購(gòu)買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載就能得到。。。【注】:dwg后綴為CAD圖,doc,docx為WORD文檔,有不明白之處,可咨詢QQ:1304139763
本科畢業(yè)設(shè)計(jì) 外文文獻(xiàn)及譯文 文獻(xiàn) 資料題目 Scale up and application of equal channel angular extrusion for the electronics and aerospace industries 文獻(xiàn) 資料來源 材料科學(xué)與工程雜志 文獻(xiàn) 資料發(fā)表 出版 日期 2007 12 院 部 材料科學(xué)與工程學(xué)院 專 業(yè) 材料成型及控制工程 班 級(jí) 成型 054 姓 名 李瑜 學(xué) 號(hào) 2005101265 指導(dǎo)教師 任國(guó)成 翻譯日期 2009 6 15 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 2 中文譯文 等通道轉(zhuǎn)角擠壓工藝在電子和航空航天行業(yè)的推廣和應(yīng)用 摘要 促進(jìn)等通道轉(zhuǎn)角擠壓發(fā)展以及在實(shí)驗(yàn)室的探索階段取得進(jìn)展 等徑角擠壓在這兩個(gè)領(lǐng) 域是至關(guān)重要的 一 模具設(shè)計(jì) 處理設(shè)計(jì)和規(guī)模擴(kuò)大 工具 加工設(shè)計(jì)與推廣 二 發(fā)展新亞微米晶產(chǎn)品 這兩個(gè)目標(biāo)在霍尼韋爾公司得到了實(shí)現(xiàn) 第一種情況是利用等徑角 擠壓在電子工業(yè)從單相合金生產(chǎn)濺射靶材成功的商業(yè)化 在實(shí)際中的應(yīng)用 毛坯尺寸 明 顯多于那些文獻(xiàn)報(bào)道 其他的重合金鋁材料在航空航天領(lǐng)域應(yīng)用的描述則是以增加拉伸強(qiáng) 度 高周疲勞和韌性為目的 在這些合金中 更好的了解塑性變形和降水機(jī)制之間的相互 作用可達(dá)到最佳的性能 2007 年埃爾塞維爾 B 訴保留所有權(quán)利 1 導(dǎo)言 過去 10 年 劇烈塑性變形 SPD 技術(shù)已成為熱切研究的焦點(diǎn) 因?yàn)樗麄兛梢杂贸叽?在 50 到 500 納米之間亞微米晶粒研究生產(chǎn)金屬材料 一個(gè)有前途的劇烈塑性變形 SPD 方法是等通道轉(zhuǎn)角擠壓 等徑角擠壓 工藝 它可以通過簡(jiǎn)單的剪切引起的劇 烈塑性變形產(chǎn)生出大量的亞微米晶粒材料 到目前為止 研究已在亞微米晶材料的的表征 紋理 結(jié)構(gòu)和力學(xué)性能 以及等徑角擠壓影響的主要參數(shù)和畸變退火方面取得穩(wěn)步進(jìn)展 然而 盡管有豐富的文獻(xiàn)資料 但在工程和商業(yè)化方面的問題直到最近才討論 且很少有 實(shí)際應(yīng)用的報(bào)道 絕大多數(shù)研究者繼續(xù)使用小長(zhǎng)圓筒形或方形坯料 已經(jīng)有一些擴(kuò)大規(guī) 模的鋼坯的嘗試 但還沒有成功的商業(yè)化的報(bào)告 本文綜述了 霍尼韋爾公司在模具設(shè)計(jì) 推廣和商業(yè)化等徑角擠壓平板鋼坯進(jìn)行獲得 的成果 選定的例子表明 該技術(shù)可以以一個(gè)或多個(gè)下列方式進(jìn)入市場(chǎng) 一 提供全 面降低成本以針對(duì)標(biāo)準(zhǔn)制造或設(shè)計(jì) 二 提供優(yōu)異的產(chǎn)品性能 三 答復(fù)一個(gè)未得到滿 足的需求 第一個(gè)涉及等徑角擠壓產(chǎn)品的例子是使用微米與亞微米尺寸晶粒的高純度鋁 銅和鈦制造用于制造邏輯和存儲(chǔ)元件濺射靶材 另外兩個(gè)例子是關(guān)于中等和重合金鋁材料 在航空航天和運(yùn)輸領(lǐng)域的應(yīng)用 特別注意的是影響等徑角擠壓的結(jié)構(gòu)和性能的單相銅和鋁 尤其是鋁在合金成分的增加從一個(gè)非常低的水平 如濺射靶材 到一個(gè)更高的水 如在商 業(yè)合金為航空航天 有人認(rèn)為 新的機(jī)制和隨著新的塑性變形之間的相互作用和形變熱 處理時(shí)的相變使合金水平的提高 更多合金應(yīng)用機(jī)會(huì)將出現(xiàn) 2 規(guī)模和工藝設(shè)計(jì) 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 3 霍尼韋爾公司的重點(diǎn)是 從歷史上看 等徑角擠壓平板產(chǎn)品 這是第一次介紹了編 號(hào) 38 在這種情況下 圖 1 一個(gè)典型的坯料形狀的特點(diǎn)是厚度為 a 寬度為 b 和長(zhǎng) 度 c b c 通常情況下 尺寸 C 和 B 是平等的 允許使用相同的工具進(jìn)行多道次處理 在 90 之間輪換通過 加工特性之一是等徑角擠壓平板和長(zhǎng)期鋼坯相似 不過 通 常用于平板鋼坯的軸允許 90 鋼坯輪換垂直擠壓 圖 1 中 z 軸 鑒于長(zhǎng)期的產(chǎn)品 它 是平行的擠壓軸 在規(guī)模增長(zhǎng)方面 有兩個(gè)因素在起作用 i 模具設(shè)計(jì) 及 ii 優(yōu)化等徑角擠壓變形模式 2 1 模具設(shè)計(jì) 從生產(chǎn)角度看 主要的驅(qū)動(dòng)程序工具設(shè)計(jì)包括安全 成本和生產(chǎn)力 2 1 1 安全性和成本 如果使用常規(guī)低成本工具鋼 最大的問題是沖床潛在的斷裂 屈曲 對(duì)于給定的 材料 沖床壓力 p1 必須大大低于沖壓材料的屈服強(qiáng)度 沖壓力為 其中 p 是在出口的第一通道的壓力 K 為材料剪切流動(dòng)應(yīng)力 m 是塑料的摩擦系數(shù) F 是該地區(qū)固定死墻壁 A 是鋼坯橫截面積 對(duì)于該工具本身 最大的沖床壓力 p1 和通道壁的 n 行動(dòng)結(jié)束時(shí)的入口通道 同樣 地顯示在 30 低摩擦情況 m 0 25 因此 最好的減少模具 沖壓壓力的辦法是 一 限制比例的 c a 6 10 二 減少兩個(gè)通道的摩擦 有兩個(gè)相應(yīng)的策略 選擇有效的潤(rùn)滑劑和使通道壁可動(dòng) 這是利用 單位平板等徑角擠壓鋼坯相對(duì)長(zhǎng)期的鋼坯的一個(gè)明顯優(yōu)勢(shì) 從設(shè)備和設(shè)計(jì)是可移動(dòng)的墻壁 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 4 通道沿線 theentrance 不需要平板產(chǎn)品 這是因?yàn)槠桨瀹a(chǎn)品中 a b 而長(zhǎng)期產(chǎn)品中 a b 因此 P1 和 n 在平板產(chǎn)品中是較小的 公式 2 和公式 3 可近似化簡(jiǎn)為 建議在平板和條狀的產(chǎn)品中增加一個(gè)可移動(dòng)底部出口通道 因?yàn)榈撞渴菨?rùn)滑油原子的 退出通道 2 1 2 生產(chǎn)率 影響生產(chǎn)率的兩個(gè)重要的因素是加工速度和鋼坯彈射 作為具有相當(dāng)?shù)捻g性的材料 加工速度不是一個(gè)限制因素 它可以足夠高 5 10 毫米 秒 鋼坯彈射具有更為復(fù)雜的 問題 特別是對(duì)長(zhǎng)條圓柱形坯料 在平板鋼坯中 在可移動(dòng)的墻底部退出渠道安裝的額外 液壓缸提供了一個(gè)有效和簡(jiǎn)單的解決辦法 2 2 優(yōu)化等徑角擠壓 有兩個(gè)層次的單一優(yōu)化和多道優(yōu)化 等徑角擠壓 2 2 1 單程優(yōu)化 某種程度的簡(jiǎn)單剪切變形應(yīng)盡可能高的一種有效的完善的組織 這主要取決于摩擦條 件和幾何渠道 有兩個(gè)臨界參數(shù)改變幾何渠道 兩個(gè)通道之間的夾角 2 及通道相交的形 狀 通常情況下 通常情況下 渠道都以尖角 沒有半徑 或圓角的交叉 滑移線解決方 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 5 案和有限元模型揭示在摩擦和 或 圓角渠道的情況下存在扇形變形區(qū) 在這種情況下 簡(jiǎn)單剪切是重新分配沿著三個(gè)不同的方向 而且即使是無摩擦的條件和尖角彎道 2 90 時(shí)死金屬區(qū)存在于通道的角落 因此 工具角 2 90 時(shí) 急轉(zhuǎn)彎道和附近摩 擦條件是實(shí)現(xiàn)沿 2 一個(gè)方向簡(jiǎn)單有效剪切的最佳的條件 最重要的問題是同時(shí)采取行 動(dòng)消除有高壓縮壓力的沿底部墻壁和密集支路的摩擦 隨著底部墻壁的移動(dòng) 滑移線分 析表明扇形角度可以減小 由于先進(jìn)的模具設(shè)計(jì)和潤(rùn)滑油條件 霍尼韋爾模具運(yùn)作良好 2 2 2 多道處理 多道處理的兩個(gè)主要參數(shù)是變形路線 每次變形后一序列方坯的輪換 和變形總數(shù) 的積累 積累株 平板鋼坯 定義的四個(gè)基本路線 A B 或 BA C 和 D 或 BC 仍 然是類似的長(zhǎng)條鋼坯除如前所述的旋轉(zhuǎn)軸 2 3 規(guī)模擴(kuò)大的努力 基于上述考慮 霍尼韋爾公司開始了擴(kuò)大等徑角擠壓規(guī)模的努力 在 1997 年建造的 第一條模具生產(chǎn)線 今天 一些正常使用鋁銅和純鈦大規(guī)模的鋼坯模組使用 1000 和 4000 噸的壓力機(jī) 見圖 2 其中大部分模具已在使用中 6 年中每周工作 大眾中最大的 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 6 等徑角擠壓方坯是三十二點(diǎn)七公斤的 Al 合金 最近 110 公斤的銅和銅合金也有了 作 為比較 報(bào)告的最大等徑角擠壓加工鋁坯模具有 6 7 千克重獲得渠道角度 105 而大眾的 用于研究的最典型的 10 毫米 10 毫米 60mmAl 鋼坯是 0 016 千克 關(guān)于企圖擴(kuò)大等 徑角擠壓過程沒有任何對(duì)銅的報(bào)告 重要的是 等徑角擠壓對(duì)微觀結(jié)構(gòu) 質(zhì)地和性能的 影響已經(jīng)在各種規(guī)模的工業(yè)領(lǐng)域得到驗(yàn)證并將在第 2 部分介紹 在作者看來 實(shí)際生產(chǎn)經(jīng) 驗(yàn)表明 等徑角擠壓是可擴(kuò)展的并將開創(chuàng)它的工業(yè)化新時(shí)代 3 等徑角擠壓的濺射靶材 等徑角擠壓特別適用于高純度材料由于晶粒細(xì)化是有效地增強(qiáng)強(qiáng)度 并保持良好的塑 性 霍爾佩奇硬化 唯一可用機(jī)制 而其他硬化機(jī)制都是無效的 析出和硬化處理 或有 損于延性 脫位硬化 對(duì)特定材料和晶體結(jié)構(gòu)而言 等徑角擠壓 can 也激活和控制質(zhì) 地的硬化 這種辦法對(duì)摻雜或低合金鋼材料 如在高純度的銅 鈦和 Al 材料或不使用微 量元素和低合金中使用制造濺射靶材仍然有效 在本節(jié)中 我們使用電極工業(yè)縮寫 6N 和 5N5 的純度分別 99 9999 和 99 9995 3 1 等徑角擠壓后靶材的微觀結(jié)構(gòu) 高純度材料的多道等徑角擠壓結(jié)果存在以下幾個(gè)主要影響 一 形成較好 通常是 小于 20 微米 微觀結(jié)構(gòu)取決于開始的晶粒尺寸 二 加強(qiáng)結(jié)構(gòu)均勻性 三 紋理的 控制是通過一些通行證 路線和后處理熱處理來實(shí)現(xiàn)的 39 四 在等徑角擠壓之 前通過固溶處理來消除大型階段和沉淀 晶粒尺寸 均勻性和缺乏大型粒子對(duì)濺射性能力 影響最大 選擇特定結(jié)構(gòu)的關(guān)鍵因素是在靶材制造或使用過程中的熱穩(wěn)定性 下面是一些 例子 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 7 一 對(duì)低熔點(diǎn)高純度材料而言 亞微米晶結(jié)構(gòu)通常沒有穩(wěn)定的高功率濺射 但是 在 等徑角擠壓之后仍然能得到結(jié)構(gòu)很好和均勻的 而且微米晶粒尺寸較普通結(jié)構(gòu)鍛造或軋制 后小 3 到 5 倍 這對(duì)等徑角擠壓的應(yīng)用而言是一個(gè)非常有趣的領(lǐng)域 由于把重點(diǎn)放在亞微 晶材料 因此很少在文獻(xiàn)中強(qiáng)調(diào) 另一個(gè)例子 36 37 是一種 5 10 微米結(jié)構(gòu) 圖 3a 在純度為 99 9999 6N 的銅經(jīng)過等徑角擠壓靜態(tài)再結(jié)晶 225 1 小時(shí) 后 與普通處理典型的 50 米晶粒尺寸的對(duì)比 該 EBSD 分析表明 高角度邊界占主導(dǎo)位置 圖 3B 60 也界證明存在大量的孿晶組織 另一個(gè)例子 圖 4 和 5 高純度 99 9995 5N5 Al 經(jīng)由等徑角擠壓后的平均粒徑約為 60 70 微米 而而標(biāo)準(zhǔn)處理 則是 200 300 微米 在這情況下 經(jīng)過等徑角擠壓直接觀察室溫下的完全動(dòng)態(tài)再結(jié)晶 正 如文獻(xiàn) 41 42 所述 不僅是應(yīng)變的積累 而且簡(jiǎn)單剪切變形模式也是很重要 在特定 的情況下 在如圖 4 所給的應(yīng)力水平下對(duì)結(jié)構(gòu)的改良來說簡(jiǎn)單的剪切是最有效的模式結(jié)構(gòu) 例如相同的結(jié)構(gòu) 發(fā)現(xiàn) 5N5 鋁經(jīng)過兩次等徑角擠壓后 積累應(yīng)變 2 3 和軋后減少 99 累積應(yīng)變 4 8 這種結(jié)構(gòu)有一個(gè)突出特點(diǎn)即熱穩(wěn)定性增強(qiáng) 起作用的因素可能是 各向同性的形態(tài) 孿晶晶界的低流動(dòng)性 結(jié)構(gòu)均勻性及附近紋理的隨機(jī)性 見圖 3 圖 5 經(jīng)過等徑角擠壓和一般工藝處理 5N5 鋁 6N 銅 37 和銅合金之間的晶粒尺寸演變 隨退火時(shí)間變化的比較 例如 對(duì)于等徑角擠壓 6N 銅而言 完全靜態(tài)再結(jié)晶發(fā)生在 225 C 的 退火 1 小時(shí)和產(chǎn)生了尺寸約為 5 8 微米的均勻晶粒 而在 300 額外的退火 1 小時(shí) 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 8 后晶粒只是稍微長(zhǎng)大至 15 微米 結(jié)構(gòu)仍然均勻 相比之下 相同晶粒尺寸 6N 銅經(jīng)過標(biāo) 準(zhǔn)工藝處理 85 滾動(dòng) 后在經(jīng)過 225 1 h 和 300 退火 1 小時(shí)后 分別晶 粒尺寸由 35 升至 65 米 二 對(duì)高純度鋁 銅而言 添加微量元素 這里定義為元素含量最多為百萬分之 2000 是一個(gè)進(jìn)一步完善等徑角擠壓晶粒尺寸和 或通過提高晶粒度和亞顯微結(jié)構(gòu)的熱穩(wěn) 定性同時(shí)來提高等徑角擠壓 溫度極為有效的技術(shù) 一個(gè)顯著的例子是 5N5 鋁摻雜百萬分 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 9 之 20 30 硅含量 超細(xì)顆粒的大小由 60 微米減少至 25 微米 遠(yuǎn)遠(yuǎn)小于類似的應(yīng)變水平 圖 4 作為推出結(jié)構(gòu)之后的尺寸 簡(jiǎn)單的剪切變形模式等徑角擠壓和非單調(diào) D 類加載 路徑被認(rèn)為是等徑角擠壓和推出結(jié)構(gòu)的晶粒尺寸之間存在顯著差異的最主要的因素 41 42 圖 6 顯示了元素性質(zhì)和摻雜數(shù)量對(duì)亞微米顆粒 6N 銅按照路線 D 經(jīng)過 6 次等 徑角擠壓后的溫度靜態(tài)再結(jié)晶巨大的影響 可以得到一個(gè)近乎對(duì)數(shù)的曲線 特別是銀 錫 鈦影響如此大以致有添加微量的元素有足夠的水平產(chǎn)生穩(wěn)定濺射的亞微米顆粒的結(jié)構(gòu) 三 在含有足夠數(shù)量的微量元素或合金的純 Al 和 Cu 的的組成部分 在現(xiàn)實(shí)應(yīng)用中亞 微晶結(jié)構(gòu)穩(wěn)定濺射是我們追求的靶材 例如一個(gè) Al0 5Cu 合金亞微米晶結(jié)構(gòu)經(jīng)過等徑角擠 壓處理 如圖 7 所示 36 37 透射電子顯微鏡 TEM 展示了一個(gè)均勻等軸尺寸 0 3 0 5 微米的微米晶粒 圖 7 這對(duì)當(dāng)于常規(guī)過程 100 個(gè)因素的比較 存在著非常細(xì) 的分散 小于 50 納米 的第二階段物質(zhì) 3 2 濺射性能 等徑角擠壓結(jié)果展示了濺射性能優(yōu)越 具體細(xì)節(jié)參考文獻(xiàn) 36 37 其中包括 一 減少電弧 二 低水平的粒子和晶圓上缺陷 三 改進(jìn)薄膜厚度均勻性和薄 膜的統(tǒng)一性 四 由于存在較好束直的亞微米顆粒的結(jié)構(gòu)進(jìn)而進(jìn)一步提高了覆蓋 3 3 力學(xué)性能和指標(biāo)的設(shè)計(jì) 圖8顯示數(shù)據(jù)是6N銅 含有微量元素的6N Cu 6N Cu 5N5 Al0 5Cu 和 4N5 Ni在室溫 下經(jīng)過等徑角擠壓處理后的屈服強(qiáng)度 YS 和極限抗拉強(qiáng)度強(qiáng)度 UTS 經(jīng)過等徑角擠壓 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 10 處理后的屈服強(qiáng)度 YS 和極限抗拉強(qiáng)度強(qiáng)度 UTS 要比常規(guī)處理分別高4至10倍和2至3 倍 這種效果在屈服強(qiáng)度上最顯著 屈服強(qiáng)度是材料應(yīng)用的一個(gè)重要指標(biāo) 因?yàn)樗硎境?受永久塑性變形的能力 并可能使工件在濺射靶時(shí)發(fā)生彎曲 由圖8可知在6NCu這一組 經(jīng)過等徑角擠壓后微量元素有一個(gè)明顯的強(qiáng)化效果 拉伸伸長(zhǎng)率仍然很高 較亞微晶 Al0 5Cu高出20 較亞微晶6N銅高出35 40 高強(qiáng)度的純亞微米晶材料允許使用單片 設(shè)計(jì) 整個(gè)靶材作為一個(gè)單塊 圖9 較常規(guī)工藝的指標(biāo)而言這是一個(gè)獨(dú)特的設(shè)計(jì) 其中經(jīng)過靶材材料粘結(jié)或焊接到底板材料制成類似Al 6061 或 CuCr這樣高強(qiáng)度材料 單 片設(shè)計(jì)主要優(yōu)點(diǎn)如下 相比擴(kuò)散粘結(jié)的設(shè)計(jì)靶材壽命增加了 50 因?yàn)闉R射不再局限于擴(kuò)散結(jié)合線 36 37 直接結(jié)果就是增加吞吐量 一些經(jīng)過處理的晶圓每個(gè)指標(biāo) 其他組成部分的壽命和減 少停機(jī)時(shí)間 通過降低成本 多而高風(fēng)險(xiǎn)的擴(kuò)散焊作業(yè)來簡(jiǎn)化制造過程 歸因于等徑角擠壓可以獲得 如常規(guī)手段 滾動(dòng) 繪圖 一樣的高塑性變形的產(chǎn)品 等徑角擠壓 Al 和 Cu 靶材的最近 事態(tài)發(fā)展的是空心陰極磁控 HCM 的靶材 這些靶材成形需要經(jīng)過復(fù)雜的等徑角擠壓 工藝形成最終直徑約 393 7 毫米 高度 381 毫米和厚度 12 7 25 4 毫米的杯形狀 4 等徑角擠壓鋁合金在航空航天和運(yùn)輸上的應(yīng)用 隨著加入合金成分的增加 二次相 無論可溶性或不溶性 得數(shù)量也隨之增加 因此 便產(chǎn)生了兩個(gè)其他可能提高強(qiáng)度的機(jī)制 固熔案和沉淀硬化 等徑角擠壓熱處理對(duì)組織 和性能額影響變得更加多樣化和更難以預(yù)測(cè) 對(duì)于非熱處理合金晶粒細(xì)化在等徑角擠壓仍 然是提高強(qiáng)度的主要機(jī)制 2 12 對(duì)可熱處理合金而言會(huì)產(chǎn)生更有趣的實(shí)例 對(duì)于一 個(gè)中等水平的合金 沉淀硬化同晶粒細(xì)化一樣有效 目標(biāo)就是優(yōu)化處理來結(jié)合這兩種效果 13 20 24 下文所述的一個(gè)例子是等徑角擠壓鋁 2618 合金 主要用于航空及運(yùn)輸行 業(yè)的渦輪增壓器組件 對(duì)重合金化而言 通過等徑角擠壓細(xì)化組織來提高材料強(qiáng)度相對(duì)于 其他硬化機(jī)制是次要的 然而 經(jīng)過等徑角擠壓處理的噴霧鑄鋁合金的起落架組成部分的 韌性可以大大提高 25 29 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 11 4 1 等徑角擠壓鋁 2618 的渦輪增壓器組件 4 1 1 加工 在進(jìn)行等徑角擠壓前將物質(zhì)狀態(tài)分三組進(jìn)行了研究 一 在 529 固溶 24 h 后 立即用水淬火使所有溶解相溶解 二 在 526 固溶 20 小時(shí)之后 經(jīng)沸水淬火然后在 200 時(shí) 空冷 20 小時(shí) 這個(gè)擴(kuò)建條件提供了一個(gè)平衡固溶矩陣與 0 05 0 1 米 CuMgAl2 沉淀和 HB 硬度為 115 三 在 529 固溶 24 小時(shí)之后 水淬和在 385 空氣中過度時(shí)效 4 小時(shí)產(chǎn)生 大量沉淀物 降低強(qiáng)度和 HB 硬度為 47 5 在這組中 進(jìn)行等徑角擠壓加強(qiáng)效果的評(píng)估 在所有情況下 按照如第 3 節(jié) 中所描述的 D 類工藝 旋轉(zhuǎn) 90 模具溫度在 150 至 200 范圍內(nèi)分別進(jìn)行一 二 四及六次等徑角擠壓 同時(shí)對(duì)后等徑角擠壓的等時(shí)退火也進(jìn)行 了研究 4 1 2 拉伸性能 表 1 顯示了等徑角擠壓對(duì)硬度 屈服強(qiáng)度 抗拉強(qiáng)度和伸長(zhǎng)率的影響 主要成果 單獨(dú)進(jìn)行等徑角擠壓的晶粒細(xì)化 案例三 有效的增加強(qiáng)度比超峰時(shí)效約少 25 但 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 12 是 硬度 屈服強(qiáng)度和抗拉強(qiáng)度仍分別高于氧條件約 2 4 和 2 倍 與傳統(tǒng)的 T6 條件相比 經(jīng)過超峰時(shí)效的等徑角擠壓樣本 案例二 造成只是稍微提高 了拉伸性能 圖 實(shí)驗(yàn)組 1 屈服得到明顯改善 經(jīng)過第一遍工藝 相比 T6 條件屈服強(qiáng)度 抗拉強(qiáng)度 和伸長(zhǎng)率分別提高了 40 25 和 30 經(jīng)過兩次工藝加工后 屈服強(qiáng)度和抗拉 強(qiáng)度在類似的延性方面又分別增加了是 50 和 35 經(jīng)過四道工藝 強(qiáng)度增加較工藝 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 13 次數(shù)少的時(shí)候少 與 T6 狀態(tài)相比約減少了 10 長(zhǎng)期進(jìn)行低于超峰時(shí)效溫度退火進(jìn)一步提高強(qiáng)度和略有改善延性 在第一次工藝后實(shí)驗(yàn) 參數(shù)為退火溫度 150 10 h 列于表 1 4 1 3 微結(jié)構(gòu)和強(qiáng)化機(jī)制 圖 10 顯示的是經(jīng)過第一和第四次工藝后的 TEM 顯微圖像 在第一次工藝后 結(jié)構(gòu)由 復(fù)雜脫位配置 圖 10b 和 0 1 0 3 微米二次晶粒組成 圖 10a 極精細(xì)得約 1 微米 的 G P 區(qū) 圖 10b 或者呈一致的球形或著部分連貫 時(shí)刻存在于整個(gè)樣本中 經(jīng)過四 年道工序后 基體之間的界限變得模糊 平均晶粒尺寸為 0 1 微米如圖 10C 所示 其附 近存在大量不溶性的沉淀物 位錯(cuò)常常存在于邊界處 以少量位錯(cuò)群的形式存在 同時(shí)可 以看到尺寸較大的連貫的 G P 區(qū) 對(duì)實(shí)驗(yàn)組 2 3 而言 G P 區(qū)消失了 取而代之的是粗 沉淀 實(shí)驗(yàn)組 2 小于 0 25 微米和實(shí)驗(yàn)組 3 超過 5 微米 實(shí)驗(yàn)組 1 的加固現(xiàn)象可以有以 下兩方面解釋 20 24 一 通過增加位錯(cuò) 晶?;蜻吔绲那袘?yīng)力來使其移動(dòng) 二 高密度的 G P 區(qū)在熱等徑角擠壓的動(dòng)態(tài)和在彼此等徑角擠壓過程預(yù)熱的靜態(tài) 這 種占主導(dǎo)地位的機(jī)制是相互作用的高度密集的 G P 區(qū)和位錯(cuò)或細(xì)胞間的最佳組合 這種最 佳機(jī)制強(qiáng)于僅用等徑角擠壓來細(xì)化晶粒 實(shí)驗(yàn)組 3 單獨(dú)使用常規(guī)工藝細(xì)化晶粒 T6 和等徑角擠壓后沉淀硬化 實(shí)驗(yàn)組 2 對(duì)于低工藝次數(shù)而言這是最有效的方法 而高次 數(shù)的工藝 重排和恢復(fù)的位錯(cuò) 增大 P 區(qū)和沉淀物受剪切力能有助于減少加強(qiáng)效果 4 1 4 疲勞性能 渦輪增壓器組件的關(guān)鍵要求是其疲勞性能 因?yàn)槠涑掷m(xù)工作在壓力 流量和速度都 大的環(huán)境下 同時(shí)發(fā)動(dòng)機(jī)的排量有嚴(yán)格的控制 還有就是要考慮到經(jīng)濟(jì)因素 在高周疲勞 下 根據(jù) TMP 的條件 對(duì)鋁 2618 合金試樣進(jìn)行了 CAE 處理 在控制軸向載荷 溫度在 25 到 150 之間 應(yīng)力比 R 0 和 R 1 頻率 59Hz 以及正弦波形的條件下進(jìn)行了測(cè)試 通過 對(duì)鑄造 354 C355 的標(biāo)準(zhǔn)鋁合金渦輪增壓器和鍛壓 2618T6 鋁合金渦輪增壓器進(jìn)行比較 據(jù) Sines 當(dāng)量應(yīng)力 44 提出的論證的多軸高疲勞效應(yīng) 做了進(jìn)一步的分析 實(shí)驗(yàn)結(jié)果表明對(duì) 于兩個(gè)壓力比值 抗疲勞性能都有了明顯的提高 圖 11 給出了在 R 0 時(shí)的數(shù)據(jù)比較 在 10 到 80 周次時(shí) 疲勞壽命的增加主要取決于 Sines 壓力水平 原始數(shù)據(jù)顯示 其最多 可提高 230 倍 有趣的是 在如今應(yīng)用最為廣泛的 140 200MPa 水平的 Sines 當(dāng)量應(yīng)力中 鋁 2618 合金的 ECAE 應(yīng)用情況可類似的應(yīng)用于鈦合金鑄造中 4 2ECAE 應(yīng)用于重鋁合金壓鑄的飛機(jī)起落架部件 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 14 4 2 1 實(shí)驗(yàn) 起始原料是壓鑄合金組成為 6 7 的鋅 3 的鎳 3 的錳 2 6 的鎂 0 7 的銅等元素的 Al7xxx 合金 該合金已應(yīng)用于常規(guī)飛機(jī)的起落架部分 但是它的 韌性和拉伸強(qiáng)度還不符合規(guī)范 鑄造后 ECAE 直接采用了在 275 時(shí)線路 D 的一 四 八 及十六步進(jìn)行操作 在 ECAE 之后 485 固溶一小時(shí) 溫水中淬火 并且是在 T7 條件下 進(jìn)行這些操作 其顯微結(jié)構(gòu)用掃描電鏡 SEM 和光學(xué)顯微鏡進(jìn)行觀察 而固溶物的尺寸 則由掃描電鏡和破壞性液體粒子計(jì)數(shù) LPC 來測(cè)定 用光滑試樣和缺口試樣來同時(shí)評(píng)價(jià) 其 YS UTS 韌性及 NYR 4 2 2 實(shí)驗(yàn)結(jié)果 原始鑄態(tài)組織主要有兩種大型沉淀的類型 它們有 5 60 的稀缺圓形氧化物以及 0 5 20 的伴有鋅 錳和鎂的鎳富集階段 它們形成了一個(gè)統(tǒng)一的網(wǎng)絡(luò)結(jié)構(gòu) 如圖 12a 示 同時(shí)存在著 0 1 0 2 的非常細(xì)的彌散物 Fig 12 Optical microscopy of second phase precipitates in a spray cast Al 7xxx modified alloy in the a as cast condition b after one ECAE pass and c aftereight ECAE passes 圖 12b 和 c 給出了由 ECAE 作為數(shù)字功能時(shí) 固溶物所起到的作用 表 2 顯示了相應(yīng)固 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 15 溶形態(tài)的其中之一 即四個(gè)和八個(gè)的過程 在第一個(gè)步驟之后會(huì)看到斷裂和拉伸的出現(xiàn) 在四和八過程之后 大于 10 和 3 m 的固溶物中有個(gè)別的未檢出 但是相對(duì)比例最小的 固溶物卻逐漸增多 也許 固溶強(qiáng)化機(jī)制是在斷裂和沿成功剪切面和在 ECAE 通過路線 D 激活的方向上 斷裂和連續(xù)均一不斷的完善了固溶強(qiáng)化機(jī)制 表 3 總結(jié)了對(duì)于鑄態(tài)組織條 件下以及經(jīng)過在 T7 條件下 ECAE 的八和十六步驟后固溶強(qiáng)化機(jī)制的可測(cè)量性 切口屈服率 相對(duì)于初始態(tài)提高了 這是因?yàn)樵诎撕褪襟E后 1 8 和 2 45 的因素 這種效應(yīng)伴隨著 小但是總深長(zhǎng)率卻不斷增加的情況出現(xiàn) 除原因尚不明確的 16 路徑硬度減少 5 之外 其 強(qiáng)度和硬度基本保持穩(wěn)定 ECAE 應(yīng)變的較高水平帶來的高積蓄能量是可能會(huì)導(dǎo)致固溶動(dòng) 力和沉淀速度的增加的 提高韌性時(shí)占主導(dǎo)地位的機(jī)制是晶粒細(xì)化以及特殊非可溶性第二 相和氧化物的初始微裂變致使得均一化 這種效應(yīng)可能會(huì)得到更強(qiáng)大的合金及高合金濃度 總體而言 本研究及其他研究 25 30 表明 ECAE 在晶粒細(xì)化機(jī)制之外會(huì)產(chǎn)生獨(dú)特的性能 TEM 的運(yùn)用可以更好的了解這些現(xiàn)象 5 結(jié) 論 1 ECAE 平錯(cuò)齒飾的按比例放大已在大量的鋁 銅以及鈦的合金中得到了應(yīng)用 重 量的處理明顯高與參考文獻(xiàn)中所寫到的 到目前為止 在采用基于過程理論了解的機(jī)理時(shí) 由簡(jiǎn)單剪切而形成的晶粒細(xì)化機(jī)制被驗(yàn)證是可操作并且是最為理想的 2 ECAE 的商業(yè)化已被應(yīng)用 并且通過亞微晶和少量微晶這兩種不同尺寸類型的微 晶開發(fā)了新型的鋁銅合金的濺射靶材 有人認(rèn)為 在對(duì)提高諸如高純度 摻雜 低合金鋼 或不耐熱合金鋼的力學(xué)性能時(shí)具有明顯優(yōu)勢(shì) 其原因是晶粒細(xì)化機(jī)制是其唯一強(qiáng)化機(jī)制 3 隨著合金成分?jǐn)?shù)量的增加 由于激烈變形和熱處理的相互作用 新機(jī)理和結(jié)構(gòu)的 出現(xiàn)是有可能的 然后才能把各種強(qiáng)化機(jī)理加以合并 并且 或者 提高其疲勞或韌性這 樣的具體的屬性 這樣有利機(jī)制除細(xì)化晶粒外 還有提純 沉淀階段的勻質(zhì)處理以及第二 相變 謝 詞 作者祝 C C Kouch 博士 70 歲生日快樂 我們感謝他的原因是他是材料科學(xué)和工程 A 的作者之一 同時(shí)感謝 M Payton 和 B Willett 的協(xié)助 以及 D Mathur 和 B Daniels 的 大力支持 還有 S Chadda 的高度贊賞 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 16 參考文獻(xiàn) 1 C C Koch Rev Adv Mater Sci 5 2003 91 99 2 R Z Valiev R K Islamgaliev I V Alexandrov Prog Mater Sci 45 2000 103 3 V M Segal V I Reznikov A E Drobyshevky V I Kopylov Russ Metall 1 1981 971 974 4 M Furukawa Z Horita M Nemoto R Z Valiev T G Langdon Acta Mater 44 1996 4619 4629 5 M V Markushev C C Bampton M Yu Murashkin D A Hardwick Mater Sci Eng A 234 236 1997 927 6 Y Iwahashi M Furukawa Z Horita M Nemoto T G Langdon Metall Mater Trans A 29 1998 2245 7 O V Mishin G Gottstein Phil Mag A 78 1998 373 388 8 J J Beyerlein R A Lebensohn C N Tom e Mater Sci Eng A 345 2003 122 138 9 S D Terhune D L Swisher K Oh Ishi Z Horita T G Langdon T R McNelley Metall Mater Trans A 33 2002 2173 2184 10 F J Humphreys P B Prangnell J R Bowen A Gholinia C Harris Phil Trans Roy Soc Lond Ser A 7 1999 1663 1680 11 V M Segal Mater Sci Eng A 197 1995 157 164 12 S Ferrasse V M Segal K T Hartwig R E Goforth Metall Mater Trans A 28 1997 1047 13 S Ferrasse V M Segal K T Hartwig R E Goforth J Mater Res 12 1997 1253 14 A Y Vinogradov V V Stolyarov S Hashimoto R Z Valiev Mater Sci Eng A 318 2001 163 173 15 S R Agnew J R Weertman Mater Sci Eng A 244 1998 45 153 16 S R Agnew A Y Vinogradov S Hashimoto J R Weertman J Electron Mater 28 1999 1038 1044 17 H W H oppel R Z Valiev Z Metallkd 93 2002 641 648 18 V M Segal V I Reznikov V I Kopylov D A Pavlik V F Malyshev Processy Plasticheskogo Structyroob Razovania Metallov Sci Eng Minsk 1994 in Russian 19 R Y Lapovok Mater Sci Forum 503 504 2006 37 44 20 R Y Lapovok C Loader F H Della Torre S L Semiatin Mater Sci Eng A 425 2006 36 46 21 A Goloborodko O Sitdikov R Kaibyshev H Miura T Sakai Mater Sci Eng A 381 2004 121 128 22 J K Kim H K Kim J W Park W J Kim Scripta Mater 53 2005 1207 1211 23 Y H Zhao X Z Liao Y T Zhu R Z Valiev Mater J Res 20 2005 288 291 24 Y H Zhao X Z Liao Z Jin R Z Valiev Y T Zhu Acta Mater 52 2004 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 17 4589 4599 25 A Ma K Suzuki N Saito Y Nishida M Takagi I Shigematsu H Iwata Mater Sci Eng A 399 2005 181 189 26 A Ma K Suzuki Y Nishida N Saito I Shigematsu M Takagi H Iwata A Watazu T Imura Acta Mater 53 2005 211 220 27 Z G Zhang Y Watanabe I Kim Mater Sci Technol 21 2005 708 C Xu M Furukawa Z Horita T G Langdon Acta Mater 53 2005 749 758 28 I Sabirov O Kolednik R Z Valiev R Pippan Acta Mater 53 2005 4919 4930 29 Y Huang C Xu S Lee M Furukawa Z Horita T G Langdon Ultrafine Grained Materials II The Minerals Metals and Materials Society Warrendale PA 2002 p 173 Y T Zhu T G Langdon JOM 2004 56 58 30 V M Segal Mater Sci Eng A 386 2004 269 276 31 T C Lowe JOM April 2006 28 32 32 R Z Valiev V V Stolyarov H J Rack T C Lowe Adv Mater Process 2003 33 33 R Srinivasan P Chauduri Mater Sci Forum 426 432 2003 267 272 34 P K Chaudhury B Cherukini R Srinivasan Mater Sci Eng A 410 411 2005 316 318 35 R Srinivasan B Cherukini P K Chaudhury Mat Sci Forum 503 504 2006 67 272 36 S Ferrasse V N Segal F Alford S Strothers J Kardokus S Grabmeier J Evans in B S Altan Ed Severe Plastic Deformation Toward Bulk Production of Nanocrystalline Materials Nova Science Publisher New York USA 2006 pp 585 601 37 S Ferrasse F Alford S Grabmeier S Strothers J Evans B Daniels A Duvel R Zedlitz Semiconduct Manuf 4 2003 76 92 38 V M Segal US Patent 5 850 755 1998 39 S Ferrasse V M Segal S R Kalidindi F Alford Mater Sci Eng A 368 2004 40 M Furukawa Z Horita T G Langdon Mater Sci Eng A 332 2002 97 109 41 V M Segal Mater Sci Eng A 345 2003 36 46 42 V M Segal Mater Sci Eng A 338 2002 331 344 43 R Srinivasan Scripta Mater 44 2001 91 44 A Faterini R I Stephens H O Fuchs Metal Fatigue in 山東建筑大學(xué)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及譯文 18 Engineering Wiley USA 2001 p 325 Materials Science and Engineering A 493 2008 130 140 Scale up and application of equal channel angular extrusion for the electronics and Stephane Ferrasse a V M a Susan E Euclid A Whitmor form Abstract yond up are pursued of ys in those to medium to hea ys interplay K 1 niques have been the focus of intense research because they can produce metallic materials with submicrometer grain sizes ranging from 50 to 500 nm 1 2 One promising SPD method is equal channel angular extrusion ECAE 3 It can pro duce intense has ture materials deformation literature discussed cations continue A there commercialization well penetrate pro turing or design ii provide superior product performance and iii answer an unmet need One example involves the first ECAE products with submicrometer or micrometer grain sizes for high purity Al Cu and Ti sputtering targets used in the fabrication 0921 5093 doi bulk pieces of submicrocrystalline materials induced by plastic straining by simple shear Till now research made steady progress on the characterization of the tex structure and mechanical properties of submicrocrystalline and the effect of main ECAE parameters and post annealing 4 29 However despite the abundant problems of engineering and commercialization were only recently 30 32 and very few practical appli are reported The overwhelming majority of researchers to work with small long cylindrical or square billets few attempts to scale up the billet size are known 32 35 but is no report of successful commercialization This paper reviews the efforts in die design scale up and of ECAE for flat billets conducted at Honey Corresponding author Tel 1 509 2522118 fax 1 509 2528743 E mail address Stephane Ferrasse S Ferrasse of logic and memory components Two other examples concern medium and heavily alloyed Al materials used in aerospace and transportation Special attention is paid to the effects of ECAE on the structures and properties of single phase Cu and espe cially Al when the amount of alloying composition increases from a very low level as in sputtering targets to a higher level as in commercial alloys for aerospace It is argued that new mechanisms and therefore additional opportunities for appli cations arise as the alloying level increases because of the new interplay between plastic deformation and phase transformation during a thermo mechanical treatment 2 Process scale up and design Honeywell s focus has been historically the ECAE of flat products which was first introduced in Ref 38 In that case Fig 1 a typical billet shape is characterized by thickness a see front matter 2007 Elsevier B V All rights reserved 10 1016 j msea 2007 04 133 Janine Kardokus a Honeywell Electronic Materials 15128 b EPM 11228 Lemen Rd Suite Received 9 February 2007 received in revised Two areas are critical to promote equal channel angular extrusion be ii development of new submicrometer grained products Both goals ECAE for the production of sputtering targets from single phase allo reported in the literature Other described applications are targeted vily alloyed Al materials used in aerospace In these allo between plastic deformation and precipitation mechanisms 2007 Elsevier B V All rights reserved eywords ECAE Submicrocrystalline materials Flat products Sputtering Fatigue Introduction For the past 10 years severe plastic deformation SPD tech aerospace industries Segal b Frank Alford a Strothers a Avenue Spokane WA 99216 USA e Lake MI 48198 USA 12 April 2007 accepted 25 April 2007 the stage of a laboratory curiosity i tool processing design and scale at Honeywell The first case is the successful commercialization the electronic industry Blank dimensions are significantly larger than the increase of tensile strength high cycle fatigue and toughness in the optimal properties can be reached with better understanding of the Toughness 36 37 Selected examples show that this technology can a market in one or more of the following ways i vide an overall cost reduction versus the standard manufac S Ferrasse et al Materials Science and Engineering A 493 2008 130 140 131 width b and length c with c b greatermuch a 30 38 40 Usually dimen sions c and b are equal to allow the use of the same tool for multi pass processing with 90 rotation between passes The processing characteristics of one pass ECAE for flat and long billets are similar However usually for flat billets the axis of the permissible 90 billet rotation is perpendicular to the extrusion axis axis Z in Fig 1 whereas for long products it is parallel to the extrusion axis During scale up two considerations come into play i tool design and ii optimization of ECAE deformation mode 2 1 Tool design From a production perspective the major drivers for tool design include safety cost and productivity 2 1 1 Safety and cost The biggest issue is the potential breakage buckling of the punch if conventional low cost tool steels are used For a given material the punch pressure p 1 must be significantly less than the 30 where shear of and sho sures friction choice nificant terms entrance channel are not needed for flat products This is because a lessmuch b for flat products whereas a b for long products There fore p 1 and n are lower for flat products and formulae 2 and 3 can be approximately reduced to p 1 2k 1 mc a 4 ho atomically 2 1 2 ejection is The for able hydraulic 2 2 ECAE 2 2 1 ble mostly nel the the sharp tions e friction is e zone angle ditions simple problem of si the sis o 2 2 2 sequence of the yield strength of the punch material The punch pressure is p 1 2k p 2k mF 2A 1 p is the pressure at the exit of first channel k is the material flow stress m is the plastic friction coefficient F is the area stationary die walls and A is the billet cross sectional area For the tool itself the maximum pressures on the punch p 1 channel wall n act at the end of the entrance channel As wn in 30 for a low friction case m 0 25 p 1 2k 1 m cb ca ba 2 n 2k m cb ca ba 3 Therefore the preferable ways for reducing die punch pres are i to limit the ratio c a 6 10 and ii to minimize in both channels Two corresponding strategies are the of effective lubricants and movable channel walls A sig advantage of flat ECAE billets versus long billets in of equipment and design is that movable walls along the Fig 1 Principle of the ECAE technique for flat billets n 2k mc a 5 A movable bottom wall at the exit channel is recommended wever for both flat and long products because lubricant is removed along the bottom of exit channel Productivity The two important factors are processing speed and billet For reasonably ductile materials the processing speed not a limiting factor and may be sufficiently high 5 10 mm s billet ejection presents a more complex problem especially long cylindrical billets In the case of flat billets a mov bottom wall of the exit channel operated by an additional cylinder provides an effective and simple solution Optimization of ECAE There are two levels of optimization for single and multi pass Single pass A level of simple shear straining should be as high as possi for an effective refinement of microstructures 11 This is controlled by the conditions of friction and the chan geometry which has in turn two critical parameters i angle 2 between the two channels and ii the shape of channel intersection Usually channels are performed with no radius or round corner intersections Slip line solu 18 30 41 and finite element modeling 43 reveal the xistence of a fan like deformation zone in cases of noticeable and or round corner channels In such cases simple shear redistributed along three different directions 41 Moreover ven for frictionless conditions and sharp corners a dead metal exists at the channel corner for 2 90 Therefore tool 2 90 sharp corner channels and near frictionless con are the optimum characteristics to realize the effective shear of 2 along one direction The most important is the elimination of the friction along the bottom wall the outlet channel where high compressive pressure and inten ve slip act simultaneously With the movable bottom wall fan angle can be minimized as shown by slip line analy 30 41 The Honeywell dies operate under those conditions wing to advanced die design and lubricants Multi pass processing The two major parameters are the deformation route a of billet rotation after each pass and the total number passes accumulated strains For flat billets the definition of four fundamental routes A B or B A C and D or Bc 38 132 S Ferrasse et al Materials Science and Engineering A 493 2008 130 140 Fig 2 Production ECAE die with 4000 tonnes press capacity remains described 2 3 scale up first standard occasionally capacity weekly let Cu processed 34 35 has a mass of 6 7 kg whereas the mass of the most typical 10 mm 10 mm 60 mm Al billet used for research is 0 016 kg There is no report of a scale up attempt of the ECAE process for Cu Importantly the effects of ECAE on microstructures texture and properties have been verified at the various industrial scales as will be shown in the Section 2 In the authors view the expe rience attained on the production floor demonstrates that ECAE is scalable and opens up the era of its industrialization 3 ECAE of sputtering targets ECAE is particularly interesting for high purity materials because grain refinement is the only available mechanism that effectively enhances strength and retains good ductility Hall Petch hardening whereas the other hardening mechanisms are either ineffective precipitation and solution hardening or detrimental to ductility dislocation hardening For specific materials and crystal structures ECAE can also activate and con trol texture hardening This approach remains valid for doped or low alloyed materials such as high purity Cu Ti and Al materials with or without doping and low alloying used in the manufacture of sputtering targets In this section we use abbre viations of the electronic industry where 6N and 5N5 purity means 99 9999 and 99 9995 purity respectively 3 1 main v starting ture heat cipitates uniformity for ticular or similar to long billets except for the axis of rotation as earlier Scale up efforts Based on the above considerations Honeywell started the efforts of ECAE in 1997 with the construction of the production die Today several large scale die sets for a few billet sizes are in normal operation for Al Cu and pure Ti using presses with 1000 and 4000 tonnes Fig 2 Most of these dies have been in use on a basis for 6 years The mass of the largest ECAE bil is 32 7 kg for Al alloys 36 and most recently 110 kg for and Cu alloys As a comparison the largest reported ECAE Al billet obtained with a die channel angle of 105 Fig 3 EBSD of ECAE processed 6N Cu with a grain size of 5H9262m a grain size Microstructures of targets after ECAE Multi pass ECAE of high purity materials results in a few effects i development of either submicrocrystalline or ery fine usually 20H9262m microstructures independently of the grain size ii enhanced structure uniformity iii tex control via the number of passes route and post processing treatment 39 iv elimination of large phases and pre by solution heat treatment before ECAE Grain size and absence of large particles are the most influential sputtering performance The critical factor for choosing par structure is the thermal stability during target fabrication service Here are some examples and texture map b distribution of boundary misorientation angles S Ferrasse et al Materials Science and Engineering A 493 2008 130 140 133 Fig 4 Grain size evolution as a function of accumulated strains for ECAE or rolling alone of 5N5 99 9995 Al and 5N5 99 9995 Al 30 ppm Si i For high purity materials with low melting temperatures Tm 1H9262m grain size as a function of annealing temperature 0 5 Sn For 5N5 Al 30 ppm Si only the ECAE case is displayed particular simple shear is the most effective mode for struc ture refinement for a given strain level as shown in Fig 4 For example identical structures for 5N5 Al were detected after two passes of ECAE accumulated strains 2 3 and after rolling reduction 99 accumulated strain 4 8 A remarkable feature of such structures is the enhanced thermal stability The possible contributing factors are the 1 h for ECAE six pass route D or rolling alone of 5N5 Al 6N Cu and 6N 134 S Ferrasse et al Materials Science and Engineering A 493 2008 130 140 Fig as ECAE iii Fig grain 3 2 details ii impro mance collimation 3 3 strength 5N5 con 2 YS it result doping for talline 6 Evolution of the recrystallization temperature after 1 h heat treatment a function of the amount and nature of a few dopants alloying elements for 6N Cu equiaxial grain morphology low mobility of twin bound aries structure uniformity and near random texture Fig 3 Fig 5 compares the evolution of the grain size versus the annealing time for both ECAE and standard 5N5 Al 6N Cu 37 and Cu alloys For example for ECAE 6N Cu full static recrystallization occurs at 225 C for 1 h and results in a uniform grain size of 5 8H9262m which grows only slightly to 15H9262m after additional annealing at 300 C 1 h The structure remains uniform without abnormal grains In comparison the grain size of 6N Cu after standard pro cessing 85 rolling increases from 35 up to 65H9262m after annealing at 225 C 1 h and 300 C 1 h respectively ii For high purity Al and Cu doping defined here as up to 2000 ppm of a foreign element is a powerful technique to refine further the fine micrometer ECAE grain sizes and or improve the thermal stability of both the fine microme ter and submicrometer ECAE microstructures to elevated temperatures A notable example is 5N5 Al doped with 20 30 ppm Si The size of ultra fine grains decreases from 60 to 25H9262m and is far smaller than the as rolled structure after a similar strain level Fig 4 The simple shear defor mation mode of ECAE and non monotonic loading path of route D Bc are believed to play a critical role in this remarkable difference in grain size between the as ECAE and as rolled structures 41 42 Fig 6 displays the dramatic influence of the nature and quantity of dopants on temper atures of static recrystallization after six ECAE passes via route D for submicrocrystalline 6N Cu A near logarith mic dependence is obtained In particular Ag Sn and Ti have such a strong influence that a doping level is enough to produce submicron grained structures that are stable for sputtering In pure Al and Cu with a sufficient amount of doping or alloying components submicrocrystalline structures are stable for sputtering applications during a target life An example of a submicrometer grained structure in ECAE processed Al0 5Cu alloy is shown in Fig 7 36 37 Trans mission electron microscopy TEM reveals a uniform and materials tar to bonded als design 7 TEM of microstructure of monolithic ECAE Al0 5Cu target with 0 5H9262m size equiaxed submicrometer grain size of 0 3 0 5H9262m Fig 7 that corresponds to a refinement factor of 100 compared to conventional processes Very fine dispersions less than 50 nm of second phase material are present Sputtering performance ECAE targets exhibit superior sputtering performance for see Refs 36 37 that includes i reduction of arcing low level of particles and splat defects on the wafer iii ved film thickness uniformity and consistent film perfor iv improved step coverage due to the superior beam of the submicron grained structures Mechanical properties and target design Fig 8 shows data on yield strength YS and ultimate tensile UTS for ECAE processed 6N Cu and doped 6N Cu Al0 5Cu and 4N5 Ni at room temperature Compared to ventional processing YS and UTS is from 4 to 10 times and to 3 times higher respectively The effect is most significant on which is a critical property for target applications because governs the onset of permanent plastic deformation and may in target warping during sputtering In the case of 6N Cu has a noticeable strengthening effect in addition to ECAE Fig 8 The tensile elongation also remains high above 20 submicrocrystalline Al0 5Cu and 35 40 for submicrocrys 6N Cu The high strength of pure submicron grained permits the use of a monolithic design where the entire get is a mono block Fig 9 This is a unique design compared that of traditional targets which consists of a target material or soldered to a backing plate made from strong materi like Al 6061 or CuCr The main advantages of a monolithic are An increased target lifetime up to 50 in comparison with diffusion bonded designs because sputtering is no longer lim ited by the diffusion bond line 36 37 A direct consequence is the increase in throughput number of processed wafers per target and lifetime of other chamber components and the reduction of downtime S Ferrasse et al Materials Science and Engineering A 493 2008 130 140 135 Fig 8 UTS and YS for the submicrocrystalline ECAE and conventional sputtering target microstructures of 5N5 Al0 5Cu 6N Cu 6N Cu0 15Ag 6N Cu0 2Sn and 4N5 Ni Simplified manufacturing by elimination of the costly multi step and risky diffusion bonding operation Due to the high ductility deformation by conventional means rolling draw 4 soluble potentially and mechanical more allo strengthening be developed for heat treatable alloys For a medium level of alloying precipitation hardening is usually as powerful as grain refinement and the goal is to optimize processing to combine both ECAE nents allo material ing such ECAE components 4 1 4 1 1 ied Fig 2738 393 7 ing can be performed after ECAE to obtain the final products Recent developments of ECAE Al and Cu targets are the hollow cathode magnetron HCM target These targets require forming an ECAE blank into a complex cup like shape with a final diameter of about 393 7 mm a height of 381 mm and a thickness of 12 7 25 4 mm ECAE of Al alloys for aerospace and transportation As alloying goes up the number of second phases either or insoluble increases which results in two other available strengthening mechanisms i solution ii precipitation hardening The effects of ECAE thermo processing on microstructure and properties become varied and more difficult to predict For non heat treatable ys grain refinement during ECAE remains the dominant mechanism 2 12 More interesting cases can 9 a Flat 300 mm monolithic ECAE Al0 5Cu target with AMAT design and kWh 52 life increase b non flat and non sputtered 300 mm monolithic mm 25 4 mm thickness 381 mm height these effects 13 20 24 One example described below is of Al 2618 alloy which is used in turbocharger compo for the aerospace and transportation industries For heavy ying the effect of microstructure refinement by ECAE on the strength can become minor compared to other harden mechanisms Nonetheless other important characteristics as toughness 25 29 can be greatly enhanced by using as shown below for a spray cast Al alloy for landing gear ECAE of Al 2618 for turbocharger components Processing Three cases of the pre ECAE material conditions were stud I Solutionizing at 529 C 24 h with immediate water quenching to dissolve all soluble phases overall dimensions diameter 523 8 mm 25 4 mm thickness sputtered up to ECAE 6N Cu with HCM Novellus design and overall dimensions diameter 136 S Ferrasse et al Materials Science and Engineering A 493 2008 130 140 Table 1 Mechanical properties of A2618 after ECAE process for three initial conditions cases I II and III and comparison with standard properties Condition Process YS MPa UTS MPa Elongation Case I One ECAE pass as deformed 499 9 544 7 13 One ECAE pass 150 C 10 h 558 5 586 14 Two ECAE pass as deformed 566 601 11 Four ECAE pass as deformed 407 5 477 13 14 Case II Four ECAE pass as deformed 393 7 455 8 12 Case III Four ECAE pass as deformed 312 3 332 4 10 Standard Al 2618 T61 at 25 C 370 3 435 1 10 Al 2618 T31 at 25 C 248 2 358 5 17 Al 2618 O at 25 C 75 8 172 4 18 II Solutionizing at 526 C 20 h followed by quenching in boiling water and peak aging at 200 C 20 h in air This