2020版高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 微專(zhuān)題突破五 利用導(dǎo)數(shù)求切線方程學(xué)案(含解析)新人教B版選修1 -1.docx
《2020版高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 微專(zhuān)題突破五 利用導(dǎo)數(shù)求切線方程學(xué)案(含解析)新人教B版選修1 -1.docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 微專(zhuān)題突破五 利用導(dǎo)數(shù)求切線方程學(xué)案(含解析)新人教B版選修1 -1.docx(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
專(zhuān)題突破五利用導(dǎo)數(shù)求切線方程曲線的切線問(wèn)題是高考的常見(jiàn)題型之一而導(dǎo)數(shù)f(x0)的幾何意義為曲線yf(x)在點(diǎn)P(x0,f(x0)處的切線的斜率,所以利用導(dǎo)數(shù)解決相切問(wèn)題是常用的方法下面對(duì)“求過(guò)一點(diǎn)的切線方程”的題型做以下歸納一、已知切點(diǎn),求曲線的切線方程此類(lèi)題只需求出曲線的導(dǎo)數(shù)f(x),并代入點(diǎn)斜式方程即可例1已知f(x)為偶函數(shù),當(dāng)x0時(shí),f(x)ex1x,則曲線yf(x)在點(diǎn)(1,2)處的切線方程是_考點(diǎn)題點(diǎn)答案2xy0解析設(shè)x0,則x0,f(x)ex1x,因?yàn)閒(x)為偶函數(shù),所以f(x)ex1x,f(x)ex11,f(1)2,y22(x1),即y2x.點(diǎn)評(píng)本題可以先利用分段型奇偶性原則,求出函數(shù)的解析式,再求函數(shù)切線,或者利用原函數(shù)與導(dǎo)函數(shù)的關(guān)系來(lái)求解跟蹤訓(xùn)練1曲線y在點(diǎn)(1,1)處的切線方程為()Ayx2By3x2Cy2x3Dy2x1考點(diǎn)題點(diǎn)答案D解析由題意知,點(diǎn)(1,1)在該曲線上,又y,所以曲線在點(diǎn)(1,1)處的切線的斜率k2,故所求切線的方程為y12(x1),即y2x1.二、已知過(guò)某點(diǎn),求切線方程過(guò)某點(diǎn)的切線,該點(diǎn)未必是切點(diǎn),故應(yīng)先設(shè)切點(diǎn),再求切點(diǎn),即用待定切點(diǎn)法例2求過(guò)曲線f(x)x32x上的點(diǎn)(1,1)的切線方程考點(diǎn)題點(diǎn)解設(shè)P(x0,y0)為切點(diǎn),則切線的斜率為f(x0)3x2.所以切線方程為yy0(3x2)(xx0),即y(x2x0)(3x2)(xx0)又知切線過(guò)點(diǎn)(1,1),所以1(x2x0)(3x2)(1x0)解得x01或x0.故所求切線方程為y(12)(32)(x1),或y,即xy20或5x4y10.點(diǎn)評(píng)可以發(fā)現(xiàn)直線5x4y10并不以(1,1)為切點(diǎn),實(shí)際上是經(jīng)過(guò)點(diǎn)(1,1),且以為切點(diǎn)的直線這說(shuō)明過(guò)曲線上一點(diǎn)的切線,該點(diǎn)未必是切點(diǎn)跟蹤訓(xùn)練2求過(guò)點(diǎn)(2,0)且與曲線f(x)相切的直線方程考點(diǎn)題點(diǎn)解設(shè)P(x0,y0)為切點(diǎn),則切線的斜率為f(x0).所以切線方程為yy0(xx0),即y(xx0)又已知切線過(guò)點(diǎn)(2,0),代入上述方程,得(2x0)解得x01,y01,即切線方程為xy20.三、求兩條曲線的公切線例3(2018河南南陽(yáng)一中月考)若存在過(guò)點(diǎn)(1,0)的直線與曲線yx3和yax2x9(a0)都相切(1)求切線方程;(2)求實(shí)數(shù)a的值考點(diǎn)題點(diǎn)解(1)因?yàn)閥x3,所以y3x2,設(shè)過(guò)點(diǎn)(1,0)的直線與曲線yx3相切于點(diǎn)(x0,x),則在點(diǎn)(x0,x)處的切線斜率為k3x,所以切線方程為yx3x(xx0),即y3xx2x.又點(diǎn)(1,0)在切線上,所以3x2x0,解得x00或x0.故所求的切線方程為y0或yx.(2)由直線y0與曲線yax2x9相切可得方程ax2x90有一個(gè)實(shí)數(shù)根,此時(shí)24a(9)0,解得a;由直線yx與曲線yax2x9相切,兩方程聯(lián)立消去y,得ax23x0,此時(shí)94a0,解得a1.綜上可得,a1或a.點(diǎn)評(píng)本例是先求過(guò)某點(diǎn)的切線方程,由切線與另一曲線拋物線相切,利用判別式0即可求得參數(shù)跟蹤訓(xùn)練3已知函數(shù)f(x)lnx,g(x)x2mx(m0),直線l與函數(shù)f(x),g(x)的圖象都相切,且與f(x)圖象的切點(diǎn)為(1,f(1),則m的值為()A1B3C4D2考點(diǎn)導(dǎo)數(shù)的運(yùn)算法則題點(diǎn)導(dǎo)數(shù)的運(yùn)算法則的運(yùn)用答案D解析f(x),直線l的斜率為kf(1)1,又f(1)0,切線l的方程為yx1.g(x)xm,設(shè)直線l與g(x)的圖象的切點(diǎn)為(x0,y0),則有x0m1,y0x01,y0xmx0,m0,于是解得m2.1函數(shù)f(x)exlnx的圖象在點(diǎn)(1,f(1)處的切線方程是()Ay2e(x1) Byex1Cye(x1) Dyxe考點(diǎn)題點(diǎn)答案C解析f(x)exlnx,f(x)(ex)lnxex(lnx)exlnx,f(1)e,又f(1)0,在(1,0)處的切線方程為ye(x1)2已知f(x)exx,則過(guò)原點(diǎn)與f(x)圖象相切的直線方程是()Ay(e1)xByexCyxDye2x考點(diǎn)題點(diǎn)答案A解析設(shè)切點(diǎn)坐標(biāo)為(x0,x0),由題意可得切線斜率kf(x0)1,所以切線方程為y(1)x,由x0(1)x0,解得x01,所以切線方程為y(e1)x.3過(guò)點(diǎn)P(3,9)與曲線y2x27相切的切線的方程為_(kāi)考點(diǎn)題點(diǎn)答案8xy150或16xy390解析令yf(x)2x27,則f(x)4x,由點(diǎn)P(3,9)不在曲線上,設(shè)所求切線的切點(diǎn)為A(x0,y0),則切線的斜率k4x0,故所求的切線方程為yy04x0(xx0),將P(3,9)及y02x7代入上式,得9(2x7)4x0(3x0),解得x02或4,故切點(diǎn)為(2,1)或(4,25)從而所求切線方程為8xy150或16xy390.4已知f(x)為偶函數(shù),當(dāng)x0,則x0)(1)求這個(gè)函數(shù)的圖象在x1處的切線方程;(2)若過(guò)點(diǎn)(0,0)的直線l與這個(gè)函數(shù)的圖象相切,求直線l的方程考點(diǎn)題點(diǎn)解(1)函數(shù)yx2lnx的導(dǎo)數(shù)為y2xlnxx,函數(shù)的圖象在x1處的切線斜率為2ln111,切點(diǎn)為(1,0),可得切線的方程為y0x1,即xy10.(2)設(shè)切點(diǎn)為(m,m2lnm),可得切線的斜率為2mlnmm,則切線的方程為ym2lnm(2mlnmm)(xm),由于切線過(guò)點(diǎn)(0,0),m2lnm(2mlnmm)(m),由m0,可得lnm2lnm1,即lnm1,解得m,所以直線l的方程為xey0.6已知雙曲線C:y(m0,所以方程t22mtm0有兩個(gè)不相等實(shí)根,設(shè)兩根分別為t1與t2,則由t1t2m0,知t1,t2是符號(hào)相反的實(shí)數(shù),且t1,t2均不等于0與1,命題得證(2)設(shè)A,B,由(1)知kAB1,即直線AB的斜率為定值1.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2020版高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 微專(zhuān)題突破五 利用導(dǎo)數(shù)求切線方程學(xué)案含解析新人教B版選修1 -1 2020 高中數(shù)學(xué) 第三 導(dǎo)數(shù) 及其 應(yīng)用 專(zhuān)題 突破 利用 切線 方程 解析 新人 選修
鏈接地址:http://m.italysoccerbets.com/p-3904345.html