《2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第1篇 專題3 數(shù)列學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019版高考數(shù)學(xué)二輪復(fù)習(xí) 第1篇 專題3 數(shù)列學(xué)案(3頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專題三數(shù)列年份卷別小題考查大題考查2018全國卷T17遞推數(shù)列、等比數(shù)列的判定及其通項(xiàng)公式全國卷T17等差數(shù)列的通項(xiàng),前n項(xiàng)和的最值全國卷T17等比數(shù)列的通項(xiàng),前n項(xiàng)和的有關(guān)問題2017全國卷T17等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和,等差數(shù)列的判定全國卷T17等差、等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和全國卷T17數(shù)列的遞推關(guān)系及通項(xiàng)公式,裂項(xiàng)相消法求和2016全國卷T17等差數(shù)列的通項(xiàng)公式及等比數(shù)列求和全國卷T17等差數(shù)列的通項(xiàng)公式,數(shù)列求和全國卷T17數(shù)列的遞推關(guān)系及通項(xiàng)公式數(shù)列問題重在“化”化歸等差數(shù)列與等比數(shù)列是我們最熟悉的兩個(gè)基本數(shù)列,在高中階段它們是一切數(shù)列問題的出發(fā)點(diǎn)與落腳點(diǎn)首項(xiàng)與公差(比)稱為
2、等差(比)數(shù)列的基本量,大凡涉及這兩個(gè)數(shù)列的問題,我們總希望把已知條件化歸為等差或等比數(shù)列的基本量間的關(guān)系,從而達(dá)到解決問題的目的這種化歸為基本量處理的方法是解決等差或等比數(shù)列問題特有的方法,對(duì)于不是等差或等比的數(shù)列,可通過轉(zhuǎn)化化歸,轉(zhuǎn)化為等差(比)數(shù)列問題或相關(guān)問題求解由于數(shù)列是一種特殊的函數(shù),也可根據(jù)題目特點(diǎn),將數(shù)列問題化歸為函數(shù)問題來解決【典例】Sn為數(shù)列an的前n項(xiàng)和已知an0,a2an4Sn3(1)求an的通項(xiàng)公式;(2)設(shè)bn,求數(shù)列bn的前n項(xiàng)和解題示范(1)由a2an4Sn3,可知a2an14Sn13.,得aa2(an1an)4an1,即2(an1an)aa(an1an)(an
3、1an)由an0,得an1an2.又a2a14a13,解得a11(舍去)或a13.所以an是首項(xiàng)為3,公差為2的等差數(shù)列,通項(xiàng)公式為an2n1(2)由an2n1可知bn .設(shè)數(shù)列bn的前n項(xiàng)和為Tn,則Tnb1b2bn化歸:由條件化歸為等差數(shù)列項(xiàng)與項(xiàng)之間的關(guān)系化歸:把數(shù)列的通項(xiàng)分拆后使得求和時(shí)某些項(xiàng)可以相消,即為裂項(xiàng)相消法求和對(duì)于數(shù)列的備考:一是準(zhǔn)確掌握數(shù)列中an與Sn之間的關(guān)系,這是解決數(shù)列問題的基礎(chǔ);二是重視等差與等比數(shù)列的復(fù)習(xí),熟悉其基本概念、公式和性質(zhì),這是解決數(shù)列問題的根本;三是注意數(shù)列與函數(shù)、不等式等的綜合問題,掌握解決此類問題的通法;四是在知識(shí)的復(fù)習(xí)和解題過程中體會(huì)其中所蘊(yùn)含的數(shù)學(xué)思想方法,如分類討論、數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化、函數(shù)與方程思想等3