2019-2020年人教版高中數(shù)學(xué)選修1-2教案:2-2-2反證法.doc
《2019-2020年人教版高中數(shù)學(xué)選修1-2教案:2-2-2反證法.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年人教版高中數(shù)學(xué)選修1-2教案:2-2-2反證法.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年人教版高中數(shù)學(xué)選修1-2教案:2-2-2反證法 主備課教師 阮東良 、 周多龍 、徐江波 項目 內(nèi)容 課題 2.2.2反證法 修改與創(chuàng)新 教學(xué)目標(biāo) 1、 結(jié)合已經(jīng)學(xué)過的數(shù)學(xué)實例,了解間接證明的一種基本方法——反證法; 2、 了解反證法的思考過程、特點. 教學(xué)重、 難點 重點:會用綜合法證明問題;了解綜合法的思考過程. 難點:根據(jù)問題的特點,結(jié)合綜合法的思考過程、特點,選擇適當(dāng)?shù)淖C明方法. 教學(xué)準(zhǔn)備 直尺、粉筆 教學(xué)過程 1. 討論:三枚正面朝上的硬幣,每次翻轉(zhuǎn)2枚,你能使三枚反面都朝上嗎?(原因:偶次) 2. 提出問題: 平面幾何中,我們知道這樣一個命題:“過在同一直線上的三點A、B、C不能作圓”. 討論如何證明這個命題? 3. 給出證法:先假設(shè)可以作一個⊙O過A、B、C三點, 則O在AB的中垂線l上,O又在BC的中垂線m上, 即O是l與m的交點。 但 ∵A、B、C共線,∴l(xiāng)∥m(矛盾) ∴ 過在同一直線上的三點A、B、C不能作圓. 二、講授新課: 1. 教學(xué)反證法概念及步驟: ① 練習(xí):仿照以上方法,證明:如果a>b>0,那么 ② 提出反證法:一般地,假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯誤,從而證明了原命題成立. 證明基本步驟:假設(shè)原命題的結(jié)論不成立 → 從假設(shè)出發(fā),經(jīng)推理論證得到矛盾 → 矛盾的原因是假設(shè)不成立,從而原命題的結(jié)論成立 應(yīng)用關(guān)鍵:在正確的推理下得出矛盾(與已知條件矛盾,或與假設(shè)矛盾,或與定義、公理、定理、事實矛盾等). 方法實質(zhì):反證法是利用互為逆否的命題具有等價性來進行證明的,即由一個命題與其逆否命題同真假,通過證明一個命題的逆否命題的正確,從而肯定原命題真實. 注:結(jié)合準(zhǔn)備題分析以上知識. 2. 教學(xué)例題: ① 出示例1:求證圓的兩條不是直徑的相交弦不能互相平分. 分析:如何否定結(jié)論? → 如何從假設(shè)出發(fā)進行推理? → 得到怎樣的矛盾? 與教材不同的證法:反設(shè)AB、CD被P平分,∵P不是圓心,連結(jié)OP, 則由垂徑定理:OP^AB,OP^CD,則過P有兩條直線與OP垂直(矛盾),∴不被P平分. ② 出示例2:求證是無理數(shù). ( 同上分析 → 板演證明,提示:有理數(shù)可表示為) 證:假設(shè)是有理數(shù),則不妨設(shè)(m,n為互質(zhì)正整數(shù)), 從而:,,可見m是3的倍數(shù). 設(shè)m=3p(p是正整數(shù)),則 ,可見n 也是3的倍數(shù). 這樣,m, n就不是互質(zhì)的正整數(shù)(矛盾). ∴不可能,∴是無理數(shù). ③ 練習(xí):如果為無理數(shù),求證是無理數(shù). 提示:假設(shè)為有理數(shù),則可表示為(為整數(shù)),即. 由,則也是有理數(shù),這與已知矛盾. ∴ 是無理數(shù). 3. 小結(jié):反證法是從否定結(jié)論入手,經(jīng)過一系列的邏輯推理,導(dǎo)出矛盾,從而說明原結(jié)論正確. 注意證明步驟和適應(yīng)范圍(“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征的問題) 三、鞏固練習(xí): 1. 練習(xí): 2. 作業(yè): 板書設(shè)計 教學(xué)反思 課后反思- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019 2020 年人教版 高中數(shù)學(xué) 選修 教案 反證法
鏈接地址:http://m.italysoccerbets.com/p-6196952.html