《同課異構(gòu)《線段的垂直平分線的性質(zhì)》教案 (省一等獎)》由會員分享,可在線閱讀,更多相關(guān)《同課異構(gòu)《線段的垂直平分線的性質(zhì)》教案 (省一等獎)(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、. ...........
. .....................................
. .....
13.1.2 線段垂直平分線
◆教學(xué)目標(biāo)◆
◆知識與技能:
理解線段垂直平分線的性質(zhì)和判定,及其應(yīng)用。
◆過程與方法:
通過動手實踐與觀察體會兩個圖形成軸對稱的性質(zhì),培養(yǎng)抽象思維能力.
◆情感態(tài)度和價值觀:
通過探究活動來發(fā)現(xiàn)結(jié)論,經(jīng)過知識的再發(fā)現(xiàn)過程,在探究活動的過程中培養(yǎng)創(chuàng)新思維能力, 改變學(xué)習(xí)方式.
◆教學(xué)重點(diǎn)與難 點(diǎn)◆
◆重點(diǎn):線段垂直平分線的性質(zhì)和判定和應(yīng)用及成軸對稱的兩個圖形的性質(zhì).
◆難點(diǎn):線段垂直平分線的性質(zhì)
2、和判定和應(yīng)用及成軸對稱的兩個圖形的性質(zhì)。
◆教學(xué)過程◆
一、 溫故知新:
1.什么是軸對稱圖形?什么是軸對稱?
二、新知講解:
1.情景引入:如圖 ABC 和△A′B′C′關(guān)于直線 MN 對稱,點(diǎn) A′、B′、C′分別是點(diǎn) A、 B、C 的對稱點(diǎn),線段 A A′、B B′、C C′與直線 MN 有什么關(guān)系?
解題方法:1〕可以利用直尺、圓規(guī)度 2〕可以利用軸對稱的定義解題
結(jié)論:對稱軸所在直線經(jīng)過對稱點(diǎn)所連線段的中點(diǎn),并且垂直這條線段。
2.結(jié)論總結(jié):線段的垂直平分線的定義:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做 這條線段的垂直平分線。也叫這條的線段的中垂線
3、.〔課本 32 頁〕
注:垂直平分線與線段有兩種關(guān)系:位置關(guān)系——垂直,數(shù)量關(guān)系——平分
3.性質(zhì)探究: 圖形 軸對稱的性質(zhì):〔1〕成軸對稱的兩個圖形全等?!?〕對稱軸是任何一對 對應(yīng)點(diǎn)所連線段的垂直平分線?!?〕兩個圖形成軸對稱如果它們的對應(yīng)線段或延長線相交, 那么交點(diǎn)一定在對稱軸上。類似的,軸對稱圖形的對稱軸,是任何一對對 應(yīng)點(diǎn) 所連線段的 垂直平分線。
注:包含兩層含義:一對對應(yīng)點(diǎn)就能做出它們的對稱軸,一點(diǎn)和對稱軸就能做出該點(diǎn)關(guān)于對 稱軸的對稱點(diǎn)。
的性質(zhì)歸納:
性質(zhì)定理:線段垂直平分線上的點(diǎn)與這條直線 的兩個端點(diǎn)距離相等.
幾何語言:∵直線 l 是線段 AB 的
4、垂直平分線,點(diǎn) P 在垂直平分線上,∴PA=PB。
反過來,假設(shè) PA=PB,那么點(diǎn) P 是否在垂直平分線上?看課本 33 頁的探究。
〔通過做輔助線,再利用全等三角形的判定方法證明〕
定理:與一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.幾何語言:∵PA=PB, ∴點(diǎn) P 在線段 AB 的垂直 平分線上
歸納:在線段 AB 的垂直平分線 l 上的點(diǎn)與 A、B 的距離相等;反過來,與兩點(diǎn) A、B 的距離 相等的點(diǎn)都在 l 上,所以直線 l 可以點(diǎn)成與兩點(diǎn) A、B 的距離相等的所有點(diǎn)的集合。 三、穩(wěn)固提高
例 1: 如以下圖,有一塊三角形田地,AB=AC=10m,作 AB 的
5、垂直平分線 ED 交 AC 于 D,交 AB 于 E,量得△BDC 的周長為 17m,請你替測量人員計算 BC 的長.〔解題過程略〕
例 2, 如圖,在△ABC 中,∠ACB=90°,D 是 BC 延長線上一點(diǎn),E 是 AB 上一點(diǎn),且在 BD 的垂直平分線上,DE 交 AC 于 F. 求證:E 在 AF 的垂直平分線上
四、課堂檢測:
1.如圖,DE 是 AC 的垂直平分線,AB=10cm,BC=11cm,求 ΔABD 的周長?
2.△ABC 中,DE 是 AC 的垂直平分線,AE=3cm,△ABD 的周長為 13cm, ABC 的周長。
三、收
6、獲
請你談?wù)劚竟?jié)課的學(xué)到的知識有哪些? 四、作業(yè)
P65,66 頁 6、9
◆板書設(shè)計◆
線段的垂直平分線性質(zhì)定理:
幾何意義:
◆課后思考◆
[教學(xué)反思]
學(xué)生對展開圖通過各種途徑有了一些了解,但仍不能把平面與立體很好的結(jié)合;在遇
到問題時,多數(shù)學(xué)生不愿意自己探索,都要尋求幫助。在今后的教學(xué)中,我會不斷的鉆研探 索,使我的課堂真正成為學(xué)生學(xué)習(xí)的樂園。
本節(jié)課的教學(xué)活動,主要是讓學(xué)生通過觀察、動手操作,熟悉長方體、正方體的展開圖
以及圖形折 疊后的形狀。教學(xué)時,我讓每個學(xué)生帶長方體或正方體的紙盒 ,每個學(xué)生都剪
一剪,并展示所剪圖形
7、的形狀。由于剪的方法不同,展開圖的形狀也可能是不同的。學(xué)生在
剪、拆盒子過程中,很容易把盒子拆散了,無法形成完整的展開圖,就要求適當(dāng)進(jìn)行指導(dǎo)。
通過動手操作,動腦思考,集體交流,不僅提高了學(xué)生的空間思維能力,而且在情感上每位 學(xué)生 都獲得了成功的體驗,建立自信心。
24.1 圓 (第 3 課時)
教學(xué)內(nèi)容
1.圓周角的概念.
2.圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,?都等于這條弦所對 的圓心角的一半.
推論:半圓〔或直徑〕所對的圓周角是直角,90°的圓周角所對的弦是直徑及其它們的 應(yīng)用.
教學(xué)目標(biāo)
1.了解圓周角的概念.
2.理解圓周角的定理
8、:在同圓或等圓中,同弧或等弧所對的圓周角相等,?都等于這條 弧所對的圓心角的一半.
3.理解圓周角定理的推論:半圓〔或直徑〕所對的圓周角是直角,90?°的圓周角所對 的弦是直徑.
4.熟練掌握圓周角的定理及其推理的靈活運(yùn)用.
設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運(yùn)用數(shù)學(xué)分類思想給予 邏輯證明定理,得出推導(dǎo),讓學(xué)生活動證明定理推論的正確性,最后運(yùn)用定理及其推導(dǎo)解決 一些實際問題.
重難點(diǎn)、關(guān)鍵
1.重點(diǎn):圓周角的定理、圓周角的定理的推導(dǎo)及運(yùn)用它們解題.
2.難點(diǎn):運(yùn)用數(shù)學(xué)分類思想證明圓周角的定理.
3.關(guān)鍵:探究圓周角的定理的存在.
教學(xué)過程
一、復(fù)習(xí)引入
9、
〔學(xué)生活動〕請同學(xué)們口答下面兩個問題.
1.什么叫圓心角?
2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?
老師點(diǎn)評:〔1〕我們把頂點(diǎn)在圓心的角叫圓心角.
〔2〕在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,?那么它們 所對的其余各組量都分別相等.
剛剛講的,頂點(diǎn)在圓心上的角,有一組等量的關(guān)系,如果頂點(diǎn)不在圓心上,它在其它的 位置上?如在圓周上,是否還存在一些等量關(guān)系呢?這就是我們今天要探討,
要研究,要解決的問題.
二、探索新知
問題:如下圖的⊙O,我們在射門游戲中,設(shè) E、F 是球門,?設(shè)球員們只
能在
EF
所在的⊙O 其它位置射門,
10、如下圖的 A、B、C 點(diǎn).通過觀察,我們可
以發(fā)現(xiàn)像∠EAF、∠EBF、∠ECF 這樣的角,它們的頂點(diǎn)在圓上,?并且兩邊都 與圓相交的角叫做圓周角.
現(xiàn)在通過圓周角的概念和度量的方法答復(fù)下面的問題.
1.一個弧上所對的圓周角的個數(shù)有多少個?
2.同弧所對的圓周角的度數(shù)是否發(fā)生變化?
A
C
3.同弧上的圓周角與圓心角有什么關(guān)系?
〔學(xué)生分組討論〕提問二、三位同學(xué)代表發(fā)言.
O
老師點(diǎn)評:
1.一個弧上所對的圓周角的個數(shù)有無數(shù)多個.
B
2.通過度量,我們可以發(fā)現(xiàn),同弧所對的圓周角是沒有變化的.
3.通過度量,我們可以得出,同弧
11、上的圓周角是圓心角的一半.
下面,我們通過邏輯證明來說明“同弧所對的圓周角的度數(shù)沒有變化, ? 并且
A
D
它的度數(shù)恰好等于這條弧所對的圓心角的度數(shù)的一半.〞 〔1〕設(shè)圓周角∠ABC 的一邊 BC 是⊙O 的直徑,如下圖 ∵∠AOC 是△ABO 的外角
B
O
C
∴∠AOC=∠ABO+∠BAO
∵OA=OB
∴∠ABO=∠BAO
∴∠AOC=∠ABO
∴∠ABC=
1
2
∠AOC
〔2〕如圖,圓周角∠ABC 的兩邊 AB、AC 在一條直徑 OD 的兩側(cè),那么∠ABC= ∠AOC 嗎?請同學(xué)們獨(dú)立完成這道
12、題的說明過程.
1
2
老師點(diǎn)評:連結(jié) BO 交⊙O 于 D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,?那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠ABC.
〔3〕如圖,圓周角∠ABC 的兩邊 AB、AC 在一條直徑 OD 的同側(cè),那么∠ABC= ∠AOC 嗎?請同學(xué)們獨(dú)立完成證明.
1
2
老師點(diǎn)評:連結(jié) OA、OC,連結(jié) BO 并延長交⊙O 于 D,那么∠AOD=2∠ABD,∠COD=2∠CBO,
而∠ABC=∠ABD-∠CBO=
1 1 1
∠AOD- ∠COD= ∠AOC
2 2 2
13、
現(xiàn)在,我如果在畫一個任意的圓周角∠AB′C,?同樣可證得它等于同弧上圓心角一半, 因此,同弧上的圓周角是相等的.
從〔1〕、〔2〕、〔3〕,我們可以總結(jié)歸納出圓周角定理:
在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半. 進(jìn)一步,我們還可以得到下面的推導(dǎo):
半圓〔或直徑〕所對的圓周角是直角,90°的圓周角所對的弦是直徑.
下面,我們通過這個定理和推論來解一些題目.
例 1.如圖,AB 是⊙O 的直徑,BD 是⊙O 的弦,延長 BD 到 C,使 AC=AB,BD
與 CD 的大小有什么關(guān)系?為什么?
分析:BD=CD,因為 AB=AC,所
14、以這個△ABC 是等腰,要證明 D 是 BC 的中點(diǎn),
?只要連結(jié) AD 證明 AD 是高或是∠BAC 的平分線即可.
解:BD=CD
理由是:如圖 24-30,連接 AD
∵AB 是⊙O 的直徑
∴∠ADB=90°即 AD⊥BC
又∵AC=AB
∴BD=CD
三、穩(wěn)固練習(xí)
1.教材 P92 思考題.
2.教材 P93 練習(xí).
四、應(yīng)用拓展
例 2.如圖,△ABC 內(nèi)接于⊙O,∠A、∠B、∠C 的對邊分別設(shè)為 a,b,c,⊙O 半徑為
R,求證:
a b c
= = =2R. sin A sin B sin C
a b c a b c
分析:要證
15、明 = = =2R,只要證明 =2R, =2R, =2R,
sin A sin B sin C sin A sin B sin C
a b c
即 sinA= ,sinB= ,sinC= ,因此,十清楚顯要在直角三
2 R 2 R 2 R
角形中進(jìn)行.
證明:連接 CO 并延長交⊙O 于 D,連接 DB
∵CD 是直徑
∴∠DBC=90°
又∵∠A=∠D
在 DBC 中,sinD=
BC a
,即 2R=
DC sin A
b c
同理可證: =2R, =2R
sin B sin C
a b c
∴ = = =2R
sin A sin B s
16、in C
五、歸納小結(jié)〔學(xué)生歸納,老師點(diǎn)評〕
本節(jié)課應(yīng)掌握:
1.圓周角的概念;
2.圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,?都相等這條弧所 對的圓心角的一半;
3.半圓〔或直徑〕所對的圓周角是直角,90°的圓周角所對的弦是直徑.
4.應(yīng)用圓周角的定理及其推導(dǎo)解決一些具體問題.
六、布置作業(yè)
1.教材 P95 綜合運(yùn)用 9、10、
[教學(xué)反思]
學(xué)生對展開圖通過各種途徑有了一些了解,但仍不能把平面與立體很好的結(jié)合;在遇
到問題時,多數(shù)學(xué)生不愿意自己探索,都要尋求幫助。在今后的教學(xué)中,我會不斷的鉆研探 索,使我的課堂真正成為學(xué)生學(xué)習(xí)的樂園。
本節(jié)課的教學(xué)活動,主要是讓學(xué)生通過觀察、動手操作,熟悉長方體、正方體的展開圖
以及圖形折 疊后的形狀。教學(xué)時,我讓每個學(xué)生帶長方體或正方體的紙盒 ,每個學(xué)生都剪
一剪,并展示所剪圖形的形狀。由于剪的方法不同,展開圖的形狀也可能是不同的。學(xué)生在
剪、拆盒子過程中,很容易把盒子拆散了,無法形成完整的展開圖,就要求適當(dāng)進(jìn)行指導(dǎo)。
通過動手操作,動腦思考,集體交流,不僅提高了學(xué)生的空間思維能力,而且在情感上每位 學(xué)生 都獲得了成功的體驗,建立自信心。