2018版高中數(shù)學(xué) 第一章 計數(shù)原理 1.2 第2課時 排列的應(yīng)用學(xué)案 蘇教版選修2-3.doc
《2018版高中數(shù)學(xué) 第一章 計數(shù)原理 1.2 第2課時 排列的應(yīng)用學(xué)案 蘇教版選修2-3.doc》由會員分享,可在線閱讀,更多相關(guān)《2018版高中數(shù)學(xué) 第一章 計數(shù)原理 1.2 第2課時 排列的應(yīng)用學(xué)案 蘇教版選修2-3.doc(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第2課時排列的應(yīng)用學(xué)習(xí)目標(biāo)1.進(jìn)一步加深對排列概念的理解.2.掌握幾種有限制條件的排列,能應(yīng)用排列數(shù)公式解決簡單的實際問題知識點排列及其應(yīng)用1排列數(shù)公式A_(n,mN*,mn)_.A_(叫做n的階乘)另外,我們規(guī)定0!_.2應(yīng)用排列與排列數(shù)公式求解實際問題中的計數(shù)問題的基本步驟類型一無限制條件的排列問題例1(1)有7本不同的書,從中選3本送給3名同學(xué),每人各1本,共有多少種不同的送法?(2)有7種不同的書,要買3本送給3名同學(xué),每人各1本,共有多少種不同的送法?反思與感悟典型的排列問題,用排列數(shù)計算其排列方法數(shù);若不是排列問題,需用計數(shù)原理求其方法種數(shù)排列的概念很清楚,要從“n個不同的元素中取出m個元素”即在排列問題中元素不能重復(fù)選取,而在用分步計數(shù)原理解決的問題中,元素可以重復(fù)選取跟蹤訓(xùn)練1(1)有5個不同的科研小課題,從中選3個由高二(6)班的3個學(xué)習(xí)興趣小組進(jìn)行研究,每組一個課題,共有多少種不同的安排方法?(2)有5個不同的科研小課題,高二(6)班的3個學(xué)習(xí)興趣小組報名參加,每組限報一個課題,共有多少種不同的報名方法?類型二排隊問題例23名男生,4名女生,這7個人站成一排在下列情況下,各有多少種不同的站法(1)男、女各站在一起;(2)男生必須排在一起;(3)男生不能排在一起;(4)男生互不相鄰,且女生也互不相鄰反思與感悟處理元素“相鄰”“不相鄰”問題應(yīng)遵循“先整體,后局部”的原則元素相鄰問題,一般用“捆綁法”,先把相鄰的若干個元素“捆綁”為一個大元素與其余元素全排列,然后再松綁,將這若干個元素內(nèi)部全排列元素不相鄰問題,一般用“插空法”,先將不相鄰元素以外的“普通”元素全排列,然后在“普通”元素之間及兩端插入不相鄰元素跟蹤訓(xùn)練2排一張有5個歌唱節(jié)目和4個舞蹈節(jié)目的演出節(jié)目單(1)任何兩個舞蹈節(jié)目不相鄰的排法有多少種?(2)歌唱節(jié)目與舞蹈節(jié)目間隔排列的方法有多少種?例37人站成一排(1)甲必須在乙的左邊(不一定相鄰),則有多少種不同的排列方法?(2)甲、乙、丙三人自左向右的順序不變(不一定相鄰),則有多少種不同的排列方法?反思與感悟這類問題的解法是采用分類法n個不同元素的全排列有A種排法,m個不同元素的全排列有A種排法因此A種排法中,關(guān)于m個元素的不同分法有A類,而且每一分類的排法數(shù)是一樣的當(dāng)這m個元素順序確定時,共有種排法跟蹤訓(xùn)練37名師生排成一排照相,其中老師1人,女生2人,男生4人,若4名男生的身高都不等,按從高到低的順序站,有多少種不同的站法?例4從包括甲、乙兩名同學(xué)在內(nèi)的7名同學(xué)中選出5名同學(xué)排成一列,求解下列問題:(1)甲不在首位的排法有多少種?(2)甲既不在首位,又不在末位的排法有多少種?(3)甲與乙既不在首位又不在末位的排法有多少種?(4)甲不在首位,同時乙不在末位的排法有多少種?反思與感悟“在”與“不在”排列問題解題原則及方法(1)原則:解“在”與“不在”的有限制條件的排列問題時,可以從元素入手也可以從位置入手,原則是誰特殊誰優(yōu)先(2)方法:從元素入手時,先給特殊元素安排位置,再把其他元素安排在其他位置上,從位置入手時,先安排特殊位置,再安排其他位置提醒:解題時,或從元素考慮,或從位置考慮,都要貫徹到底不能一會考慮元素,一會考慮位置,造成分類、分步混亂,導(dǎo)致解題錯誤跟蹤訓(xùn)練4某一天的課程表要排入政治、語文、數(shù)學(xué)、物理、體育、美術(shù)共六節(jié)課,如果第一節(jié)不排體育,最后一節(jié)不排數(shù)學(xué),那么共有多少種不同的排課程表的方法?類型三數(shù)字排列問題例5用0,1,2,3,4,5這六個數(shù)字可以組成多少個符合下列條件的無重復(fù)的數(shù)字?(1)六位奇數(shù);(2)個位數(shù)字不是5的六位數(shù);(3)不大于4 310的四位偶數(shù)反思與感悟數(shù)字排列問題是排列問題的重要題型,解題時要著重注意從附加受限制條件入手分析,找出解題的思路常見附加條件有:(1)首位不能為0;(2)有無重復(fù)數(shù)字;(3)奇偶數(shù);(4)某數(shù)的倍數(shù);(5)大于(或小于)某數(shù)跟蹤訓(xùn)練5用0,1,2,3,4,5這六個數(shù)字可以組成多少個無重復(fù)數(shù)字的(1)能被5整除的五位數(shù);(2)能被3整除的五位數(shù);(3)若所有的六位數(shù)按從小到大的順序組成一個數(shù)列an,則240 135是第幾項16位選手依次演講,其中選手甲不排在第一個也不排在最后一個演講,則不同的演講次序共有_種23名男生和3名女生排成一排,男生不相鄰的排法有_種3用數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中奇數(shù)的個數(shù)為_4從6名短跑運動員中選出4人參加4100 m接力賽,甲不能跑第一棒和第四棒,問共有_種參賽方案5用數(shù)字0,1,2,3,4,5可以組成沒有重復(fù)數(shù)字,并且比20 000大的五位偶數(shù)共_個求解排列問題的主要方法直接法把符合條件的排列數(shù)直接列式計算優(yōu)先法優(yōu)先安排特殊元素或特殊位置捆綁法把相鄰元素看作一個整體與其他元素一起排列,同時注意捆綁元素的內(nèi)部排列插空法對不相鄰問題,先考慮不受限制的元素的排列,再將不相鄰的元素插在前面元素排列的空檔中定序問題除法處理對于定序問題,可先不考慮順序限制,排列后,再除以定序元素的全排列間接法正難則反,等價轉(zhuǎn)化的方法答案精析知識梳理知識點1n(n1)(n2)(nm1)n(n1)(n2)21n!1題型探究例1解(1)從7本不同的書中選3本送給3名同學(xué),相當(dāng)于從7個元素中任取3個元素的一個排列,所以共有A765210(種)不同的送法(2)從7種不同的書中買3本書,這3本書并不要求都不相同,根據(jù)分步計數(shù)原理,共有777343(種)不同的送法跟蹤訓(xùn)練1解(1)從5個不同的課題中選出3個,由興趣小組進(jìn)行研究,對應(yīng)于從5個不同元素中取出3個元素的一個排列,因此不同的安排方法有A54360(種)(2)由題意知3個興趣小組可能報同一科研課題,因此元素可以重復(fù),不是排列問題由于每個興趣小組都有5種不同的選擇,且3個小組都選擇完才算完成這件事,所以由分步計數(shù)原理得共有555125(種)報名方法例2解(1)(相鄰問題捆綁法)男生必須站在一起,即把3名男生進(jìn)行全排列,有A種排法,女生必須站在一起,即把4名女生進(jìn)行全排列,有A種排法,全體男生、女生各看作一個元素全排列有A種排法,由分步計數(shù)原理知共有AAA288(種)排法(2)(捆綁法)把所有男生看作一個元素,與4名女生組成5個元素全排列,故有AA720(種)不同的排法(3)(不相鄰問題插空法)先排女生有A種排法,把3名男生安排在4名女生隔成的5個空中,有A種排法,故有AA1 440(種)不同的排法(4)先排男生有A種排法讓女生插空,有AA144(種)不同的排法跟蹤訓(xùn)練2解(1)先排歌唱節(jié)目有A種,歌唱節(jié)目之間以及兩端共有6個空位,從中選4個放入舞蹈節(jié)目,共有A種方法,所以任何兩個舞蹈節(jié)目不相鄰的排法有AA43 200(種)方法(2)先排舞蹈節(jié)目有A種方法,在舞蹈節(jié)目之間以及兩端共有5個空位,恰好供5個歌唱節(jié)目放入所以歌唱節(jié)目與舞蹈節(jié)目間隔排列的排法有AA2 880(種)方法例3解(1)甲在乙前面的排法種數(shù)占全體全排列種數(shù)的一半,故有2 520(種)不同的排法(2)甲、乙、丙自左向右的順序保持不變,即甲、乙、丙自左向右順序的排法種數(shù)占全體全排列種數(shù)的.故有840(種)不同的排法跟蹤訓(xùn)練3解7人全排列中,4名男生不考慮身高順序的站法有A種,而由高到低有從左到右和從右到左的不同的站法,所以共有2420(種)不同的站法例4解(1)方法一把同學(xué)作為研究對象第一類:不含甲,此時只需從甲以外的其他6名同學(xué)中取出5名放在5個位置上,有A種第二類:含有甲,甲不在首位:先從4個位置中選出1個放甲,再從甲以外的6名同學(xué)中選出4名排在沒有甲的位置上,有A種排法根據(jù)分步計數(shù)原理,含有甲時共有4A種排法由分類計數(shù)原理,共有A4A2 160(種)排法方法二把位置作為研究對象第一步,從甲以外的6名同學(xué)中選1名排在首位,有A種方法第二步,從占據(jù)首位以外的6名同學(xué)中選4名排在除首位以外的其他4個位置上,有A種方法由分步計數(shù)原理,可得共有AA2 160(種)排法方法三(間接法)即先不考慮限制條件,從7名同學(xué)中選出5名進(jìn)行排列,然后把不滿足條件的排列去掉不考慮甲不在首位的要求,總的可能情況有A種;甲在首位的情況有A種,所以符合要求的排法有AA2 160(種)(2)把位置作為研究對象,先滿足特殊位置第一步,從甲以外的6名同學(xué)中選2名排在首末2個位置上,有A種方法第二步,從未排上的5名同學(xué)中選出3名排在中間3個位置上,有A種方法根據(jù)分步計數(shù)原理,有AA1 800(種)方法(3)把位置作為研究對象第一步,從甲、乙以外的5名同學(xué)中選2名排在首末2個位置,有A種方法第二步,從未排上的5名同學(xué)中選出3名排在中間3個位置上,有A種方法根據(jù)分步計數(shù)原理,共有AA1 200(種)方法(4)用間接法總的可能情況是A種,減去甲在首位的A種,再減去乙在末位的A種注意到甲在首位同時乙在末位的情況被減去了兩次,所以還需補回一次A種,所以共有A2AA1 860(種)排法跟蹤訓(xùn)練4解6門課總的排法是A,其中不符合要求的可分為體育排在第一節(jié),有A種排法;數(shù)學(xué)排在最后一節(jié),有A種排法,但這兩種方法,都包括體育排在第一節(jié),數(shù)學(xué)排在最后一節(jié),這種情況有A種排法因此符合條件的排法有A2AA504(種)例5解(1)第一步,排個位,有A種排法;第二步,排十萬位,有A種排法;第三步,排其他位,有A種排法故共有AAA288(個)六位奇數(shù)(2)方法一(直接法)十萬位數(shù)字的排法因個位上排0與不排0而有所不同,因此需分兩類第一類,當(dāng)個位排0時,有A個;第二類,當(dāng)個位不排0時,有AAA個故符合題意的六位數(shù)共有AAAA504(個)方法二(排除法)0在十萬位和5在個位的排列都不對應(yīng)符合題意的六位數(shù),這兩類排列中都含有0在十萬位和5在個位的情況故符合題意的六位數(shù)共有A2AA504(個)(3)分三種情況,具體如下:當(dāng)千位上排1,3時,有AAA個當(dāng)千位上排2時,有AA個當(dāng)千位上排4時,形如4 02,4 20的各有A個;形如4 1的有AA個;形如4 3的只有4 310和4 302這兩個數(shù)故共有AAAAA2AAA2110(個)跟蹤訓(xùn)練5解(1)個位上的數(shù)字必須是0或5.個位上是0,有A個;個位上是5,若不含0,則有A個;若含0,但0不作首位,則0的位置有A種排法,其余各位有A種排法,故共有AAAA216(個)能被5整除的五位數(shù)(2)能被3整除的條件是各位數(shù)字之和能被3整除,則5個數(shù)可能有1,2,3,4,5和0,1,2,4,5兩種情況,能夠組成的五位數(shù)分別有A個和AA個故能被3整除的五位數(shù)有AAA216(個)(3)由于是六位數(shù),首位數(shù)字不能為0,首位數(shù)字為1有A個數(shù),首位數(shù)字為2,萬位上為0,1,3中的一個,有3A個數(shù),240 135的項數(shù)是A3A1193,即240 135是數(shù)列的第193項當(dāng)堂訓(xùn)練14802.1443.724.2405.240- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018版高中數(shù)學(xué) 第一章 計數(shù)原理 1.2 第2課時 排列的應(yīng)用學(xué)案 蘇教版選修2-3 2018 高中數(shù)學(xué) 計數(shù) 原理 課時 排列 應(yīng)用 蘇教版 選修
鏈接地址:http://m.italysoccerbets.com/p-6119653.html