《2020高考數(shù)學(xué)二輪復(fù)習(xí) 分層特訓(xùn)卷 主觀題專練 數(shù)列(3) 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學(xué)二輪復(fù)習(xí) 分層特訓(xùn)卷 主觀題專練 數(shù)列(3) 文(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、數(shù)列(3)12019河北聯(lián)盟考試已知數(shù)列an是等差數(shù)列,a26,前n項(xiàng)和為Sn,bn是等比數(shù)列,b22,a1b312,S3b119.(1)求an,bn的通項(xiàng)公式;(2)求數(shù)列bncos(an)的前n項(xiàng)和Tn.解析:(1)數(shù)列an是等差數(shù)列,a26,S3b13a2b118b119,b11.b22,數(shù)列bn是等比數(shù)列,bn2n1.b34,a1b312,a13,a26,數(shù)列an是等差數(shù)列,an3n.(2)由(1)得,令Cnbncos(an)(1)n2n1,Cn1(1)n12n,2,又C11,數(shù)列 bncos(an)是以1為首項(xiàng)、2為公比的等比數(shù)列,Tn1(2)n22019遼寧大連二十四中模擬已知數(shù)列
2、an的各項(xiàng)都是正數(shù),nN*.(1)若an是等差數(shù)列,公差為d,且bn是an和an1的等比中項(xiàng),設(shè)cnbb,nN*,求證:數(shù)列cn是等差數(shù)列;(2)若aaaaS,Sn為數(shù)列an的前n項(xiàng)和,求數(shù)列an的通項(xiàng)公式解析:(1)由題意得banan1,則cnbban1an2anan12dan1,因此cn1cn2d(an2an1)2d2,cn是等差數(shù)列(2)當(dāng)n1時(shí),aa,a10,a11.當(dāng)n2時(shí),aaaaS,aaaaS,得,aSS(SnSn1)(SnSn1)an0,aSnSn12Snan,a11合適上式,當(dāng)n2時(shí),a2Sn1aa1,得aa2(SnSn1)anaa12ananan1anan1,anan10,
3、anan11,數(shù)列an是首項(xiàng)為1,公差為1的等差數(shù)列,可得ann.32019云南昆明質(zhì)檢已知數(shù)列an中,a13,an的前n項(xiàng)和Sn滿足Sn1ann2(nN*)(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)數(shù)列bn滿足bn(1)n2an,求bn的前n項(xiàng)和Tn.解析:(1)由Sn1ann2,得Sn11an1(n1)2,由,得an2n1.當(dāng)a13時(shí)滿足上式所以數(shù)列an的通項(xiàng)公式為an2n1.(2)由(1)得bn(1)n22n1,所以Tnb1b2bn(1)(1)2(1)n(232522n1)(4n1)42019四川成都二診已知等比數(shù)列an的前n項(xiàng)和為Sn,公比q1,且a21為a1,a3的等差中項(xiàng),S314.(1
4、)求數(shù)列an的通項(xiàng)公式;(2)記bnanlog2an,求數(shù)列bn的前n項(xiàng)和Tn.解析:(1)由題意,得2(a21)a1a3.又S3a1a2a314,2(a21)14a2,a24,S344q14,q2或q,q1,q2.ana2qn242n22n.(2)由(1)知an2n,bnanlog2an2nn.Tn121222323(n1)2n1n2n.2Tn122223324(n1)2nn2n1.Tn22223242nn2n1n2n1(1n)2n12.Tn(n1)2n12.52019遼寧沈陽(yáng)聯(lián)考若正項(xiàng)數(shù)列an的前n項(xiàng)和為Sn,a11,點(diǎn)P(,Sn1)在曲線y(x1)2上(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)
5、bn,Tn表示數(shù)列bn的前n項(xiàng)和,若Tnm1對(duì)任意nN*恒成立,求實(shí)數(shù)m的取值范圍解析:(1)由已知可得Sn1(1)2,得1,所以是以為首項(xiàng)、1為公差的等差數(shù)列,所以(n1)1n,得Snn2,當(dāng)n1時(shí),a1S11;當(dāng)n2時(shí),anSnSn1n2(n1)22n1,當(dāng)n1時(shí),也符合上式,故an的通項(xiàng)公式為an2n1.(2)bn,所以Tnb1b2b3bn,顯然Tn是關(guān)于n的增函數(shù),所以Tn有最小值(Tn)minT1,又Tnm1對(duì)任意nN*恒成立,所以m1恒成立,所以m4,故實(shí)數(shù)m的取值范圍為(,462019山西河津二中月考設(shè)數(shù)列an滿足a11,3a2a11,且(n2,nN*)(1)求數(shù)列an的通項(xiàng)公式;(2)設(shè)數(shù)列b1,4bnan1an(n2,nN*),bn的前n項(xiàng)和為Tn,證明:Tn1.解析:(1)(n2),又a11,3a2a11,1,是首項(xiàng)為1,公差為的等差數(shù)列,1(n1)(n1),即an.(2)4bnan1an(n2),bn(n2),又b1符合上式,bn(nN*),Tnb1b2bn11.3