在圖5例4中,由第四設(shè)計(jì)方案,可將數(shù)據(jù)給定如下:圖5展示了由方程組 (16)(21)得到的方案。圖5(a)展示了第一方案。類似于圖4(a), 但是點(diǎn)C1方位有異。 點(diǎn) F, C1 和 C3 以 C3, F 和 C1 的順序排列。圖5(b) 展示了解析式第二方案,類似于圖4(a)。圖5(c)展示了解析式第三方案,類似于圖4(c)。圖5例4:方程組(16)(21)所得方案圖示.僅方案(c) 可行從而可得可行方案為圖5(c)中方案??尚袛?shù)字方案之賦值:5. 應(yīng)用本文旨在提出凸輪輪廓近似設(shè)計(jì)新的設(shè)計(jì)途徑并滿足其制造需求。由設(shè)計(jì)解析式可以獲得高效率的設(shè)計(jì)運(yùn)算法則。緊湊的解析式更可以在凸輪的分析過程及其綜合特性的實(shí)現(xiàn)中發(fā)揮作用。由圓弧組成的近似輪廓,在取得任何含近似圓弧輪廓的動力學(xué)特性的分析表達(dá)式具有特殊的重要性。的確,由于在小型及微型機(jī)械中的應(yīng)用,圓弧形凸輪輪廓已經(jīng)具有了相當(dāng)?shù)闹匾?。事?shí)上,當(dāng)構(gòu)造設(shè)計(jì)已經(jīng)提升到毫微米級別的時候,多項(xiàng)式曲線輪廓的凸輪的制造變得相當(dāng)困難,要想校驗(yàn)更如登天。因此,設(shè)計(jì)便利的圓弧輪廓凸輪成為首選,而其實(shí)驗(yàn)性測試也是方便。另外,對低成本自動化與日俱增的需求,也賦予這些僅適于特殊用途的近似設(shè)計(jì)新的重要性。圓弧凸輪輪廓方案可以方便地用于低速或低精度機(jī)械中。6. 綜述本文提出了有關(guān)三段式圓弧凸輪輪廓基本設(shè)計(jì)的解析方法。從該法我們推導(dǎo)出了個設(shè)計(jì)算法,從而可以高效地解決該方向一些設(shè)計(jì)問題。另外還舉出了一些數(shù)字樣例以展示與討論三段式圓弧凸輪的多重設(shè)計(jì)以及工程可行性問題。參考文獻(xiàn)1 F.Y. Chen, Mechanics and Design of Cam Mechanisms, Pergamon Press, New York, 1982.2 J. Angeles, C.S. Lopez-Cajun, Optimization of Cam Mechanisms, Kluwer Academic Publishers, Dordrecht, p.1991.3 R. Norton, Cam and cams follower (Chapter 7), in: G.A. Erdman (Ed.), Modern Kinematics: Developments in theLast Forty Years, Wiley-Interscience, New York, 1993.4 F.Y. Chen, A survey of the state of the art of cam system dynamics, Mechanism and Machine Theory 12(1977)201224.5 G. Scotto Lavina, in: Sistema (Ed.), Applicazioni di Meccanica Applicata alle Macchine, Roma, 1971.6 H.A. Rothbar, Cams Design, Dynamics and Accuracy, Wiley, New York, 1956.7 J.E. Shigley, J.J. Uicker, Theory of Machine and Mechanisms, McGraw-Hill, New York, 1981.8 P.L. Magnani, G. Ruggieri, Meccanismi per Macchine Automatiche, UTET, Torino, 1986.9 N.P. Chironis, Mechanisms and Mechanical Devices Sourcebook, McGraw-Hill, New York, 1991.10 V.F. Krasnikov, Dynamics of cam mechanisms with cams countered by segments of circles, in: Proceedings of theInternational Conference on Mechanical Transmissions and Mechanisms, Tainjin, 1997, pp. 237238.11 J. Oderfeld, A. Pogorzelski, On designing plane cam mechanisms, in: Proceedings of the Eighth World Congress onthe Theory of Machines and Mechanisms, Prague, vol. 3, 1991, pp. 703705.12 C. Lanni, M. Ceccarelli, J.C.M. Carvhalo, An analytical design for two circular-arc cams, in: Proceedings of theFourth Iberoamerican Congress on Mechanical Engineering, Santiago de Chile, vol. 2, 1999.924 C. Lanni et al. / Mechanism and Machine Theory 37 (2002) 9159249
收藏