螺旋離心泵結構設計含proe三維及12張CAD圖
螺旋離心泵結構設計含proe三維及12張CAD圖,螺旋,離心泵,結構設計,proe,三維,12,十二,cad
螺旋離心泵結構設計
目 錄
摘 要........................................................Ⅰ
ABSTRACT........................................................Ⅱ
1 緒論 1
1.1 研究背景及意義 1
1.2 螺旋離心泵概述 1
1.3 螺旋離心泵的國內外研究形狀 3
2 總體設計 5
2.1 設計要求 5
2.2 方案的確定 5
2.3 原動機的選擇 6
2.4 水力設計 7
3 主要零件的設計與選擇計算 8
3.1 葉輪設計 8
3.2 泵軸的設計 16
3.2 壓水室的設計 17
3.4 主要通用零部件的選擇 19
4 主要零件的強度計算 21
4.1 泵體的強度計算 21
4.2 葉輪強度計算 21
4.3 泵軸的強度校核 22
4.4 鍵的校核 23
4.5 軸承的校核 24
5 三維建模 25
6 環(huán)保分析 28
總結 29
參 考 文 獻 30
附錄 1:外文原文 32
附錄 2:外文翻譯 36
致謝 40
摘 要
螺旋離心泵在國民的生產(chǎn)與生活中有著廣泛的應用以及重要的意義,它涉及于國民經(jīng)濟的方方面面,如:漁業(yè)、排水、制糖、冶金等等。
采取固液兩種狀態(tài)的流體的相關研究對葉輪等重要部分進行了水力設計。整篇文章始于結構的相關構造,分別進行了葉片、壓水室、進水室的設計,重要零件的選擇以及離心泵主要構件的強度計算。設計過程中充分考慮實際生產(chǎn)使用中所可能出現(xiàn)的問題, 后根據(jù)問題對各零件的位置、形狀及結構進行合理的設計。
本文設計的螺旋離心泵可以實現(xiàn)固液兩種狀態(tài)的流體的運輸。與其他類型的泵相比, 其功率曲線平坦;良好的調節(jié)性能;泵的吸入性能好;具有優(yōu)良的抗汽蝕性能;還可輸送油 水混合物而不致乳化等優(yōu)點,可以廣泛運用到現(xiàn)代化生產(chǎn)中去。首先,通過對螺旋離心 泵的現(xiàn)況及類型原理進行了分析并擬定設計方案;接著,對主要零件包括,葉輪、泵殼、 泵軸和通用件等進行了設計與選擇計算;然后,對主要零部件的強度進行了校核;最后, 繪制系統(tǒng) 2D 裝配圖和主要零件圖并進行 3D 造型設計。
關鍵詞 固液兩相流體;螺旋離心泵;結構設計;葉輪
II
ABSTRACT
Screw centrifugal pump in the national production and life has been widely used and important sense, it involves all aspects of our national economy, such as: fishing, drainage, sugar, metallurgy and so on.
Take the solid-liquid two states of fluid related research on the important parts such as impeller hydraulic design.Entire article begins with the structure of the related structure, separately carried on the blade, the pressurized water chamber, the design of the inlet chamber, the choice of important parts and the strength calculation of centrifugal pump main components.Design process fully consider the possible problems in the use of actual production, according to the problems on the parts after the location, shape and structure of reasonable design.
In this paper, design of screw centrifugal pump can realize solid-liquid two status of transportation of the fluid.Compared with other types of pump, the power curve flat;Good regulation performance;Pump inhalation can be good;It has excellent resistance to cavitation performance;Can also transport oil-water mixture without emulsification etc, and can be widely used in the modern production. First of all, through the analysis of the current situation and type of the screw centrifugal pump, the design scheme is proposed. Then, the main parts include the design and selection of the main parts, such as impeller, pump casing, pump shaft and general parts, and then check the strength of the main parts. Finally, the 2D assembly drawings and the main parts of the system are designed.
Key words: Solid - liquid two - phase fluid; spiral centrifugal pump;
structural design; impelle
螺旋離心泵結構設計
1 緒論
1.1 研究背景及意義
螺旋離心泵在我們的日常生產(chǎn)生活以及研究中有著不可或缺的地位,如輸送混合有固體物質的液體,它是一種新型泵,相比起其他普通的泵,螺旋離心泵可以實現(xiàn)真正意義上的不堵塞,是一種不會堵塞的泵。所以其應用范圍之廣泛,有著重要的研究價值及意義。
一般的無堵塞離心泵在運輸纖維狀的物質時,纖維狀的物質常常會因為附著在葉輪的葉片上而導致阻塞,造成運輸故障。而螺旋離心泵因為有螺旋形狀的葉輪則不會有這一情況,這樣的葉輪會使各種輸送物避免在進出口造成堵塞并且順利通過,從而避免了許多機械故障。另外,螺旋離心泵在輸送固體物質時,完全可以避免撞擊泵內的任何部位,從而避免了損傷。既可以保證輸送的物質不被破壞,保持原來的物理狀態(tài),又可以有效的保護其內部不因為各種物質的撞擊而遭到破壞。能夠低成本平穩(wěn)運行、擁有高自吸能力、無過載區(qū)域及有著小巧的結構。
因為生產(chǎn)要求的增高,泵的運送領域越發(fā)的廣,如:泥漿、灰渣礦石、糧食、紙漿等等。輸送這類物質要求了泵的許多特性,如無堵塞與耐磨損特性。普通的離心泵與螺旋泵相聯(lián)合產(chǎn)生了螺旋離心泵,它可以廣泛運用于各種各樣的建設中去,輸送含有大量固態(tài)物體的流體。它的開式葉輪中有一到兩片螺旋形葉片可以防止堵塞,讓填充物順利流動。
螺旋離心泵的設計生產(chǎn)在我國開始較晚,與歐洲等國家相比有一些距離。我國第一臺螺旋離心泵 LLB 型螺旋離心泵直到上世紀八十年代才完成制作。即使如此,經(jīng)過眾多專家的努力,各種新產(chǎn)品已經(jīng)研發(fā)成功,廣泛地被運用到了生產(chǎn)生活中。
1.2 螺旋離心泵概述
1.2.1 結構特點及工作原理
圖中所示即為基本結構。在生產(chǎn)工作中,葉輪的螺旋形狀做到了容積泵的作用,將進入吸入室中的輸送物沿路徑送入離心的部門,最后再進行排出,起到了輸送的作用。螺旋離心泵相比起普通的泵有著許多的優(yōu)點,比如:螺旋離心泵的效率相對其他的要高、腐蝕沒有那么嚴重所以他的使用壽命相對較長、對于固液兩相流體,螺旋離心泵不易造成堵塞、能夠柔和輸送介質從而保護介質的各項性能不被破壞等等。
- 9 -
圖 1.1 螺旋離心泵結構
螺旋離心泵的優(yōu)點:
(1)無堵塞性能好;
(2)無損性能好;
(3)效率高,而且高效區(qū)寬廣;
(4)功率曲線平坦;
(5)良好的調節(jié)性能;
(6)泵的吸入性能好;
(7)具有優(yōu)良的抗氣蝕性能;
(8)腐蝕小,過流部件壽命長;
(9)理想的抗噪特性。
特性:
(1)無堵塞性能
(2)柔和輸送介質:這一優(yōu)點適用在以下領域:運送容易受到損害的物體,使其可以保留原有的狀態(tài),避免它的物理性質遭到破壞。懸浮的纖維,不會被擰絞或纏繞。
(3)運行曲線較為完美:功率曲線平穩(wěn),整個泵沒有超過載荷的地方;轉速很快,
體積較?。恍瘦^高,其運行所需要的花費較低;能夠平穩(wěn)安全的作業(yè)。
(4)高固含量介質處理能力。
1.2.2 螺旋離心泵的主要零部件
螺旋離心泵中的主要過流部件:壓水室、葉輪和吸水室。
吸水室處在最前方,它的作用是將輸送的物質吸入并送進葉輪中。并且吸水室有三種不同的形式。
螺旋離心泵結構設計
吸水室之后是泵體,它將葉輪包裹在內,這一部分也是整個泵的最重要的部分,由葉片及泵蓋組成。
最后一部分為壓水室,它將從葉輪導出的輸送物收集起來,使其進入排出的管道。泵的類型:
(1)積式泵
(2)葉片式泵(動力式泵)
(3)其它類型泵
1.3 國內與國外的研究現(xiàn)狀
1.3.1 國外研究現(xiàn)狀
總體來看,對比國內,國外對螺旋離心泵的研究,很明顯國外對其的研究開始的較早,相關成果較多。從相關各類文獻資料及相關報道可以看出,日本及歐美地區(qū)對于螺旋離心泵的研究較多,并進行了各種各樣大量的實驗。所形成的研究體系較為健全,對螺旋離心泵的各項指標均有研究。相比之下,國內所做的研究較少,體系不夠完整。但通過近幾年的眾多學者的研究,國內對螺旋離心泵的研究逐步加深,可見其逐步追趕上了其他發(fā)達國家的研究的水平。
田中和博等人將螺旋離心泵的外殼制成透明的以便對其進行觀察研究,并且用其輸送粘度很高的物質,最后他發(fā)現(xiàn)里面許多地方都出現(xiàn)了大量的回流的現(xiàn)象。
峰村等人為了對內部流動進行了三維的計算而使用有限元的方法,并且研究出了氣泡等物質在泵內的情況。
螺旋離心泵的蝸殼與葉輪的相互作用的問題被韓海、田中等人加以考慮,他們對蝸殼與葉輪的內部的流動通過有限體積的方法進行了數(shù)值的模擬,最終研究出采用數(shù)值的方法的結果與實際結果更為相同。
1.3.2 國內研究現(xiàn)狀
將近 21 世紀的時候,國內才對螺旋離心泵開展了研究工作,相比其他國家,其研究時間較短,任務較重。
郭天恩等針對同樣型號的螺旋離心泵的可通行及各項性能指標進行了實驗研究,得出了對該型號的螺旋離心泵的改進措施以及優(yōu)缺點。趙天成等人為固體與液體同時流動的物質的最小速度總結出了確定的規(guī)則,總結出了輸送固體與液體同時流動的物質的泵在最經(jīng)濟的情況下的最佳濃度范圍。榮生與關醒凡對如何確定螺旋離心泵的相關幾何參數(shù)制作出了一系列的相關算法,為以后的生產(chǎn)設計做出了巨大的貢獻,方便了設計研究。不但如此,他們還用其他的方法來對葉輪進行設計,大大幫助了產(chǎn)品的設計;陳宏勛與
朱榮生認為與一般的離心泵一樣,葉輪是整個設計的最重要的部分,并且設計中的重中之重則是確定其結構的參數(shù)與性能的參數(shù)之間的確定關系,他們使用了幾種方式對其進行了確定,并在此基礎上提出這些結構參數(shù)的確定方法;劉自貴及其他幾位研究人員對國外的相關研究情況與他們所做出的相關結果進行了介紹,設計出了實用的方法;陳仰吾通過對 80LLW 型的螺旋離心泵吸水室,排水室等多部位的實驗結果進行了研究,總結歸納出了關于螺旋離心泵內部的流動特征。王家斌等人對該種泵如何實現(xiàn)靜平衡進行了介紹,通過實踐也證明了在哪種階段實用該方法最為簡單有效。
2 總體設計
2.1 設計要求
螺旋離心泵的主要參數(shù)如下:
(1)出口:80mm;
(2)入口:125mm;
(3)流量:90m3/h;
(4)揚程:H=15m;
(5)轉速:1450r/min;
(6)軸功率:6.33kW。
2.2 方案的確定
主要方案:
(1)設計上以國際標準的 IS 泵為基型
(2)采用單級單吸懸臂臥式結構;
(3)葉片為空間對數(shù)螺旋線的線型;
(4)裝有三維螺旋葉片的葉輪。
結構上主要有三大部分組成: 泵頭
泵頭分為:
(1)泵體
(2)泵蓋
且葉輪的直徑比前蓋板與后蓋板的直徑都要小,其主體為具有三維螺旋葉片的葉輪。其后蓋板的背葉片可以降低泄漏率,增長其的使用期限。
軸封
填料型,因為其具有以下優(yōu)點:
(1) 維修方便
(2) 結構簡單
缺點:需要配備軸封水和供應該物質的泵。傳動
組成包括:
(1) 托架
(2) 軸承組件
傳動的功率不一致而選擇單列向心圓錐軸承,并且兩邊有端蓋用來密封,并且安裝密封圈來防止各種污染物進入軸承中,采用干油來潤滑,通過多項措施來保證軸承的安全運行以及較長的使用壽命。
2.3 原動機的選擇
根據(jù)生活中的使用要求,因為螺旋離心泵在實際生產(chǎn)使用中常常需要在戶外進行作業(yè),而在這種情況下一般不方便找到電源,因此為柴油機。轉速為n¢ = 2200 r / min ,泵
的轉速為n = 1450 r / min ,所以傳動比為n¢ / n = 2200 /1450 = 1.52 。
泵輸出功率:Ne = Sm QH m
367
(2.1)
2.65 ′103 ′ 90 ′15
=
367
= 7.5KW
泵輸入功率: N = Ne
h
(2.2)
= 7.5
0.65
= 11.54 KW
柴油機功率:N = N
0 h
(2.3)
1
= 11.54
0.96
= 12.02 KW
(上面各式中, S m 為介質密度;H m 為揚程; Q 為流量;h 為泵的效率;h1 為V 帶的傳動效率)
綜上所述:
選擇柴油機
轉速為n¢ = 2200 r / min
功率為12 KW
2.4 水力設計
比轉數(shù):
ns = (2.4)
故: ns =
沉降層速度: vSB = FL
= 115.244
(2.5)
=1.38
= 2 . 8 4 m
入口速度: v1
= Q =
A
90
3.14 ′ 0.052
(2.6)
出口速度:
= 2 . 8 3 m
v2 = v1 = 2.83(m / s)
Q v1 = v2 3 vSB
因此 此設計部分滿足要求。進口直徑: DS = 125mm (標準)
出口直徑: Dd
= 80mm (標準)
(上面各式中, Q 為流量; n 為轉速; H 為揚程;)
3 零件的設計與計算
3.1 葉輪設計
目前渣漿泵葉輪葉片型線設計中,比較廣泛地采用對數(shù)螺旋線。本次的葉輪設計是以勞學蘇以及何希杰提出的螺旋離心泵葉輪葉片工作面和負壓面空間曲線方程為依據(jù)進行的設計,葉輪葉片型線為對數(shù)螺旋線。
3.1.1 葉輪主要參數(shù)的確定
(1) 最大外徑
圖 3.1 葉輪軸面投影圖
2 max s q2 max
D :D = k (n / 100) -0.168 ′ D
(3.1)
Dq = =
0.0 2
k = 10 ~ 12.5
D2 m a = k ′ (115.244 /100)-0.168 ′ 0.025 = 0.238 ~ 0.298m
則 D2 max = 260 mm
螺旋離心泵結構設計
(2)出口寬度b2 :
b = ns
0.53
3 ′ 115.244
0.53
2 3 ′ ( )
100
′ Dq =
( )
100
′ 0.025 = 80.86mm
則 b2 = 80mm
(3)出口直徑 D1 :
又知:
K1 = 3.5~6.5
(3.2)
D1 = K1 ′
= 0.7 3 6~ 0.1 6 m1
則 D1 = 80mm
(4)輪轂直徑d h :
d3 = 19.96 + 0.07 × n = 28mm
(3.3)
(5)軸向長度 L:
(1.24 + 0.23 ′
ns
100
) ′ r2 max
=(1.24 + 0.23 ′ 115.244)′130 = 159.66mm
100
(3.4)
則 L = 195mm
(6)輪緣側圓弧半徑 R1 : R1 52.28+0.91 ′ ns
(3.5)
則: R1 = 160mm
(7)輪轂側圓弧半徑 R2 :
R2 = 73.4 + 1.29 ′ ns =222.1 (3.6)
則 R2 = 220mm
(8)輪轂側圓弧半徑 R3 :
R3 = 60 ~ 90mm
- 12 -
則 R3 = 70mm
(9)輪緣側葉片傾角a 1 :
a 1 ′ ns
a 1 =45.53 o
(3.7)
則 a 1 = 45° o
(10)輪轂側葉片傾角a 2 :
a 2 =57.1-0.1 ′ ns =45.59 o (3.8)
則a 2 = 45°
(11)出口傾角a 3 :
a 3 =7.79 ′ ln ns - 24.03 =7.79 ′ ln 115.244 - 24.03 =12.96o (3.9)
則a 3 = 13°
(12)出口最小直徑 D2 min :
D2 min = D2 max - 2b2 tga 3 =189.46 (3.10) 則 D2 min =190mm
(13)各段軸向長度 L1~ L4 :
L1=(0.05~0.08)L=7.75~15.6(作圖在范圍內)取 L1=8.59(mm)
L2=(0.2~0.4)L=39~78
取 L2 =60(mm)
L3 =(0.6~0.8)L=117~156
取 L3=140(mm)
螺旋離心泵結構設計
(14)側葉片出口安放角b 2sh :
2sh
b = tg -1
u
(3.11)
2sh
V2m
(1 - K sh )
V2m = K 2m ×
K = 0.0 4 8′ ( ns )0.2 = 0.0 4 9 3
2m 1 0 0
u2sh = pD2 max × n / 60 = 3.14 ′ 260 ′1450 / 60
K sh
n
s
= 0.8 2 (6
) -0.177
= 0.8 0 5
則b = tg -1 0.04938 ′
1 0 0
2 ′ 9.8 ′13
=11.60 o
2sh
19.7297 ′ (1 - 0.8055)
(15)側葉片出口安放角
b = tg -1
b 2hu :
V2m
(3.12)
2hu
u2hu
(1 - K hu )
u = pD2 min × n = 3.14 ′190 ′1450
2uh
K hu
60
= 0.848( ns
100
60
) -0.164
則: b
= tg -1 0.04938 ×
2 ′ 9.8 ′13
2hu
14.42 ′ (1 - 0.789)
(16)進口安放角b1sh , b1hu :
b1sh
= 12 o ~18o 取b1sh
= 15o
b1hu = 60 o ~75o 取b1hu = 65o
(17)出口葉片包角
jex :
jex
= 156.59(
ns
100
) -0.43 =147.68 (3.13)
取 jex = 150 o
(18)輪緣螺線起點處圓弧半徑 R0 :
R0 =0.63 ns - 4.17 =0=68.44
則 : R0 = 70mm
(19)輪轂側葉片包角j hu :
j hu = 821.17 - 1.42 ns =657.525 o (3.14)
則 j hu =658 o
(20)側葉片包角j sh :
j sh = 652 - 1.02
ns = 534.451
(3.15)
則
(21)葉輪曲面螺線
j sh =535 o
(a) a1a2 曲面螺線:
公式:
r = (1 ± bq )r0
z = (1 ± bq )z0
(z0 , r0 )為a1點坐標(115,130)
根據(jù)邊界條件,以o¢點為坐標原點得
a1a2 空間曲線方程為:
(3.16)
r = 130(1 - 0.00163 θ) z = 1 1(51 - 0.0 0 1 6θ3) θ = 0o ~135 o
(θ =135 o時, r = 101.34
z = 86.34 )
(b) a2 a3 空間曲線螺線:
q a 2 和q a3 為兩端點所相應的螺線轉角,在a2 a3 上用一個點 p(z, r) 且轉角為q , 則三者可相互建立起關系,且關系如下:
- 14 -
Z = Z
- Z z 2 - Z a3 (q
- q )
q
- q
a 2 a 2
a 2 a3
(3.17)
r = (R + D1 ) -
2
以o¢點為坐標原點得
a2 a3 空間曲線方程為:
Z = 1 1 .54 8- 0.2 1 q6
r = 2 0 .62 4-
(c) a1b1 曲面螺線方程:
Z = 115 - q × 80
150
r = 130 + q × 80 × tg12o
150
q = 1 3 5o ~5 3 5o
q = 0o ~ - 1 5 0o
(3.18)
(3.19)
(d) b1b2 曲面螺線方程:
Z = 169.23 - 0.172q
r = 146.81 - 4900 - (Z - 186.41) 2
q = -150 o ~ - 100 o
(3.20)
(e) b2 b3 曲面螺線方程:
r = 99.8[1 - 0.006q ]
Z = 186.41[1 - 0.0 0 q6]
q = -100 o ~86 o
(3.21)
(f) b3b4 曲面螺線方程:
Z = 150.85 - 0.184q
r = 229.31 -
48400 - (Z - 55) 2
q = 86 o ~5 2 0o
(3.22)
表 3.1 輪緣側曲面螺線(部分)值
表 3.2 出口段螺線(部分)值
表 3.3 輪轂側曲面螺線(部分)值
(22)葉片螺線平面圖
由上述結果,可繪制葉片螺線。
總有 16 軸面,其兩兩的夾角為 °。當Z = 0 時,葉片在平面上的投影如圖:
圖 3.2 空間螺線在平面上的投影圖
(23)厚度計算
采用鑄造的方法,對于鑄鐵葉輪,最薄處應該為 毫米。材料選用 MT-4,葉片的厚度( ):
- 19 -
S = KD2 m a
5 ′ 0.26 ′
+ 1
+ 1 = 5.687
(3.23)
S = 6mm
(上述式中,D2 max 為葉輪的外徑;K 為經(jīng)驗系數(shù)且可查的為 5;Z 為葉片的數(shù)量為 1;H
位揚程)
3.1.2 背葉片的設計
被葉片的幾何參數(shù)正是由它的減壓的程度所決定的。其減壓后所剩余的壓頭 H SR 可由下列公式求出:
H = H
- 1 ( n ) 2[(D 2 2 max - D 2 R ) + ( S2 + 2t ) 2 (D 2 R - D 2 S )]
(3.24)
SR d
286 1000
S2 + t
因此:
′13 - 1
1450)2[(262 -192 ) + (5 + 2 ′1 2 ′ (192 - 82 )]
H SR ( )
286
(
1000
5 +1 )
H SR
( )
減壓以后所剩的壓頭 ,則剩下的壓頭為 。
(上述式中, n 為轉速且為1450 r / min ; H d 為泵腔的壓頭的米數(shù)且 H 0 = 0.15H 、
H d = (1 + 0.15)H ; D2 max 為葉輪的外徑且 D2 max = 27cm ; S 2 為背葉片的寬度; DR 為背
葉片的外徑且 DR = D2 min = 19cm ; DS 為背葉片的內徑; t 為渦室與背葉片之間的間隙)
3.2 泵軸的設計
(1)P2 為泵軸的功率、T2 為轉矩、n2 為轉速
P2 = 6.33kw , n2 = 1450 r / min , T2 = 445.14 N × mm
(2)確定軸的最小直徑
P
由d 3 C × 3 可得出。
n
45 鋼作為材料,并調質處理。取C = 112 ,則:
d3 3 112′
= 30.5mm
(3.25)
聯(lián)軸器的計算轉矩Tca
= K A ×T2 ,取 K A = 1.05 。
Tca = K A × T3 = 1.1′ 451.41 = 496.6N × m
型彈性套柱銷聯(lián)軸器,其公稱轉矩為630 N / m 。半聯(lián)軸器的孔徑為32mm ,取
d1 = 32mm ,長度為 L = 62mm ,與軸配合的長度 L1 = 60mm 。
(3)軸各段直徑和長度
(a)軸段的左端需制作出軸肩來滿足定位的要求,h > 0.07d ,h = 3則d2 = 40mm 、
L2 = 37mm 。
(b)選用深溝球軸承。根據(jù)d2 = 40mm ,選取 0 基本游隙組,6308 的標準精度,
d ′ D ′ T = 40mm ′ 80mm ′18 , d2 = d4 = 40mm ,因為還需要有檔油環(huán),l4=73mm
4
,軸肩定位,軸肩的高度為h > 0.07d ,取h = 3.5 ,綜上,取d = 48mm 。
(c)安裝葉輪處的軸的直徑d5 = 35mm ;取l5 = 138mm 。左端通過軸套進行定位,右端使用軸肩定位。
(4)軸上零件的周向定位鍵:
聯(lián)接聯(lián)軸器b ′ h ′ l = 10mm ′ 8mm ′ 70mm
聯(lián)接圓柱葉輪b ′ h ′ l = 10mm ′ 8mm ′ 90mm
3.3 壓水室的設計
3.3.1 渦形體各個斷面面積中的平均速度v3
v3 = k3
(3.26)
n
, 則 ; H = 15m
s
。
v3 , 取 v3
隔舌安放角為ψ °,6 個斷面,各處的流量為:
q = a
360
Q = 20
(3.27)
j
Ff = j
1
3.3.2 舌角a3
atg -1 vm3
(3.28)
a3 a2
vu 2
(3.29)
vu 2 =
gH t
u2
(3.30)
a3 a2
tg -1 vm3
vu 2
= 38°
b3 ; b2
( 渦 形 體 的 寬 ) (3.31)
b
實際
3
3.3.3 基圓直徑 D3 基圓直徑:
D3 = (1.03 - 1.08)D2 = 350 - 367.2mm
實際: D3 = 360 mm
(3.32)
3.3.4 葉片厚度的確定
x < 0.4
D1
x < 0.4
200
x < 80
x
D
的數(shù)值越低越好,則 x = 20mm
1
l = 90o
b = 40o
e = 20
e = 24
70
s = d
e = 20
(3.33)
Su =
s
cos b
= 4
cos 40o
= 5.2 (3.34)
S ' = d = d
m cosj
=?(3.35)
Sr = Sm sin e = 1.8 mm (3.36)
(上式中,e 為軸面流線與水平的夾角;Sm 為軸面的垂直方向上的厚度;Su 為圓周的厚度;Sr 為徑向上的厚度)
3.4 主要通用零部件的選擇
3.4.1 軸封結構的選擇
S = (1.4 - 1.8)
= 10mm
(3.37)
當液體壓力 P £ 10MPa 時
H = (5 - 7)S = 60mm (3.38)
h =(6 - 3)S = 60mm
b =(1 - 0..5)S = 8mm
(3.39)
(3.40)
d = (0.8 ~ 1.0)d ¢=9 mm (3.41)
取d = 7mm
3.4.2 軸承部件的選擇 滾動軸承的優(yōu)點:
(1) 軸承磨損小
(2) 軸或轉子不會因軸承磨損而下沉過多
(3) 間隙小,能保證軸的對中性
(4) 維修方便
(5) 互換性好
(6) 啟動力矩小
(7) 磨損系數(shù)小滾動軸承的缺點:
擔負沖擊的能力較差容易產(chǎn)生噪音
安裝要求比較高。
總之,滾動軸承在各種機械中廣泛被使用。
在設計中,對于軸承的要求是必須能夠承受住徑向和軸向力的同時施壓,所以向心推力軸承是最適合的,最終選定單列圓錐滾子軸承。
想要軸承能夠正常工作,必須保證軸承的潤滑。常規(guī)的情況下,被輸送的介質在 0℃ 以下,轉速在 2900r/min 以下的泵,可以使用脂潤滑,此次設計的轉速為 , 使用溫度為常溫,因此選用脂潤滑,并且選用鋰基潤滑脂 的 2 # 或 3 # 。
選擇 61309/P6 型號的深溝球軸承(GB276-64)。尺寸:軸徑 d = 45mm,D =100mm,B = 25mm 安裝尺寸:D1 =54 mm,D3=90mm
重量:0.83kg
使用 型號的雙列向心球面球軸承( ) 尺寸:軸徑 d = 45mm,D =100mm,B = 36mm
安裝尺寸:D1=55mm,D3=90mm 重量:1.25kg
3.4.3 聯(lián)軸器的選擇
由于直徑為40mm 則使用用彈性套柱銷聯(lián)軸器,其各項參數(shù)為
- 29 -
L = 112mm 、D = 160mm 、A = 45mm
,重10.36kg 。
4 主要零件的強度計算
4.1 泵體的強度計算
渦室在離心泵中,是一個比較大的零件,并且要受到液體的巨大壓力。因此,它必須具有足夠的剛度與強度。
S = Scg
× H
[s ]
(4.1)
s
S = 1545 + 0.0084n
+ 7.2 =
1545
+ 0.0084 ′115.244 + 7.2 =21.57
n
cg
s
115.244
S= 21.57 ′
′ 15
200
=0.58cm
選用MT - 4 ,壁厚為8mm
(上述式中,[s ] 為許用應力, S 為渦室的厚度; Scg 為渦室的當量壁厚)
4.2 葉輪強度計算
4.2.1 蓋板強度計算
蓋板所受力越大,該部位的半徑就應該越小。
2
d = 0.825 pu 2 £ [d ]
(4.2)
d = d
ér w 2 (D2 - D2 )ù
x 2 eê
?
1 2 1
ú
2[d ]′ 4 ?
(4.3)
式中:r 為材料的寬度;[d ]為許用應力, 銅的[d ]=
選取 ZG1Cr13,d s = 392266 KPa。
d s
3 - 4
;d s 為材料的屈服極限;
a
d = 0.825′ 7800′18.92 = 2299 < [d ]= (130755 - 98066)kp
d = ′
é7800′1522 ′ (0.2482 - 0.22 )ù
x 0.05
2.71828ê
?
2′ 98066′ 4 ú
?
4.2.2 葉片厚度計算
s = AD
(4.4)
式中:H 為單級揚程;Z 為葉片數(shù);D2 為葉片外徑;A 是系數(shù)
S=5 ′ 0.248 ′ S = 5 ′
= 3.4mm
S=4mm。
4.2.3 輪轂強度計算
F = p (D
4 1
- Dh
)rgkHi
(4.5)
DD = d D
E C
(4.6)
式中:E 為彈性模數(shù),鑄鐵 E=1.3′106 ,鑄銅 E=1.75 ′106 ,銅 E=1.1′106 ;
d = 10
4 rm u
g 2
2 = 104 ′ 0.0078 ′
9.8
(p ′
0.284
′ 1450)2 =
60
3696.56
= 37 MPa
因d < [d ]
故在n = 1450 時葉輪蓋板是安全的。
DD = d D
E s
= 37
1.75 ′106
′ 66 = 0.014 mm
DD < D min
4.3 泵軸的強度校核
4.3.1 泵軸的強度計算當量彎矩M dx
M dx = (4.7)
一般情況下a = 0.57 ~ 0.61 。故a = 0.6 。
M dx =
= 37.1
(4.8)
d = M dx
0.1d 3
= 407 mm (4.9)
得軸符合安全
4.3.2 泵軸的剛度校核
細長比: d / l > 1.0 -1.5
d / l = 1.35 。
聯(lián)軸器: d = 40mm, L = 112 mm,D = 130 mm
螺栓有n = 4 個,重m = 7.29kg ,直徑M10 ,L0=229mm,轉動慣量0.043 。
4.4 鍵的校核
4.4.1 鍵的選擇
M = 47.88N / m d = 40mm
(4.10)
鍵: b ′ h = 12 ′ 8
深度:鍵l = 50mm ,轂t = 3.3+0.2 ,軸t = 5.0+0.2
1 0 0
4.4.2 鍵聯(lián)接強度計算剪切應力:
t = M
0.5dbl
安全
= 339 N·m (4.11)
擠壓應力
d p =
M
0.25dbl
= 1197 N·m (4.12)
可用的擠壓應力[d ]p = 1500 ~ 1600 N / m
d p < [d ]p
,安全。
剪切應力:
M £ 0.5dbl[t ]
45 號鋼的鍵取[t ]=600N·m。擠壓應力
M £ 0.25dhl[d ]p
[d ]p =1500-1600 N·m。
4.5 軸承的校核
(4.13)
(4.14)
r or
C = 75.2 ′103 N , C = 92 ′103 N, e = 0.42
Y = 1.4,Y0 = 0.8, N 0 = 4300r / min
FrA = =
= 1486 .2N
FrB =
= = 615 N
螺旋離心泵結構設計
附加軸向力:
圖 4.1 受力分析圖
FSA FSB
= FrA
2Y
= FrB
2Y
= 1486.2 = 531N 2.8
= 615.2 = 219.7N
2.8
軸承軸向力:
F = 2350N
F + FSB = 2540.7N 3 FSA
故軸承 A 被壓緊,
Fa1 = FSA = 531N
Fa 2 = FSB + F = 2540.7N
Fa1 =
FrB
531
615.2
= 0.86 3 e.X B
= 0.4 \ YB
= 1.6
Fa 2
FrA
= 2540.7 = 1.7 3 e.X
1486.2 A
= 0.4 \ YA
= 1.6
查表得 f d =1.2
當量動載荷:
PA = f d ( X A FrA + YA Fa1 ) = 1.2 ′ (0.4 ′1086.2 + 1.6 ′ 531) = 1541N
PB = f d ( X B FrB
軸承壽命:
+ YB Fa 2 ) = 1.2 ′ (0.4 ′ 615 + 1.6 ′ 2540.7) = 4311N
L10h
= 16670
n
( Cr ) =
PB
16670
1450
0.8 ′ 73.2 ′103
(
4311
) = 17796.7h
工作年限為
17796.7 = 6.2年。
360 ′ 8
5 三維建模
三維建模采用 pro-e 軟件進行三維制圖。pro-e 采用了模塊方式,可以分別進行草圖繪制、零件制作、裝配設計、鈑金設計、加工處理等,保證用戶可以按照自己的需要行選擇使用。
以下為泵體主要部分:
圖 5.1 泵 體 圖 5.2 吸 水 室
圖 5.3 懸 架 圖 5.4 泵 蓋
圖 5.5 端 蓋 圖 5.6 機 械 密 封
以下為對整個泵的三維建模:
以下為各種連接件:
圖 5.6 裝配圖
圖 5.7 M20 圖 5.8 M12×35 圖 5.10 M12×25
圖 5.11 M10×10 圖 5.12 M8×20
螺旋離心泵結構設計
6 環(huán)保分析
隨著科技不斷地發(fā)展,生活水平雖然不斷改善,但環(huán)境問題越來越被更多地人所重視,世界各國也為環(huán)保制定出越來越嚴格的法律及措施。環(huán)保性能已經(jīng)成為各個行業(yè)的競爭指標之一。
螺旋離心泵離心泵的工作壽命較其他種類的泵來說要長許多,采用可調耐磨內襯:在磨損嚴重的應用情況下是一種理想選擇,當發(fā)生磨損之后,只需更換一個內襯即可,無須更換整個外殼不但經(jīng)濟方便,而且大大減低了更換率。
螺線離心泵在工作中會產(chǎn)生一定的噪音,但相對其他形式的泵來說,噪音相對較小。但為了進一步的減少噪音的大小,在使用前應該檢查各個零件是否安裝正確,有無偏移。并且檢查好連接件是否擰緊,然后再開始運作,這樣能在一定的程度上減少噪音的大小。
總 結
“螺旋離心泵的結構設計”介紹了一種高效、實用的設計方法。它采用實驗和現(xiàn)場運行性能指標都優(yōu)秀的設計方法和經(jīng)驗公式,本次設計我采用了勞學蘇以及何希杰提出的螺旋離心泵葉輪葉片工作面和負壓面空間曲線方程為依據(jù)的設計方法,葉輪葉片型線為對數(shù)螺旋線。從而為設計性能優(yōu)秀的螺旋離心泵提供了保障。主要方案:
在本次的螺旋離心泵設計中,整體結構采用單級單吸懸臂臥式結構,葉片采用空間對數(shù)螺旋線的線型,葉輪為裝有三維螺旋葉片的葉輪。并分別對葉輪、泵軸、壓水室、主要的通用零部件進行了設計與選擇計算,并且對主要零件進行了強度的校核。完成了整體裝配圖與各個部件的 cad 圖以及用 pro-e 繪制的三維圖。
參 考 文 獻
[1] 丁成偉.離心泵與軸流泵原理與水力設計[M].北京:機械工業(yè)出版社,1981.
[2]趙天成,郭自杰.固液兩相流泵設計與實驗研究[J] . 排灌機械,1997,16(4):15~18.
[3]郭曉民 , 賈宗漠 . 渣漿泵設計方法的研究總結[J] . 流體機械,1996, 15(1):15~18.
[4](波) J.Remisz .渣漿泵的性能換算和設計[J].水泵技術,1985,15(4):20~24.
[5] (西德) A.Kartzer.污水和磨蝕性液體用離心泵設計和選用的若干問題[J].水泵術, 19 85,22(1):25~29.
[6] 戎國平,施衛(wèi)東.WF 與 WN 型污水泵的水力設計 [J].排灌機械, 1999, 24(1):35~39.
[7]張玉新.低比轉速離心式渣漿泵的無過載設計方法[J].流體機械,1999,18(4):14~18.
[8]劉彥春,低比速渣漿泵設計實踐[J].水泵技術,1999,34(5):7~10.
[9]蔡保元.離心泵的“兩相流”理論及其設計原理[J].科學通報,1983,2(8):498~502.
[10]蔡保元.按兩相流設計的雜質泵性能的特點[J].水泵技術,1986 ,32 ( 2 ):14~18.
[11]A.J.斯捷潘諾夫. 離心泵和軸流泵[M]. 北京: 機械工業(yè)出版社, 1980.
[12]何希杰,勞學蘇.螺旋離心泵的原理與設計方法[D].石家莊:石家莊雜質泵研究所,1997. [13]M Stahle, D. Jackson. the Development of a Screw Centrifugal Pump For Handling Delicate
Solids[J]. Word Pumps,1982: 185~192
[14]Alesander S. Roudnev. Some aspects of slurry pump design[J]. World pumps,1999,1999(389):58~61.
[16]Yoshiro lwai, Kazuyuki Nambu. Slurry wear properties of pump lining materials[J]. Wear, 1997, 210(1-2):211-219.
[18]Craig I.Walkr, Greg C.Bodkin. Empirical wear relationships for centrifugal pumps, Part 1 :side-linkers[J]. Wear, 2000, 242(1):140-146.
[19] 田愛民、許洪元等.離心式渣漿泵葉輪的磨損規(guī)律研究[J].水泵技術,1997,(6):7~10. [20] 羅先武.離心泵葉輪內磨損規(guī)律的實驗研究[D].北京:清華大學,1996.
[21] 洪亮等.渣漿泵材料的磨損試驗[J].水泵技術,1999,(l):3~5.
[22] 楊建國等.用導輪減輕固液兩相流對離心泵葉片的磨損研究[J].水泵技術, 2005 (5):30~34.
[23]劉忠祥.雜質泵磨損機理的探討[J].水泵技術 , 1981,(3):55~60.
[24]王榮貴.水力機械侵蝕機理與抗蝕[J].大電機技術,1991,(3):98~102.
[25]盧秉桓.機械制造技術基礎[M].北京:機械工業(yè)出版社,2007.
[26]濮良貴.機械設計第九版[M].北京:高等教育出版社,2013.
[27]勞學蘇, 何希杰. 螺旋離心泵的原理與設計方法[M]. 水泵技術, 1997, 20(5): 6-13 [28] 厲浦江. 螺旋不堵塞泵的設計方法[J]. 流體機械. 1995, 36(6): 20-24
[29] 許洪元, 羅先武. 磨料固液泵[M]. 北京: 清華大學出版社, 2000.
[30]H . Tsukamoto, M. Uno, J. –I. Asakura,J. Yoshida, X.M. Wang presussure distribution and flow visualization of solid-liquid two phase flow in a slurry pumps impeller[J]. Pumps and fans proceedings of the 3rd international conference on pumps and fans ,1998:263~273.
- 31 -
[31]B K Gandhi, S N Singh, V Seshadri. Improvements in the prediction of performa
收藏