2019年高考數學二輪復習 第三部分 題型指導考前提分 題型練4 大題專項(二)數列的通項、求和問題 理.doc
《2019年高考數學二輪復習 第三部分 題型指導考前提分 題型練4 大題專項(二)數列的通項、求和問題 理.doc》由會員分享,可在線閱讀,更多相關《2019年高考數學二輪復習 第三部分 題型指導考前提分 題型練4 大題專項(二)數列的通項、求和問題 理.doc(4頁珍藏版)》請在裝配圖網上搜索。
2019年高考數學二輪復習 第三部分 題型指導考前提分 題型練4 大題專項(二)數列的通項、求和問題 理1.設數列an的前n項和為Sn,滿足(1-q)Sn+qan=1,且q(q-1)0.(1)求an的通項公式;(2)若S3,S9,S6成等差數列,求證:a2,a8,a5成等差數列.2.已知等差數列an的首項a1=1,公差d=1,前n項和為Sn,bn=.(1)求數列bn的通項公式;(2)設數列bn前n項和為Tn,求Tn.3.已知數列an的前n項和Sn滿足:Sn=(an-1),a為常數,且a0,a1.(1)求數列an的通項公式;(2)若a=,設bn=,且數列bn的前n項和為Tn,求證:Tn0,nN*.(1)若2a2,a3,a2+2成等差數列,求數列an的通項公式;(2)設雙曲線x2-=1的離心率為en,且e2=,證明:e1+e2+en.參考答案題型練4大題專項(二)數列的通項、求和問題1.(1)解當n=1時,由(1-q)S1+qa1=1,a1=1.當n2時,由(1-q)Sn+qan=1,得(1-q)Sn-1+qan-1=1,兩式相減,得an=qan-1.又q(q-1)0,所以an是以1為首項,q為公比的等比數列,故an=qn-1.(2)證明由(1)可知Sn=,又S3+S6=2S9,所以,化簡,得a3+a6=2a9,兩邊同除以q,得a2+a5=2a8.故a2,a8,a5成等差數列.2.解(1)在等差數列an中,a1=1,公差d=1,Sn=na1+d=,bn=(2)bn=2,Tn=b1+b2+b3+bn=2+=2+=2故Tn=3.(1)解因為a1=S1=(a1-1),所以a1=a.當n2時,an=Sn-Sn-1=an-an-1,得=a,所以數列an是首項為a,公比也為a的等比數列.所以an=aan-1=an.(2)證明當a=時,an=,所以bn=因為,所以bn=所以Tn=b1+b2+bn+因為-0,所以,即Tn0.由00,故q=2.所以an=2n-1(nN*).(2)由(1)可知,an=qn-1.所以雙曲線x2-=1的離心率en=由e2=,解得q=因為1+q2(k-1)q2(k-1),所以qk-1(kN*).于是e1+e2+en1+q+qn-1=,故e1+e2+en- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019年高考數學二輪復習 第三部分 題型指導考前提分 題型練4 大題專項二數列的通項、求和問題 2019 年高 數學 二輪 復習 第三 部分 題型 指導 前提 專項 數列 求和 問題
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.italysoccerbets.com/p-2728668.html