高三數(shù)學二輪復習-數(shù)列通項與求和方法的歸納.doc
《高三數(shù)學二輪復習-數(shù)列通項與求和方法的歸納.doc》由會員分享,可在線閱讀,更多相關(guān)《高三數(shù)學二輪復習-數(shù)列通項與求和方法的歸納.doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
數(shù)列的通項與數(shù)列求和方法的探討四川省三臺縣蘆溪中學 何玉平考綱分析與備考策略:1、 考綱分析:(1) 了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項,理解與的轉(zhuǎn)化關(guān)系。(2) 對于非等差、等比數(shù)列,能夠通過變形配湊,構(gòu)造新的等差、等比數(shù)列模型,再運用等差、等比數(shù)列的公式、性質(zhì)解決問題。(3) 能夠運用數(shù)學歸納法證明數(shù)列中的相關(guān)問題。(4) 掌握常見的數(shù)列求和類型,能夠進行數(shù)列求和運算。2、 備考策略(1) 熟練掌握等差、等比數(shù)列的有關(guān)概念、公式與性質(zhì),這是解決數(shù)列通項與求和問題的基礎(chǔ)。(2) 對于常見的數(shù)列的求通項、求和的類型題要善于分類歸納整理,掌握各種類型的通解通法。(3) 對于遞推數(shù)列問題,要善于從特例入手,有特殊分析歸納一般,即先猜再證,其中數(shù)學歸納法作為一種工具不會單獨命題,只會作為一種證明的手段,在應用時要注意第二步的證明技巧,做到有的放矢,思路鮮明。考點剖析與整合提升:一、求數(shù)列的通項公式方法的歸納:求數(shù)列通項公式常用觀察法、公式法、等差或等比通項公式法、遞增關(guān)系變形法(累加、累乘)等。1、 公式法: ,注意兩種情況能合并,則合并,不能合并,則分段表示。2、 常見遞推數(shù)列通項公式的求法:(1)、型(用累加法)即:,將上述個式子相加,可得:(2)、型(用累乘法)即,. 將上述個式子相乘,可得:。(3)型(方法一:待定系數(shù)法,通過待定系數(shù)法求出的值,構(gòu)造成以為首項,以為公比的等比數(shù)列。方法二:迭代法= = =而是一個等比數(shù)列,求出其和,即可求出通項。(4)型方法一:待定系數(shù)法通過待定系數(shù)法確定的值,轉(zhuǎn)化成以為首項,以為公比的等比數(shù)列。方法二:等式兩邊同時除以有,轉(zhuǎn)化為型。(5)型兩邊取倒數(shù)有轉(zhuǎn)化為型。二、數(shù)列求和的方法(1)公式法:等差數(shù)列:;等比數(shù)列:; (2)錯位相減法:這是推導等比數(shù)列前項和公式時所使用的方法,這種方法主要用于求數(shù)列的前項和,其中分別是等差數(shù)列和等比數(shù)列。(3)倒序相加法將一個數(shù)列倒過來排序,當它與原數(shù)列相加時,若有公因式可提,并且剩余項的和易于求得,則這樣的數(shù)列可用倒序相加法求和。(4)分組求和法數(shù)列既不是等差數(shù)列又不是等比數(shù)列時,但它可以通過適當拆分,分為幾個等差、等比數(shù)列或常見的數(shù)列,即能分別求和,然后再合并。(5)裂項法這是分解與組合思想在數(shù)列求和中的具體應用,其實質(zhì)是將數(shù)列中的某些項分解,然后重新組合,使之能消去一些項,最終達到求和的目的。常見的裂項法有:三、考題精析例1:(2010年全國高考寧夏卷17)設(shè)數(shù)列滿足(1) 求數(shù)列的通項公式;(2) 令,求數(shù)列的前n項和解:()由已知,當n1時,。而 所以數(shù)列的通項公式為。()由知 從而 -得 。即 點評:本題主要考察由遞推關(guān)系求數(shù)列通項的方法以及運用錯位相減法求數(shù)列的和。熟練數(shù)列的基礎(chǔ)知識是解答好本類題目的關(guān)鍵。例2:(2010山東理數(shù)18)已知等差數(shù)列滿足:,的前n項和為()求及;()令bn=(nN*),求數(shù)列的前n項和【解析】()設(shè)等差數(shù)列的公差為d,因為,所以有,解得,所以;=。()由()知,所以bn=,所以=,即數(shù)列的前n項和=。【命題意圖】本題考查等差數(shù)列的通項公式與前n項和公式的應用、裂項法求數(shù)列的和,熟練數(shù)列的基礎(chǔ)知識是解答好本類題目的關(guān)鍵。例3:(2010四川理數(shù)21)已知數(shù)列an滿足a10,a22,且對任意m、nN*都有a2m1a2n12amn12(mn)2()求a3,a5;()設(shè)bna2n1a2n1(nN*),證明:bn是等差數(shù)列;()設(shè)cn(an+1an)qn1(q0,nN*),求數(shù)列cn的前n項和Sn.解:(1)由題意,零m2,n1,可得a32a2a126 再令m3,n1,可得a52a3a18202分(2)當nN *時,由已知(以n2代替m)可得a2n3a2n12a2n18于是a2(n1)1a2(n1)1(a2n1a2n1)8即 bn1bn8所以bn是公差為8的等差數(shù)列5分(3)由(1)(2)解答可知bn是首項為b1a3a16,公差為8的等差數(shù)列則bn8n2,即a2n+=1a2n18n2另由已知(令m1)可得an-(n1)2.那么an1an2n1 2n1 2n于是cn2nqn1.當q1時,Sn2462nn(n1)當q1時,Sn2q04q16q22nqn1.兩邊同乘以q,可得 qSn2q14q26q32nqn.上述兩式相減得 (1q)Sn2(1qq2qn1)2nqn 22nqn 2所以Sn2綜上所述,Sn12分【命題意圖】本小題主要考查數(shù)列的基礎(chǔ)知識和化歸、分類整合等數(shù)學思想,以及推理論證、分析與解決問題的能力.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 數(shù)學 二輪 復習 數(shù)列 求和 方法 歸納
鏈接地址:http://m.italysoccerbets.com/p-8438537.html