人教版初中數(shù)學(xué)公式大全word文檔
《人教版初中數(shù)學(xué)公式大全word文檔》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教版初中數(shù)學(xué)公式大全word文檔(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
.人教版初中數(shù)學(xué)公式大全 1 過(guò)兩點(diǎn)有且只有一條直線 2 兩點(diǎn)之間線段最短 3 同角或等角的補(bǔ)角相等 4 同角或等角的余角相等 5 過(guò)一點(diǎn)有且只有一條直線和已知直線垂直 6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯(cuò)角相等,兩直線平行 11 同旁內(nèi)角互補(bǔ),兩直線平行 12 兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯(cuò)角相等 14 兩直線平行,同旁內(nèi)角互補(bǔ) 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于 180° 18 推論 1 直角三角形的兩個(gè)銳角互余 19 推論 2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20 推論 3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22 邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27 定理 1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理 2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角) 31 推論 1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論 3 等邊三角形的各角都相等,并且每一個(gè)角都等于 60° 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35 推論 1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于 60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于 30°那么它所對(duì)的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42 定理 1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形 .43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線 44 定理 3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上 45 逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱 46 勾股定理 直角三角形兩直角邊 a、b 的平方和、等于斜邊 c 的平方,即 a^2+b^2=c^2 47 勾股定理的逆定理 如果三角形的三邊長(zhǎng) a、b、c 有關(guān)系 a^2+b^2=c^2 ,那么這個(gè)三角形是直角三角形 48 定理 四邊形的內(nèi)角和等于 360° 49 四邊形的外角和等于 360° 50 多邊形內(nèi)角和定理 n 邊形的內(nèi)角的和等于( n-2)×180 ° 51 推論 任意多邊的外角和等于 360° 52 平行四邊形性質(zhì)定理 1 平行四邊形的對(duì)角相等 53 平行四邊形性質(zhì)定理 2 平行四邊形的對(duì)邊相等 54 推論 夾在兩條平行線間的平行線段相等 55 平行四邊形性質(zhì)定理 3 平行四邊形的對(duì)角線互相平分 56 平行四邊形判定定理 1 兩組對(duì)角分別相等的四邊形是平行四邊形 57 平行四邊形判定定理 2 兩組對(duì)邊分別相等的四邊形是平行四邊形 58 平行四邊形判定定理 3 對(duì)角線互相平分的四邊形是平行四邊形 59 平行四邊形判定定理 4 一組對(duì)邊平行相等的四邊形是平行四邊形 60 矩形性質(zhì)定理 1 矩形的四個(gè)角都是直角 61 矩形性質(zhì)定理 2 矩形的對(duì)角線相等 62 矩形判定定理 1 有三個(gè)角是直角的四邊形是矩形 63 矩形判定定理 2 對(duì)角線相等的平行四邊形是矩形 64 菱形性質(zhì)定理 1 菱形的四條邊都相等 65 菱形性質(zhì)定理 2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角 66 菱形面積=對(duì)角線乘積的一半,即 S=(a×b)÷2 67 菱形判定定理 1 四邊都相等的四邊形是菱形 68 菱形判定定理 2 對(duì)角線互相垂直的平行四邊形是菱形 69 正方形性質(zhì)定理 1 正方形的四個(gè)角都是直角,四條邊都相等 70 正方形性質(zhì)定理 2 正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角 71 定理 1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的 72 定理 2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分 73 逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一 點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱 74 等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75 等腰梯形的兩條對(duì)角線相等 76 等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形 77 對(duì)角線相等的梯形是等腰梯形 78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等 79 推論 1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80 推論 2 經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第 三邊 .81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半 82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)÷2 S=L×h 83 (1)比例的基本性質(zhì) 如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么 a:b=c:d 84 (2)合比性質(zhì) 如果 a/b=c/d,那么(a±b)/b=(c±d) /d 85 (3)等比性質(zhì) 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/ b 86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng) 線段成比例 87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線) ,所得的對(duì)應(yīng)線段成比例 88 定理 如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例 90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似 91 相似三角形判定定理 1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA) 92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93 判定定理 2 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS) 94 判定定理 3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS) 95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三 角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似 96 性質(zhì)定理 1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平 分線的比都等于相似比 97 性質(zhì)定理 2 相似三角形周長(zhǎng)的比等于相似比 98 性質(zhì)定理 3 相似三角形面積的比等于相似比的平方 99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值 100 任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值 101 圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合 102 圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103 圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104 同圓或等圓的半徑相等105 到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半 徑的圓 106 和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直 平分線 107 到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線 108 到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距 離相等的一條直線 109 定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。 110 垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧 111 推論 1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 ②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧 ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 112 推論 2 圓的兩條平行弦所夾的弧相等 113 圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形 114 定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等 115 推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組.量相等那么它們所對(duì)應(yīng)的其余各組量都相等116 定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117 推論 1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等 118 推論 2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑 119 推論 3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120 定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角 121①直線 L 和⊙O 相交 d<r ②直線 L 和⊙O 相切 d=r ③直線 L 和⊙O 相離 d>r 122 切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線 123 切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑124 推論 1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn) 125 推論 2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心 126 切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角 127 圓的外切四邊形的兩組對(duì)邊的和相等 128 弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角 129 推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130 相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積 相等 131 推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項(xiàng) 132 切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割 線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng) 133 推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等134 如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 R-r<d<R+r(R>r) ④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含 d<R-r(R>r) 136 定理 相交兩圓的連心線垂直平分兩圓的公共弦 137 定理 把圓分成 n(n≥3): ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正 n 邊形 ⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正 n 邊形 138 定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓 139 正 n 邊形的每個(gè)內(nèi)角都等于(n-2 )×180°/n 140 定理 正 n 邊形的半徑和邊心距把正 n 邊形分成 2n 個(gè)全等的直角三角形 141 正 n 邊形的面積 Sn=pnrn/2 p 表示正 n 邊形的周長(zhǎng) 142 正三角形面積√3a /4 a 表示邊長(zhǎng) 143 如果在一個(gè)頂點(diǎn)周圍有 k 個(gè)正 n 邊形的角,由于這些角的和應(yīng)為 360°,因此 k×(n-2)180°/n=360 °化為(n-2 )(k-2)=4 144 弧長(zhǎng)計(jì)算公式:L=n 兀 R/180 145 扇形面積公式:S 扇形=n 兀 R^2/360=LR/2 146 內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r) 147 完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2 148 平方差公式:(a+b)(a-b)=a^2-b^2 實(shí)用工具:常用數(shù)學(xué)公式 乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b .|a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理 判別式 b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根 b2-4ac0 注:方程有兩個(gè)不等的實(shí)根 b2-4ac0 拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h 正棱錐側(cè)面積 S=1/2c*h' 正棱臺(tái)側(cè)面積 S=1/2(c+c')h' 圓臺(tái)側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l 弧長(zhǎng)公式 l=a*r a 是圓心角的弧度數(shù) r 0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜棱柱體積 V=S'L 注:其中,S' 是直截面面積,L 是側(cè)棱長(zhǎng) 柱體體積公式 V=s*h 圓柱體 V=pi*r2h- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
10 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 人教版 初中 數(shù)學(xué)公式 大全 word 文檔
鏈接地址:http://m.italysoccerbets.com/p-451006.html