2019-2020年高中數(shù)學 電子題庫 第二章 §2知能演練輕松闖關 北師大版必修5.doc
《2019-2020年高中數(shù)學 電子題庫 第二章 §2知能演練輕松闖關 北師大版必修5.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 電子題庫 第二章 §2知能演練輕松闖關 北師大版必修5.doc(4頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高中數(shù)學 電子題庫 第二章 2知能演練輕松闖關 北師大版必修5 1.三角形兩邊長之差為2,其夾角的余弦值為,面積為14,那么這個三角形的兩邊長分別是( ) A.3和5 B.4和6 C.6和8 D.5和7 解析:選D.設a-b=2,∵cos C=,∴sin C=. 又S△ABC=absin C, ∴ab=35.由a-b=2和ab=35, 解得a=7,b=5. 2.在△ABC中,a=2,A=30,C=45,則△ABC的面積S等于( ) A. B.+1 C.(+1) D.2 解析:選B.由正弦定理=, 得=,∴c=2, ∴S△ABC=acsinB =22sin105=+1. 3.在△ABC中,a,b,c分別是角A,B,C所對的邊,已知a=,b=3,C=30,則A=__________. 解析:c2=a2+b2-2abcosC=3+9-23cos30=3. ∴c=,∴a=c,∴A=C=30. 答案:30 4.(xx阜陽質檢)在△ABC中,sinA∶sinB∶sinC=3∶2∶4,則cosC=__________. 解析:由sinA∶sinB∶sinC=3∶2∶4可得,a∶b∶c=3∶2∶4,不妨設a=3k,b=2k,c=4k,則cosC= ==-. 答案:- [A級 基礎達標] 1.在△ABC中,三式≤0,≤0,≤0中可以成立的( ) A.至少1個 B.至多1個 C.一個也沒有 D.三式可以同時成立 解析:選B.∵≤0,∴cosA≤0,∴A≥, 同樣B≥,C≥,故至多有一個成立. 2.(xx亳州調研)在△ABC中,若==,則△ABC的形狀是( ) A.直角三角形 B.等邊三角形 C.鈍角三角形 D.等腰直角三角形 解析:選B.結合正弦定理,由==得, ==,即tanA=tanB=tanC, 所以A=B=C,故△ABC為等邊三角形,故選B. 3.在△ABC中,||=3,||=5,||=7,則的值為( ) A.- B. C.- D. 解析:選C.由余弦定理可得, cosC===-, 所以=||||cosC=35(-)=-, 故選C. 4.在△ABC中,BC=1,B=,當△ABC的面積等于時,AC的長度為__________. 解析:∵S△ABC=BCBAsinB, ∴=BA,∴BA=4. 又∵AC2=BA2+BC2-2BABCcosB, ∴AC2=16+1-241=13,∴AC=. 答案: 5.(xx高考北京卷)在△ABC中,若b=5,∠B=,tanA=2,則sinA=__________;a=__________. 解析:因為tanA=2,所以sinA=; 再由正弦定理=得,=,解得a=2. 答案: 2 6.已知鈍角三角形的三邊a=k,b=k+2,c=k+4,求k的取值范圍. 解:∵c>b>a且△ABC為鈍角三角形,∴角C為鈍角. 由余弦定理得cosC==<0, ∴k2-4k-12<0,解得-2
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 電子題庫 第二章 §2知能演練輕松闖關 北師大版必修5 2019 2020 年高 數(shù)學 電子 題庫 第二 知能 演練 輕松 闖關 北師大 必修
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.italysoccerbets.com/p-2751329.html