2018-2019學年高二數(shù)學上學期期中試題 文 (VIII).doc
《2018-2019學年高二數(shù)學上學期期中試題 文 (VIII).doc》由會員分享,可在線閱讀,更多相關《2018-2019學年高二數(shù)學上學期期中試題 文 (VIII).doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2018-2019學年高二數(shù)學上學期期中試題 文 (VIII) 一.選擇題:(共12小題,每小題5分,共計60分,每小題僅有一個選項是正確的) 1. 橢圓的焦點坐標是 A., B., C., D., 2.設點P是橢圓上的一點,且點P到左焦點的距離是2,則點P到右焦點的距離是 A.3 B.4 C.6 D.8 3.若圓的一條切線是,那么實數(shù)的值為 A. 4或1 B. 4或 C. 1或 D.或 4.拋物線的焦點到雙曲線的漸近線的距離是 A. B. C.1 D. 5.過雙曲線的右焦點,傾斜角為的直線交雙曲線于兩點, A. B. C. D. 6.若x,y滿足約束條件,則的最小值為 A.-3 B.0 C. D.3 7.已知橢圓,長軸在y軸上.若焦距為4,則m等于 A.4 B.5 C.7 D.8 8.設點A(2,?3),B(?3,?2),直線過點P(1,2)且與線段AB相交,則的斜率k的取值范圍是 A. B. C. D. 9.已知直線l:3x-4y+m=0和圓C:x2+y2-4x-2y+1=0,且圓C上至少存在兩點到直線l的距離為1,則m的取值范圍是 A.(-17,13) B.(-17,-7) C.(-17,-7)∪(3,13) D.[-17,-7]∪[3,13] 10.已知點是拋物線上的一個動點,則點到點的距離與到該拋物線準線的距離之和的最小值為 A. B.3 C. D. 11.直線與曲線有兩個不同的交點,則實數(shù)的k的取值范圍是 A. B. C. D. 12.傾斜角為的直線經(jīng)過橢圓的右焦點,與橢圓交于兩點,且,則該橢圓的離心率為 A. B. C. D. 二.填空題(本大題共4小題,每小題5分,共20.0分) 13.雙曲線的實軸長為 14.圓,求圓心到直線的距離是__________. 15.已知三棱錐S-ABC的所有頂點都在球O的表面上,且SC⊥平面ABC,若SC=AB=AC=1,∠BAC=120,則球O的表面積為 . 16.已知橢圓C:錯誤!未找到引用源。,點M與C的焦點不重合,若M關于C的焦點的對稱點分別為A,B,線段MN的中點在C上,則錯誤!未找到引用源。 . 三.解答題(本大題共6小題,共70.0分) 17.(本小題10分) 已知圓C的圓心在直線,半徑為5,且圓C經(jīng)過點和點求圓C的標準方程; 18.(本小題12分) 已知直線l經(jīng)過拋物線y2=6x的焦點F,且與拋物線相交于A,B兩點. (1)若直線l的傾斜角為60,求|AB|的值; (2)若|AB|=9,求線段AB的中點M到準線的距離. 19.(本小題12分) 如圖所示,在四棱錐P-ABCD中,底面是邊長為1的正方形,側棱PD=1, PA=PC=, (1)求證:PD⊥平面ABCD; (2)求證:平面PAC⊥平面PBD; (3)求點A到平面PBC的距離; 20.(本小題12分) 已知橢圓的左右焦點分別是,橢圓上有不同的三點,且,成等差數(shù)列。 (1)求弦的中點的橫坐標 (2)設弦的垂直平分線的方程為,求的取值范圍 21.(本小題滿分12分) 已知橢圓,為其左, 右焦點. (1) 若點, 是橢圓上任意一點,求的最大值; (2)直線與點的軌跡交于不同兩點和,且(其中為坐標原點),求的值. 22.(本小題12分) 從拋物線上各點向x軸作垂線,垂線段中點的軌跡為E. (1)求曲線E的方程; (2)若直線與曲線E相交于A,B兩點,求證:OA⊥OB; (3)若點F為曲線E的焦點,過點的直線與曲線E交于M,N兩點,直線MF,NF分 別與曲線E交于C,D兩點,設直線MN,CD斜率分別為,求的值 xx秋四川省瀘縣一中高二期中考試 數(shù)學(文)試題答案 1. 選擇題 1.A 2.D 3.B 4.B 5.A 6.A 7.D 8.D 9.A 10.A 11.C 12.A 二.填空題 13.8 14. 15. 16. 17.設圓C:, 點C在直線上,則有,圓C經(jīng)過點和點, 即:,解得:,.所以,圓C: 18.(1)因為直線l的傾斜角為60,所以其斜率k=tan 60=. 又F,所以直線l的方程為y=;聯(lián)立 消去y得x2-5x+=0. 設A(x1,y1),B(x2,y2),則x1+x2=5,而|AB|=|AF|+|BF|=x1++x2+=x1+x2+p, 所以|AB|=5+3=8. (2)設A(x1,y1),B(x2,y2),由拋物線定義知 |AB|=|AF|+|BF|=x1+x2+p=x1+x2+3,所以x1+x2=6,于是線段AB的中點M的橫坐標是3. 又準線方程是x=-,所以M到準線的距離為3+=. 19.(1)證明:∵PD=DC=1,PC=, ∴PD2+DC2=PC2,∴PD⊥DC, 同理PD⊥DA,∵DC∩DA=D, ∴PD⊥平面ABCD (2)證明:由(1)知PD⊥平面ABCD, ∵AC平面ABCD,∴PD⊥AC, 又∵底面是ABCD正方形, ∴BD⊥AC,又∵BD∩PD=D, ∴AC⊥平面PDB,又∵AC平面PAC, ∴平面PAC⊥平面PBD; (3) ∵底面是ABCD正方形, ∴AD∥BC, 又∵BC平面PBC,AD平面PBC, ∴AD∥平面PBC, ∴點A到平面PBC的距離等于點D到平面PBC的距離. 取PC的中點M,連接DM,則 ∵PD=DC, ∴DM⊥PC, ∵PD⊥平面ABCD,BC平面ABCD, ∴PD⊥BC, 又∵BC⊥CD,PD∩CD=D, ∴BC⊥平面PCD, 又∵DM平面PCD, ∴BC⊥DM, 又∵PC∩BC=C, ∴DM⊥平面PCB, ∴DM即點D到平面PBC的距離, 又∵△PCD是直角三角形,PC=,M為PA中點, ∴DM=,即點A到平面PBC的距離為 20.由題意知,,設,由焦半徑公式,得 ,因為成等差數(shù)列,所以 ,由此有,所以弦的中點的橫坐標 (2)將代入,故 則,又 將分別帶入橢圓方程,兩式相減得 所以,,點. 又由點在橢圓內(nèi),故, 解得 21.解析:(1) 故 (2)將代入得. 由直線與橢圓交于不同的兩點,得 即. 設,則. 由,得. 而 . 于是.解得.故的值為. 22.解:(1)令拋物線上一點,設. 由已知得,∵滿足,∴,則,即 . ∴曲線E的方程為: (2)由,可得,設,由于, 由韋達定理可知:, , ∴,∴OA⊥OB. (3)設,直線MN:,則 由得 則恒成立, 設 由M,F,C三點共線,得,,化簡為:,從而 同理,由N,F,D三點共線,得 所以;所以- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2018-2019學年高二數(shù)學上學期期中試題 VIII 2018 2019 年高 數(shù)學 上學 期期 試題 VIII
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.italysoccerbets.com/p-6344718.html