(通用版)2020高考數(shù)學(xué)一輪復(fù)習(xí) 2.11 函數(shù)與方程講義 文
《(通用版)2020高考數(shù)學(xué)一輪復(fù)習(xí) 2.11 函數(shù)與方程講義 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《(通用版)2020高考數(shù)學(xué)一輪復(fù)習(xí) 2.11 函數(shù)與方程講義 文(11頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第十一節(jié)函數(shù)與方程 一、基礎(chǔ)知識(shí)批注——理解深一點(diǎn) 1.函數(shù)的零點(diǎn) (1)零點(diǎn)的定義:對(duì)于函數(shù)y=f(x),我們把使f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn). (2)零點(diǎn)的幾個(gè)等價(jià)關(guān)系:方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn). 函數(shù)的零點(diǎn)不是函數(shù)y=f(x)與x軸的交點(diǎn),而是y=f(x)與x軸交點(diǎn)的橫坐標(biāo),也就是說函數(shù)的零點(diǎn)不是一個(gè)點(diǎn),而是一個(gè)實(shí)數(shù). 2.函數(shù)的零點(diǎn)存在性定理 如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零
2、點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根. 函數(shù)零點(diǎn)的存在性定理只能判斷函數(shù)在某個(gè)區(qū)間上的變號(hào)零點(diǎn),而不能判斷函數(shù)的不變號(hào)零點(diǎn),而且連續(xù)函數(shù)在一個(gè)區(qū)間的端點(diǎn)處函數(shù)值異號(hào)是這個(gè)函數(shù)在這個(gè)區(qū)間上存在零點(diǎn)的充分不必要條件. 3.二分法的定義 對(duì)于在區(qū)間[a,b]上連續(xù)不斷且f(a)f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法. 二、常用結(jié)論匯總——規(guī)律多一點(diǎn) 有關(guān)函數(shù)零點(diǎn)的結(jié)論 (1)若連續(xù)不斷的函數(shù)f(x)在定義域上是單調(diào)函數(shù),則f(x)至多有一個(gè)零
3、點(diǎn). (2)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號(hào). (3)連續(xù)不斷的函數(shù)圖象通過零點(diǎn)時(shí),函數(shù)值可能變號(hào),也可能不變號(hào). 三、基礎(chǔ)小題強(qiáng)化——功底牢一點(diǎn) (1)函數(shù)的零點(diǎn)就是函數(shù)的圖象與x軸的交點(diǎn).( ) (2)函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn)(函數(shù)圖象連續(xù)不斷),則f(a)·f(b)<0.( ) (3)只要函數(shù)有零點(diǎn),我們就可以用二分法求出零點(diǎn)的近似值.( ) (4)二次函數(shù)y=ax2+bx+c(a≠0)在b2-4ac<0時(shí)沒有零點(diǎn).( ) (5)若函數(shù)f(x)在(a,b)上單調(diào)且f(a)·f(b)<0,則函數(shù)f(x)在[a,b]上有且
4、只有一個(gè)零點(diǎn).( ) 答案:(1)× (2)× (3)× (4)√ (5)√ (二)選一選 1.已知函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對(duì)應(yīng)值表: x 1 2 3 4 5 f(x) -4 -2 1 4 7 在下列區(qū)間中,函數(shù)f(x)必有零點(diǎn)的區(qū)間為( ) A.(1,2) B.(2,3) C.(3,4) D.(4,5) 解析:選B 由所給的函數(shù)值的表格可以看出,x=2與x=3這兩個(gè)數(shù)字對(duì)應(yīng)的函數(shù)值的符號(hào)不同,即f(2)·f(3)<0,所以函數(shù)f(x)在(2,3)內(nèi)有零點(diǎn). 2.函數(shù)f(x)=(x-1)ln(x-2)的零點(diǎn)有(
5、 ) A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè) 解析:選B 由x-2>0,得x>2,所以函數(shù)f(x)的定義域?yàn)?2,+∞),所以當(dāng)f(x)=0,即(x-1)ln(x-2)=0時(shí),解得x=1(舍去)或x=3. 3.函數(shù)f(x)=ln x-的零點(diǎn)所在的大致區(qū)間是( ) A.(1,2) B.(2,3) C.和(3,4) D.(4,+∞) 解析:選B 易知f(x)為增函數(shù),由f(2)=ln 2-1<0,f(3)=ln 3->0,得f(2)·f(3)<0,故函數(shù)f(x)的零點(diǎn)所在的大致區(qū)間是(2,3). (三)填一填 4.已知2是函數(shù)f(x)=的一個(gè)零點(diǎn),則f[f(4
6、)]的值是________.
解析:由題意知log2(2+m)=0,∴m=-1,∴f[f(4)]=f(log23)=2=3.
答案:3
5.若函數(shù)f(x)=ax+1-2a在區(qū)間(-1,1)上存在一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是________.
解析:當(dāng)a=0時(shí),函數(shù)f(x)=1在(-1,1)上沒有零點(diǎn),所以a≠0.所以函數(shù)f(x)是單調(diào)函數(shù),要滿足題意,只需f(-1)f(1)<0,即(-3a+1)·(1-a)<0,所以(a-1)·(3a-1)<0,解得
7、x)+3x的零點(diǎn)個(gè)數(shù)是( )
A.0 B.1
C.2 D.3
(2)設(shè)函數(shù)f(x)=x-ln x,則函數(shù)y=f(x)( )
A.在區(qū)間,(1,e)內(nèi)均有零點(diǎn)
B.在區(qū)間,(1,e)內(nèi)均無零點(diǎn)
C.在區(qū)間內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無零點(diǎn)
D.在區(qū)間內(nèi)無零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)
[解析] (1)解方程法
令f(x)+3x=0,
則或
解得x=0或x=-1,
所以函數(shù)y=f(x)+3x的零點(diǎn)個(gè)數(shù)是2.
(2)法一:圖象法
令f(x)=0得x=ln x.作出函數(shù)y=x和y=ln x的圖象,如圖,
顯然y=f(x)在內(nèi)無零點(diǎn),在(1,e) 8、內(nèi)有零點(diǎn).
法二:定理法
當(dāng)x∈時(shí),函數(shù)圖象是連續(xù)的,且f′(x)=-=<0,所以函數(shù)f(x)在上單調(diào)遞減.
又f=+1>0,f(1)=>0,f(e)=e-1<0,所以函數(shù)有唯一的零點(diǎn)在區(qū)間(1,e)內(nèi).
[答案] (1)C (2)D
[解題技法] 掌握判斷函數(shù)零點(diǎn)個(gè)數(shù)的3種方法
(1)解方程法
若對(duì)應(yīng)方程f(x)=0可解,通過解方程,即可判斷函數(shù)是否有零點(diǎn),其中方程有幾個(gè)解就對(duì)應(yīng)有幾個(gè)零點(diǎn).
(2)定理法
利用函數(shù)零點(diǎn)的存在性定理進(jìn)行判斷,但必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對(duì)稱性)才能確定函數(shù)的零點(diǎn)個(gè)數(shù).
(3)數(shù)形結(jié)合法
合理轉(zhuǎn)化為兩個(gè)函數(shù)的圖 9、象(易畫出圖象)的交點(diǎn)個(gè)數(shù)問題.先畫出兩個(gè)函數(shù)的圖象,看其是否有交點(diǎn),若有交點(diǎn),其中交點(diǎn)的個(gè)數(shù),就是函數(shù)零點(diǎn)的個(gè)數(shù).
[題組訓(xùn)練]
1.函數(shù)f(x)=x3-x2-1的零點(diǎn)所在的區(qū)間是( )
A.(0,1) B.(-1,0)
C.(1,2) D.(2,3)
解析:選C 函數(shù)f(x)=x3-x2-1是連續(xù)函數(shù).因?yàn)閒(1)=1-1-1=-1<0,f(2)=8-4-1=3>0,所以f(1)f(2)<0,結(jié)合選項(xiàng)可知函數(shù)的零點(diǎn)所在的區(qū)間是(1,2).
2.函數(shù)f(x)=的零點(diǎn)個(gè)數(shù)為( )
A.3 B.2
C.7 D.0
解析:選B 法一:(解方程法)
由f( 10、x)=0得或
解得x=-2或x=e.
因此函數(shù)f(x)共有2個(gè)零點(diǎn).
法二:(圖象法)
作出函數(shù)f(x)的圖象如圖所示,
由圖象知函數(shù)f(x)共有2個(gè)零點(diǎn).
3.設(shè)f(x)=ln x+x-2,則函數(shù)f(x)的零點(diǎn)所在的區(qū)間為( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
解析:選B 函數(shù)f(x)的零點(diǎn)所在的區(qū)間可轉(zhuǎn)化為函數(shù)g(x)=ln x,h(x)=-x+2圖象交點(diǎn)的橫坐標(biāo)所在區(qū)間.如圖如示,可知f(x)的零點(diǎn)所在的區(qū)間為(1,2).
考法(一) 已知函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)范圍
[典例] (2018·全國(guó)卷Ⅰ)已知函數(shù)f(x)=g 11、(x)=f(x)+x+a.若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是( )
A.[-1,0) B.[0,+∞)
C.[-1,+∞) D.[1,+∞)
[解析] 令h(x)=-x-a,
則g(x)=f(x)-h(huán)(x).
在同一坐標(biāo)系中畫出y=f(x),y=h(x)的示意圖,如圖所示.
若g(x)存在2個(gè)零點(diǎn),則y=f(x)的圖象與y=h(x)的圖象有2個(gè)交點(diǎn),平移y=h(x)的圖象,可知當(dāng)直線y=-x-a過點(diǎn)(0,1)時(shí),有2個(gè)交點(diǎn),此時(shí)1=-0-a,a=-1.
當(dāng)y=-x-a在y=-x+1上方,即a<-1時(shí),僅有1個(gè)交點(diǎn),不符合題意.
當(dāng)y=-x-a在y=-x 12、+1下方,即a>-1時(shí),有2個(gè)交點(diǎn),符合題意.
綜上,a的取值范圍為[-1,+∞).
[答案] C
考法(二) 已知函數(shù)零點(diǎn)所在區(qū)間求參數(shù)范圍
[典例] (2019·安慶摸底)若函數(shù)f(x)=4x-2x-a,x∈[-1,1]有零點(diǎn),則實(shí)數(shù)a的取值范圍是________.
[解析] ∵函數(shù)f(x)=4x-2x-a,x∈[-1,1]有零點(diǎn),
∴方程4x-2x-a=0在[-1,1]上有解,
即方程a=4x-2x在[-1,1]上有解.
方程a=4x-2x可變形為a=2-,
∵x∈[-1,1],∴2x∈,
∴2-∈.
∴實(shí)數(shù)a的取值范圍是.
[答案]
[解題技法]
1. 13、利用函數(shù)零點(diǎn)求參數(shù)范圍的3種方法
直接法
直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍
分離參數(shù)法
分離參數(shù)(a=g(x))后,將原問題轉(zhuǎn)化為y=g(x)的值域(最值)問題或轉(zhuǎn)化為直線y=a與y=g(x)的圖象的交點(diǎn)個(gè)數(shù)問題(優(yōu)選分離、次選分類)求解
數(shù)形結(jié)合法
先對(duì)解析式變形,在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解
2.利用函數(shù)零點(diǎn)求參數(shù)范圍的步驟
[題組訓(xùn)練]
1.(2019·北京西城區(qū)模擬)若函數(shù)f(x)=2x--a的一個(gè)零點(diǎn)在區(qū)間(1,2)內(nèi),則實(shí)數(shù)a的取值范圍是( )
A.(1,3) B.(1,2)
C. 14、(0,3) D.(0,2)
解析:選C 因?yàn)楹瘮?shù)f(x)=2x--a在區(qū)間(1,2)上單調(diào)遞增,又函數(shù)f(x)=2x--a的一個(gè)零點(diǎn)在區(qū)間(1,2)內(nèi),則有f(1)·f(2)<0,所以(-a)(4-1-a)<0,
即a(a-3)<0,解得0
15、,a∈∪(-2,+∞).
1.下列函數(shù)中,在(-1,1)內(nèi)有零點(diǎn)且單調(diào)遞增的是( )
A.y=logx B.y=2x-1
C.y=x2- D.y=-x3
解析:選B 函數(shù)y=logx在定義域上單調(diào)遞減,y=x2-在(-1,1)上不是單調(diào)函數(shù),y=-x3在定義域上單調(diào)遞減,均不符合要求.對(duì)于y=2x-1,當(dāng)x=0∈(-1,1)時(shí),y=0且y=2x-1在R上單調(diào)遞增.故選B.
2.(2018·重慶一中期中)函數(shù)f(x)=ex+x-3在區(qū)間(0,1)上的零點(diǎn)個(gè)數(shù)是( )
A.0 B.1
C.2 D.3
解析:選B 由題知函數(shù)f(x)是增函數(shù).根據(jù)函數(shù) 16、的零點(diǎn)存在性定理及f(0)=-2,f(1)=e-2>0,可知函數(shù)f(x)在區(qū)間(0,1)上有且只有一個(gè)零點(diǎn),故選B.
3.(2018·豫西南部分示范性高中聯(lián)考)函數(shù)f(x)=ln x-的零點(diǎn)所在的區(qū)間為( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
解析:選B 易知f(x)=ln x-的定義域?yàn)?0,+∞),且在定義域上單調(diào)遞增.
∵f(1)=-2<0,f(2)=ln 2->0,
∴f(1)·f(2)<0,∴根據(jù)零點(diǎn)存在性定理知f(x)=ln x-的零點(diǎn)所在的區(qū)間為(1,2).
4.若函數(shù)f(x)=ax+1在區(qū)間(-1,1)上存在一個(gè)零點(diǎn),則實(shí)數(shù) 17、a的取值范圍是( )
A.(1,+∞) B.(-∞,1)
C.(-∞,-1)∪(1,+∞) D.(-1,1)
解析:選C 由題意知,f(-1)·f(1)<0,
即(1-a)(1+a)<0,解得a<-1或a>1.
5.已知實(shí)數(shù)a>1,0<b<1,則函數(shù)f(x)=ax+x-b的零點(diǎn)所在的區(qū)間是( )
A.(-2,-1) B.(-1,0)
C.(0,1) D.(1,2)
解析:選B 因?yàn)閍>1,0<b<1,所以f(x)=ax+x-b在R上是單調(diào)增函數(shù),所以 f(-1)=-1-b<0,f(0)=1-b>0,由零點(diǎn)存在性定理可知,f(x)在區(qū)間(-1,0)上存 18、在零點(diǎn).
6.若a0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0,由函數(shù)零點(diǎn)的存在性定理可知函數(shù)f(x)的兩個(gè)零點(diǎn)分別位于區(qū)間(a,b)和(b,c)內(nèi).
7.函數(shù)f(x)=|x-2|-ln x在定義域內(nèi)的零點(diǎn)的個(gè)數(shù)為( )
A.0 B.1
C 19、.2 D.3
解析:選C 由題意可知f(x)的定義域?yàn)?0,+∞).在同一平面直角坐標(biāo)系中作出函數(shù)y=|x-2|(x>0),y=ln x(x>0)的圖象如圖所示.
由圖可知函數(shù)f(x)在定義域內(nèi)的零點(diǎn)個(gè)數(shù)為2.
8.(2019·鄭州質(zhì)量測(cè)試)已知函數(shù)f(x)=(a∈R),若函數(shù)f(x)在R上有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(0,1] B.[1,+∞)
C.(0,1) D.(-∞,1]
解析:選A 畫出函數(shù)f(x)的大致圖象如圖所示.因?yàn)楹瘮?shù)f(x)在R上有兩個(gè)零點(diǎn),所以f(x)在(-∞,0]和(0,+∞)上各有一個(gè)零點(diǎn).當(dāng)x≤0時(shí),f(x)有一個(gè)零點(diǎn),需0 20、0時(shí),f(x)有一個(gè)零點(diǎn),需-a<0,即a>0.綜上,0
21、)的兩個(gè)零點(diǎn)分別在區(qū)間(-1,0)和區(qū)間(1,2)內(nèi),則實(shí)數(shù)m的取值范圍是________.
解析:依題意并結(jié)合函數(shù)f(x)的圖象可知,
即
解得
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第七章-透射電子顯微鏡
- 群落的結(jié)構(gòu)(課件)
- 焊接基礎(chǔ)知識(shí)
- 水文地質(zhì)學(xué)課件
- 某公司員工工傷安全管理規(guī)定
- 消防培訓(xùn)課件:安全檢修(要點(diǎn))
- 某公司安全生產(chǎn)考核與獎(jiǎng)懲辦法范文
- 安全作業(yè)活動(dòng)安全排查表
- 某公司危險(xiǎn)源安全辨識(shí)、分類和風(fēng)險(xiǎn)評(píng)價(jià)、分級(jí)辦法
- 某公司消防安全常識(shí)培訓(xùn)資料
- 安全培訓(xùn)資料:危險(xiǎn)化學(xué)品的類別
- 中小學(xué)寒假學(xué)習(xí)計(jì)劃快樂度寒假充實(shí)促成長(zhǎng)
- 紅色插畫風(fēng)輸血相關(guān)知識(shí)培訓(xùn)臨床輸血流程常見輸血不良反應(yīng)
- 14.應(yīng)急救援隊(duì)伍訓(xùn)練記錄
- 某公司各部門及人員安全生產(chǎn)責(zé)任制