(浙江專用)2019高考數(shù)學二輪復習精準提分 第二篇 重點專題分層練中高檔題得高分 第14練 空間幾何體試題.docx
《(浙江專用)2019高考數(shù)學二輪復習精準提分 第二篇 重點專題分層練中高檔題得高分 第14練 空間幾何體試題.docx》由會員分享,可在線閱讀,更多相關《(浙江專用)2019高考數(shù)學二輪復習精準提分 第二篇 重點專題分層練中高檔題得高分 第14練 空間幾何體試題.docx(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第14練空間幾何體明晰考情1.命題角度:空間幾何體的三視圖,球與多面體的組合,一般以計算面積、體積的形式出現(xiàn).2.題目難度:中檔或中檔偏難考點一空間幾何體的三視圖與直觀圖要點重組(1)三視圖畫法的基本原則:長對正,高平齊,寬相等;畫圖時看不到的線畫成虛線(2)由三視圖還原幾何體的步驟(3)直觀圖畫法的規(guī)則:斜二測畫法1一個四面體的頂點在空間直角坐標系Oxyz中的坐標分別是(1,0,1),(1,1,0),(0,1,1),(0,0,0),畫該四面體三視圖中的正視圖時,以zOx平面為投影面,則得到的正視圖為()答案A解析在空間直角坐標系中作出四面體OABC的直觀圖如圖所示,作頂點A,C在xOz平面的投影A,C,可得四面體的正視圖故選A.2(2018北京)某四棱錐的三視圖如圖所示,在此四棱錐的側面中,直角三角形的個數(shù)為()A1B2C3D4答案C解析由三視圖得到空間幾何體,如圖所示,則PA平面ABCD,平面ABCD為直角梯形,PAABAD2,BC1,所以PAAD,PAAB,PABC.又BCAB,ABPAA,AB,PA平面PAB,所以BC平面PAB.又PB平面PAB,所以BCPB.在PCD中,PD2,PC3,CD,所以PCD為銳角三角形所以側面中的直角三角形為PAB,PAD,PBC,共3個故選C.3如圖所示是一個幾何體的三視圖,則此三視圖所描述的幾何體的直觀圖是()答案D解析先觀察俯視圖,由俯視圖可知選項B和D中的一個正確,由正視圖和側視圖可知選項D正確4已知正三棱錐VABC的正視圖和俯視圖如圖所示,則該正三棱錐側視圖的面積是_答案6解析如圖,由俯視圖可知正三棱錐的底面邊長為2,則AO2sin602.所以VO2,則VA2.所以該正三棱錐的側視圖的面積為226.考點二空間幾何體的表面積與體積方法技巧(1)求三棱錐的體積時,等體積轉化是常用的方法,轉化原則是其高易求,底面放在已知幾何體的某一面上(2)求不規(guī)則幾何體的體積,常用分割或補形的思想,將不規(guī)則幾何體轉化為規(guī)則幾何體以易于求解(3)已知幾何體的三視圖,可去判斷幾何體的形狀和各個度量,然后求解表面積和體積5已知正三棱柱ABCA1B1C1的底面邊長為2,側棱長為,D為BC的中點,則三棱錐AB1DC1的體積為()A3B.C1D.答案C解析D是等邊三角形ABC的邊BC的中點,ADBC.又ABCA1B1C1為正三棱柱,AD平面BB1C1C.四邊形BB1C1C為矩形,2.又AD2,AD1.故選C.6一個四面體的三視圖如圖所示,則該四面體的體積是()A.B.C.D1答案B解析根據(jù)題意得到原四面體是底面為等腰直角三角形,高為1的三棱錐,故得到體積為211.7某幾何體的三視圖如圖所示,則該幾何體的體積為_,其表面積為_答案8161612解析由正視圖和側視圖可知,該幾何體含有半個圓柱,再結合俯視圖不難得到該幾何體是半個圓柱和一個倒立的直四棱錐組合而成,如圖故該幾何體的體積為V4448,表面積為S22161612.8已知一個圓錐的母線長為2,側面展開圖是半圓,則該圓錐的體積為_答案解析由題意,得圓錐的底面周長為2,設圓錐的底面半徑是r,則2r2,解得r1,圓錐的高為h.圓錐的體積為Vr2h.考點三多面體與球要點重組(1)設球的半徑為R,球的截面圓半徑為r,球心到球的截面的距離為d,則有r.(2)當球內切于正方體時,球的直徑等于正方體的棱長,當球外接于長方體時,長方體的體對角線長等于球的直徑;當球與正方體各棱都相切時,球的直徑等于正方體底面的對角線長(3)若正四面體的棱長為a,則正四面體的外接球半徑為a,內切球半徑為a.9已知三棱錐SABC的所有頂點都在球O的球面上,SA平面ABC,SA2,AB1,AC2,BAC60,則球O的表面積為()A4B12C16D64答案C解析在ABC中,由余弦定理得,BC2AB2AC22ABACcos603,AC2AB2BC2,即ABBC.又SA平面ABC,SAAB,SABC,三棱錐SABC可補成分別以AB1,BC,SA2為長、寬、高的長方體,球O的直徑為4,故球O的表面積為42216.10已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為()AB.C.D.答案B解析設圓柱的底面半徑為r,球的半徑為R,且R1,由圓柱的兩個底面的圓周在同一個球的球面上可知,r,R及圓柱的高的一半構成直角三角形r.圓柱的體積為Vr2h1.11已知四棱錐PABCD的底面ABCD是邊長為6的正方形,且PAPBPCPD,若一個半徑為1的球與此四棱錐所有面都相切,則該四棱錐的高是()A6B5C.D.答案D解析由題意知,四棱錐PABCD是正四棱錐,球的球心O在四棱錐的高PH上,過正四棱錐的高作組合體的軸截面如圖:其中PE,PF是斜高,A為球面與側面的切點設PHh,易知RtPAORtPHF,所以,即,解得h,故選D.12一個圓錐過軸的截面為等邊三角形,它的頂點和底面圓周在球O的球面上,則該圓錐的體積與球O的體積的比值為_答案解析設等邊三角形的邊長為2a,球O的半徑為R,則V圓錐a2aa3.又R2a2(aR)2,所以Ra,故V球3a3,故其體積比值為.1如圖,在正四棱柱ABCDA1B1C1D1中,點P是平面A1B1C1D1內一點,則三棱錐PBCD的正視圖與側視圖的面積之比為()A11B21C23D32答案A解析由題意可得正視圖的面積等于矩形ADD1A1面積的,側視圖的面積等于矩形CDD1C1面積的.又底面ABCD是正方形,所以矩形ADD1A1與矩形CDD1C1的面積相等,即正視圖與側視圖的面積之比是11.2已知一幾何體的三視圖如圖所示,它的側視圖與正視圖相同,則該幾何體的體積為()A.B.C.8D.8答案A解析由三視圖知該幾何體是正四棱錐(底面為正方形,且頂點在底面的射影為正方形的中心的棱錐)與半球體的組合體,且正四棱錐的高為,底面對角線長為4,球的半徑為2,所以組合體的體積為V2342.3已知A,B是球O的球面上兩點,AOB90,C為該球面上的動點若三棱錐OABC體積的最大值為36,則球O的表面積為()A36B64C144D256答案C解析易知AOB的面積確定,若三棱錐OABC的底面OAB上的高最大,則其體積最大因為高最大為半徑R,所以VOABCR2R36,解得R6.故S球4R2144.解題秘籍(1)三視圖都是幾何體的投影,要抓住這個根本點確定幾何體的特征(2)多面體與球的切、接問題,要明確切點、接點的位置,利用合適的截面圖確定兩者的關系,要熟悉長方體與球的各種組合1(2018浙江)某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積(單位:cm3)是()A2B4C6D8答案C解析由幾何體的三視圖可知,該幾何體是一個底面為直角梯形,高為2的直四棱柱,直角梯形的上、下底邊長分別為2,1,高為2,該幾何體的體積為V26.故選C.2已知某幾何體的三視圖如圖所示,則該幾何體的最大邊長為()A.B.C.D2答案B解析根據(jù)三視圖作出原幾何體(四棱錐PABCD)的直觀圖如下:可計算PBPDBC,PC,故該幾何體的最大邊長為.3如圖是棱長為2的正方體的表面展開圖,則多面體ABCDE的體積為()A2B.C.D.答案D解析多面體ABCDE為四棱錐(如圖),利用割補法可得其體積V4,故選D.4如圖,網(wǎng)格紙上小正方形的邊長為1,下圖畫出的是某幾何體的三視圖,則該幾何體的表面積為()A12618B9618C9818D9612答案B解析作出該幾何體的直觀圖如圖所示(所作圖形進行了一定角度的旋轉),故所求幾何體的表面積S23234634439618,故選B.5某錐體的三視圖如圖所示,用平行于錐體底面的平面把錐體截成體積相等的兩部分,則截面面積為()A2B2C2D2答案C解析三視圖表示的幾何體(如圖)是四棱錐(鑲嵌入棱長為2的正方體中),且四棱錐FABCD的底面為正方形ABCD,面積為4,設截面面積為S,所截得小四棱錐的高為h,則解得S2.6某幾何體的三視圖如圖所示,其中正視圖、側視圖均是由三角形與半圓構成,俯視圖由圓與內接三角形構成,則該幾何體的體積為()A.B.C.D.答案A解析該幾何體是一個半球,上面有一個三棱錐,體積為V1113,故選A.7(2018全國)某圓柱的高為2,底面周長為16,其三視圖如圖所示圓柱表面上的點M在正視圖上的對應點為A,圓柱表面上的點N在側視圖上的對應點為B,則在此圓柱側面上,從M到N的路徑中,最短路徑的長度為()A2B2C3D2答案B解析先畫出圓柱的直觀圖,根據(jù)題中的三視圖可知,點M,N的位置如圖所示圓柱的側面展開圖及M,N的位置(N為OP的四等分點)如圖所示,連接MN,則圖中MN即為M到N的最短路徑|ON|164,|OM|2,|MN|2.故選B.8某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是()A8B12C16D.答案D解析如圖所示,該幾何體是三棱錐DABC,其中AB2,AC2,BC2,取BC的中點E,連接DE,則DE,且ABAC,DE平面ABC,故外接球球心O必在直線DE上,設三棱錐DABC外接球的半徑為R,由(ODDE)2EC2OC2R2,得(R)2()2R2,解得R2,故三棱錐DABC的外接球的表面積S4R2,故選D.9某幾何體的三視圖如圖所示(單位:cm),則該幾何體共有_條棱;該幾何體的體積為_cm3.答案81解析由三視圖知該幾何體為底面為上底是1cm,下底是2cm,高是1cm的直角梯形,有一條高為2cm的棱垂直于底面的四棱錐,則其有8條棱,體積為211(cm3)10九章算術是我國古代內容極為豐富的數(shù)學名著,系統(tǒng)地總結了戰(zhàn)國、秦、漢時期的數(shù)學成就書中將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為“陽馬”,若某“陽馬”的三視圖如圖所示(網(wǎng)格紙上小正方形的邊長為1),則該“陽馬”最長的棱長為_答案5解析由三視圖知,幾何體是四棱錐,且四棱錐的一條側棱與底面垂直,如圖所示其中PA平面ABCD,PA3,ABCD4,ADBC5,PB5,PC5,PD.該幾何體最長的棱長為5.11已知某幾何體的三視圖如圖所示,其中俯視圖是正三角形,則該幾何體的體積為_答案2解析依題意得,該幾何體是由如圖所示的三棱柱ABCA1B1C1截去四棱錐ABEDC得到的,故其體積V22322.12已知三棱錐ABCD中,ABACBC2,BDCD,點E是BC的中點,點A在平面BCD上的投影恰好為DE的中點F,則該三棱錐外接球的表面積為_答案解析連接BF,由題意,得BCD為等腰直角三角形,E是外接圓的圓心點A在平面BCD上的投影恰好為DE的中點F,BF,AF.設球心O到平面BCD的距離為h,則1h22,解得h,外接球的半徑r,故該三棱錐外接球的表面積為4.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 浙江專用2019高考數(shù)學二輪復習精準提分 第二篇 重點專題分層練,中高檔題得高分 第14練 空間幾何體試題 浙江 專用 2019 高考 數(shù)學 二輪 復習 精準 第二 重點 專題 分層 中高檔 高分
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.italysoccerbets.com/p-6398060.html