ZZ4000支撐掩護式液壓支架設(shè)計【含7張CAD圖紙、說明書】
ZZ4000支撐掩護式液壓支架設(shè)計【含7張CAD圖紙、說明書】,含7張CAD圖紙、說明書,zz4000,支撐,支持,掩護,液壓,支架,設(shè)計,cad,圖紙,說明書,仿單
翻譯部分英文原文The Design of Four-bar Linkage of Large Inclined Angle Hydraulic SupportAbstract- Four-bar linkage is one of the most importantcomponents of shield-type powered support or chock-shield-typehydraulic support. Parameterized modeling, simulation andoptimization of four-bar linkage is firstly accomplished by use ofADAMS software in designing a large inclined angle hydraulicsupport. Then based on three-dimension model of the wholehydraulic support, applying COSMOS/Works software, finiteelement analysis is made under the front torsion load of roof beam.The analysis result validates the feasibility of four-bar linkagedesign and meets the design requirements very well. This methodcan effectively shorten the design cycle and improve designefficiency of hydraulic support.Keyword-hydraulic support; four-bar linkage; optimizationdesign; ADAMS; finite element analysis1. IntroductionFour-bar linkage is one of the most importantcomponents of shield-type hydraulic support orchock-shield-type hydraulic support. Its function has twoaspects: One, as the support legs rises or lowers, the leadingedge of roof beam moves up and down nearly vertically,thus maintaining a nearly constant unsupported distancebetween the coal wall and the leading edge of roof beam.This is a feature that is widely considered most desirable forgood roof control. Second, it makes the support to becapable of bearing larger horizontal load.In designing a large inclined angle hydraulic support,optimization of the four-link design is an important work.The size of four-bar linkage directly influences theperformance and status of hydraulic support. In thetraditional four-bar linkage design, BASIC program is usedto compute 1, but the results often can not meet the designrequirements and can not obtain the optimal solution.Currently, ADAMS software is more and more applied inthe mechanical dynamics field 2. So, the paper makes useof the ADAMS software to model and simulate thefour-bar linkage in order to achieve the optimal designsolution3-4. In order to validate the feasibility of four-barlinkage design5, applying COSMOS/Works software,finite element analysis is made.2. Dimension calculation of four-bar linkageAs shown in Fig. 1, is the calculation height in themaximum position. Mathematically, the parameters offour-bar linkage is supposed that:Figure 1. Parameters of four-bar linkage2.1 The calculation of rear bar and shield beamAs shown in Fig. 2, if H1 is determined, the length ofshield beam is: (1) (1)The length of rear barA=IG (2)The distance between top link point of front bar and top linkpoint of rear bar is:B=I1G (3)The distance between top link point of front bar and top linkpoint of shield beam is:F=G-B (4)The distance between bottom link point of rear barand origin of coordinates is , as shown in Fig. 2. 1 E2.2 The Calculation of length and angle of front bar1) Coordinate of 1 point bWhen the support is in the highest position , thecoordinate of point is: X1=FCOS(P1) (5) y1=H1-FSIN(P1) (6)Figure 2. Geometrical relationship of four-bar linkage2) Coordinate of 2 point bWhen the support is in the lowest position , thecoordinate of point is: (7) (8)When the support is in the lowest position, 2530,according to the geometric requirements.Mathematically, it is supposed that . (9)3) Coordinate of 3 point bWhen it is right-angle between shield beam and rearbar, the coordinate of 3 point is: b (10) (11) (12) (13)4) Coordinate of c point is the length of front bar. So thelength of front bar can be calculated by use of the equationof circle. The coordinate of c point is: (14) (15)The length and angle of front bar can be calculated afterdetermining the coordinate of c point.2.3 The calculation of the height D of the front barbottom link point, and the projective distance E onthe base between bottom link point of front bar andbottom link point of rear barAfter calculating the coordinate of c point, the height Dand length E is: (16) (17)As to the top coal caving hydraulic support that themaximum supported height is 2600mm, the supportedheight properly should be increased in order to meet thedesign requirements of hydraulic support in deeply inclinedcoal seam, the calculation height H1 is increased to 2118mm.By use of the program that sloping line is thought as theobjective function, the below result can be obtained.tan = 0.338, Q1= 75.10, Q2= 29.98,P1= 59.96, P2= 15.09, A= 988.78mm,B= 295.56mm, C= 995.82mm, D= 367.30mm,E= 421.91mm, G= 1343.45mm.3. Parameter optimization of four-bar linkage sizeAccording to Fig. 1 and the physical dimensioncalculated by program, the four-bar linkage is modeled bymeans of ADAMS/View. Because the linkage sizeparameter that calculated in computational program is notthe optimal result by analyzing the simulation result,optimally designing the linkage of should be parameterizedmodeling so as to obtain the optimal result that meet thedesign requirement.During parameterized modeling, every link point is setto variable, and the design result of every variable is gottenby analyzing the variables, as shown in Table 1.Table 1. Design results of every variableThe scope and the influence on the design of designvariables can be observed. MSC.ADAMS/View providesall kinds of drawing diagrams as the research report, whichinclude the sensitivity of design variables. As shown inTable 1, the sensitivity of DV_1, DV_2, DV_4, DV_6 isgreater. This implies that these four variables influence theoptimization results more greatly.Four greater sensitivity design points are set, the curveof every design point is changed together byADAMS/PostProcesser, then are compared and optimized.Through operating the optimization program, four designpoints are optimized. At last the optimal physical dimensionof four-bar linkage is obtained by analyzing and calculating.tan = 0.0035, Q1= 57.59, Q2= 24.90,P1= 46.40,A= 990mm, B= 260mm, C= 1125mm, D= 265mm,E= 478mm, G= 1155mm.By means of ADAMS software, modeling the four-barlinkage according to the calculated size, then analyzing thelink point through the trajectory simulation, as shown in Fig.3.Figure 3. The optimized trajectory curveThe optimal result of the four-bar linkage size fullymeet the design requirements of hydraulic support byanalysis.4. The finite element analysis of hydraulic supportAccording to the calculated dimension of four-barlinkage, assembling with the other part of hydraulic support,the three-dimensional model of hydraulic support is set up,as shown in Fig. 4. Applying the softwareCOSMOS/Works, finite element analysis of the wholehydraulic support is made under front torsion load.Figure 4. The three-dimension model of hydraulic support4.1 The finite element calculationAfter finite element pre-processing, COSMOS/Worksautomatically generates graphic solution. The graphicsolution can be defined according to the need. For example,stress, strain and dynamic change animation of strain, andformatting section graph can be obtained, as shown in Fig.5.(a) Front torsion load displacement(b) Front torsion load stress(c) Front torsion load strain(d) Front torsion load local stressFigure 5. The finite element analysis results of the whole hydraulicsupport under front torsion loadAccording to the calculation result, maximumdeformation of hydraulic is 11.63mm, maximum equivalentstress of roof beam is 562.7 a MP , and maximumequivalent strain is 3.503E-03. All pin force state can beseen in table 2.Table 2. Force acted on the hinge-jointed pin4.2 Data analysisMaximum stress and strain mainly appear in the loadpart and surrounding area of roof beam. Hydraulic legs areunequally loaded. The stress of front and rear hydraulic legwhich are at the load side is also larger than the other side.On the front part of roof beam, the effect is obvious underthe action of front part torsion load. The rear part isuniformly acted by the load. If the load is too large, thewhole support has a torsion trend. Form table 2, it can befound that the shearing resistance of left and right pinjoined roof beam with shield beam is different. The shearresistance of pins jointed front bar with shield beam, rearbar with shield beam, rear bar with substructure, front barwith substructure are large.The strength analysis shows that maximum stressdistribution is regional and partial. So, high strength steelsheet is commonly used in the large stress area to improvemechanical characteristic. The hydraulic support fullyreaches using standard in practice and satisfies the usingrequirement of the large inclined angle mining.5. ConclusionApplying ADAMS software not only can carry outparametric modeling, motion trajectory simulation,optimization design of a large inclined angle hydraulicsupport, but also can analyze motion state of related movingelements with motion simulation. Through making finiteelement analysis on whole hydraulic support, the feasibilityof four-bar design is verified, and the distribution regularityof support stress is found out. The designed hydraulicsupport fully reaches using standard in the coal mine, meetsthe using requirements of the large inclined angle mining.This method can effectively shorten the design cycle andimprove design efficiency of hydraulic support.翻譯中文大傾角工作面液壓支架的四桿機構(gòu)的設(shè)計摘要-四桿機構(gòu)是支撐式和支撐掩護式一個重要的組成部分。大傾角液壓支架四桿機構(gòu)的參數(shù)化建模、仿真和優(yōu)化首先在設(shè)計中使用ADAMS軟件。然后,基于三維模型的整體液壓支架,建立了支架的有限元分析模型并對其進行整架強度有限元分析,分析結(jié)果驗證了四桿機構(gòu)的可行性設(shè)計,很好的滿足了設(shè)計要求。該方法能有效縮短設(shè)計周期,提高液壓支架的設(shè)計效率。關(guān)鍵字:液壓支架:四連桿機構(gòu):最優(yōu)化設(shè)計:ADAMS:有限元分析1. 介紹四桿機構(gòu)是支撐式和支撐掩護式一個重要的組成部分。它的功能有兩個方面:首先,作為支撐腿升高或者降低,帶動頂梁做近乎垂直的上下移動,從而維持頂梁前沿與煤壁的距離不變,這被認(rèn)為是最理想的頂板控制。其次,這樣做會讓液壓支架有較大的水平荷載的能力。在設(shè)計大傾角工作面液壓支架,四連桿機構(gòu)優(yōu)化的設(shè)計是一項重要的工作。四桿機構(gòu)的大小直接影響著對液壓支架的性能和狀態(tài)。在傳統(tǒng)的四桿機構(gòu)設(shè)計、基本程序使用計算1,但結(jié)果往往不能滿足設(shè)計要求要求并不能獲得最優(yōu)的解決方案。目前,利用ADAMS軟件被越來越多的應(yīng)用機械動力學(xué)領(lǐng)域的2。所以,本文使用ADAMS軟件的模型和模擬四桿機構(gòu)以實現(xiàn)最優(yōu)的設(shè)計解決3。為了驗證該四的可行性連桿設(shè)計5,運用 COSMOS/Works 軟件進行有限元分析。2. 四連桿機構(gòu)的尺寸計算在圖1所示,是假設(shè)四連桿機構(gòu)在最高位置時的計算方法2.1后連桿與掩護梁計算如圖2所示,如果H1是確定的,掩護梁的長度是: (1) 后連桿的長度:A=IG (2)前連桿上鉸接點與后連桿上鉸接點的距離是:B=I1G (3)前連桿上鉸接點與掩護梁上鉸接點的距離是:F=G-B (4)后連桿下鉸接點與坐標(biāo)原點的距離是E1 如圖2所示2.2 前連桿長度和角度的計算1)點b1的坐標(biāo) 當(dāng)支架在最高位置H1時,b1點的坐標(biāo)是: X1=FCOS(P1) (5) y1=H1-FSIN(P1) (6)圖2 四連桿機構(gòu)的幾何關(guān)系2) b2點坐標(biāo) 當(dāng)支架在最低位置H2時,b2點的坐標(biāo)是: (7) (8)當(dāng)支架在最低位置,Q22530。 根據(jù)幾何要求,假定Q2=25 (9)3) b3點坐標(biāo)當(dāng)掩護梁與后連桿呈直角時,b3點坐標(biāo): (10) (11) (12) (13)4) c點坐標(biāo)所以前連桿的長度可以用方程圓計算出,c點的坐標(biāo)是: (14) (15)確定c點的坐標(biāo)就能知道前連桿的長度和角度 2.3 通過計算得到后連桿下鉸點的高度D,并且可以得到后連桿與前連桿投影到底面的距離E當(dāng)計算出c點的坐標(biāo),D點的高度、E點的長度是: (16) (17)作為對放頂煤液壓支架最大限度的支持是2600mm高度的支持,應(yīng)在增加高度以滿足對液壓支架設(shè)計的要求,在大傾角煤層,H1高度增加到2118mm,利用該程序傾斜線為目標(biāo)函數(shù)的思想,可以得到以下的結(jié)果: tan = 0.338, Q1= 75.10, Q2= 29.98, P1= 59.96, P2= 15.09, A= 988.78mm, B= 295.56mm, C= 995.82mm, D= 367.30mm, E= 421.91mm, G= 1343.45mm.3 四桿機構(gòu)參數(shù)優(yōu)化 根據(jù)圖1和實際尺寸用程序來計算模擬四桿機構(gòu)指的是用ADAMS/View。因為連桿大小在計算程序的參數(shù)計算是不真實的,通過分析最優(yōu)結(jié)果的仿真結(jié)果,優(yōu)化設(shè)計聯(lián)動應(yīng)該參數(shù)化模型以獲得最優(yōu)結(jié)果,滿足了設(shè)計要求。在參數(shù)化建模方法,每一個環(huán)節(jié)都是可變的,每個變量的設(shè)計結(jié)果通過分析,顯示在表1。變量范圍和影響設(shè)計的變量可以觀察到。MSC.ADAMS/View提供各種各樣的繪圖,以便研究報告,包括設(shè)計變量的靈敏度。如圖所示,表1的靈敏度,DV_2 DV_4 DV_1,DV_6, 較大。這意味著這些四個變量對優(yōu)化結(jié)果更有很大的影響。選擇四個較為敏感的設(shè)計點,讓每個設(shè)計點在ADAMS/PostProcesser下彎曲,然后進行比較和優(yōu)化。通過操作優(yōu)化程序,對四個設(shè)計點進行優(yōu)化。最后最優(yōu)物理維度到的四桿機構(gòu)分析和計算。tan=0.0035, Q1=57.59, Q2=24.90,P1=46.40,A=990mm, B=260mm, C=1125mm, D=265mm,E=478mm, G=1155mm.利用ADAMS軟件,通過計算結(jié)果對四連桿機構(gòu)建模。并分析了連桿點通過軌道仿真,顯示在圖。3. 圖3,優(yōu)化軌跡曲線該研究結(jié)果的四桿機構(gòu)尺寸完全相同滿足設(shè)計要求的液壓支架分析。4. 液壓支架的有限元分析 根據(jù)計算四維度聯(lián)動、裝配時的另一部分液壓支架, 對液壓支架進行三維模型的建立, 如圖4所示,應(yīng)用軟件COSMOS/Works,有限元分析的整體液壓支架是由前負(fù)荷下扭轉(zhuǎn)。圖4,液壓支架的有限元分析4.1 有限元計算有限元預(yù)處理、COSMOS/Works、動生成圖形的解決方案。根據(jù)圖形需要可以制定解決方案。例如:應(yīng)力、應(yīng)變及動態(tài)變化的應(yīng)變,可以得截面到格式圖,如圖5。(a)前扭轉(zhuǎn)載荷位移(b)前扭轉(zhuǎn)荷載應(yīng)力(c)前扭轉(zhuǎn)荷載張力(d)前扭轉(zhuǎn)負(fù)荷局部應(yīng)力圖5,前扭轉(zhuǎn)荷載有限元分析結(jié)果根據(jù)計算結(jié)果,最大值11.63mm,頂梁最大壓力為562.7MP,最大張力為3.503E-03。所有應(yīng)力見表2表2 鉸接軸應(yīng)力4.2 數(shù)據(jù)分析最大應(yīng)力和應(yīng)變主要出現(xiàn)在負(fù)荷分和頂梁周邊。液壓支架受的是不平等載荷。液壓支架的前后連桿部分也比其他地方負(fù)荷大。頂梁的前半部載荷明顯下降。而后面不封則一直負(fù)載。從表2可以看出,左翼和加有側(cè)護板的右翼抗剪承載力是不同的。掩護梁與底座的前后鉸接點的剪切應(yīng)力也非常大。分析表明,強度最大應(yīng)力只分布在局部區(qū)域。所以,高強度鋼常用在大應(yīng)力區(qū)來改善機械的特性。使液壓支架在實踐中達(dá)到使用標(biāo)準(zhǔn)并滿足大傾角采礦的使用要求。5. 結(jié)論應(yīng)用ADAMS軟件不但能執(zhí)行參數(shù)化建模、運動軌跡仿真,對大傾角液壓支架進行優(yōu)化設(shè)計,而且也可以分析運動狀態(tài)相關(guān)的移動,元素與運動仿真。通過制作有限元分析整體液壓支架四連桿機構(gòu)的可行性已經(jīng)被證實,支架應(yīng)力的分布規(guī)律被發(fā)現(xiàn)。全達(dá)到煤礦的使用標(biāo)準(zhǔn),滿足大傾角采礦的使用要求。該方法可以有效地縮短設(shè)計周期和提高設(shè)計效率的液壓支架。
收藏