陜西省藍(lán)田縣高中數(shù)學(xué) 第二章 空間向量與立體幾何 2.6.2 點(diǎn)到平面的距離學(xué)案北師大版選修2-1.doc
《陜西省藍(lán)田縣高中數(shù)學(xué) 第二章 空間向量與立體幾何 2.6.2 點(diǎn)到平面的距離學(xué)案北師大版選修2-1.doc》由會員分享,可在線閱讀,更多相關(guān)《陜西省藍(lán)田縣高中數(shù)學(xué) 第二章 空間向量與立體幾何 2.6.2 點(diǎn)到平面的距離學(xué)案北師大版選修2-1.doc(2頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2.6.2 點(diǎn)到平面的距離【學(xué)習(xí)目標(biāo)】1. 理解點(diǎn)到平面的距離的概念,掌握點(diǎn)到平面距離的計(jì)算方法;2. 在實(shí)際的幾何體中,會把一些實(shí)際問題轉(zhuǎn)化為點(diǎn)到平面的距離問題來求解;3. 通過點(diǎn)到平面距離的算法框圖的理解,明確求點(diǎn)到平面的距離的基本步驟,并應(yīng)用于實(shí)際問題之中; 【重點(diǎn)、難點(diǎn)】 重點(diǎn):作出點(diǎn)到平面的距離,并會求出點(diǎn)到平面的距離;難點(diǎn):通過圖形,歸納點(diǎn)到平面的距離的作法,會解決有關(guān)的可化為點(diǎn)到平面的距離的問題;【知識梳理】1. 點(diǎn)到平面的距離:一點(diǎn)到平面的距離是此點(diǎn)與平面內(nèi)所有點(diǎn)距離的_.2. 直線與它的平行平面的距離:一條直線上的_到與它平行的平面的距離,叫作直線與平面的距離.3. 兩個平行平面的距離(1)和兩個平行平面_的直線,叫作兩個平面的公垂線.(2)兩個平面的公垂線段 公垂線_的部分,叫作兩個平面的公垂線段.4. 設(shè)是過點(diǎn)P垂直于向量的平面,A是平面外一定點(diǎn),作_,垂足, 則點(diǎn)A到平面的距離等于_,而向量在上的投影的大小_等于_的長度,所以點(diǎn)A到平面的距離等于_.5. 點(diǎn)到平面的距離的算法框圖:【典型例題】例1 如圖,在空間直角坐標(biāo)系中有單位正方體. (1)證明:是平面的法向量; (2)求點(diǎn)到平面的距離.【鞏固練習(xí)】1、 ,點(diǎn)在所在平面外,,點(diǎn)到的距離,則點(diǎn)到平面的距離等于( ) A.7 B.8 C.9 D.102、已知夾在平行平面內(nèi)的兩條斜線段,和在內(nèi)的射影的比為3:5,則間的距離為( ) A B C D3、在正方體ABCDABCD中,棱長為,設(shè)點(diǎn)到平面的距離為,到平面的距離為, 到平面的距離為,則有( )A B C D.4.在正方體中,(1)求點(diǎn)到平面的距離;(2)求與之間的距離;- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 陜西省藍(lán)田縣高中數(shù)學(xué) 第二章 空間向量與立體幾何 2.6.2 點(diǎn)到平面的距離學(xué)案北師大版選修2-1 陜西省 藍(lán)田縣 高中數(shù)學(xué) 第二 空間 向量 立體幾何 2.6 平面 距離 北師大 選修
鏈接地址:http://m.italysoccerbets.com/p-3944116.html