H型鋼制作矯直機(jī)設(shè)計(jì)含6張CAD圖
H型鋼制作矯直機(jī)設(shè)計(jì)含6張CAD圖,型鋼,制作,矯直機(jī),設(shè)計(jì),cad
H型鋼制作矯直機(jī)設(shè)計(jì)摘要矯直機(jī)的功能就是使鋼材的彎曲部位承受相當(dāng)大的反向彎曲或拉伸,使該部位產(chǎn)生一定的彈塑性變形,當(dāng)外力消除時(shí),鋼材經(jīng)過彈性回復(fù),然后達(dá)到平直。本文是依據(jù)H型鋼的生產(chǎn),闡述了H型鋼的腹板矯直過程。課題主要完成了對(duì)矯直機(jī)的總體設(shè)計(jì)以及矯直機(jī)的主傳動(dòng)系統(tǒng)設(shè)計(jì)。主傳動(dòng)系統(tǒng)采用電機(jī)通過聯(lián)軸器連接減速器,再通過聯(lián)軸器與齒輪座相連,最后與矯直機(jī)下輥通過來聯(lián)軸器相連帶動(dòng)傳動(dòng);上輥通過電機(jī)與液壓缸來進(jìn)行升降運(yùn)動(dòng)。并對(duì)矯直機(jī)的某些零件和基本結(jié)構(gòu)進(jìn)行了設(shè)計(jì)與校核。關(guān)鍵詞:彎曲,矯直,H型鋼矯直機(jī)。IDesign of straightening machine for making H type steelAbstract Straightening machines function is to make the steel bending parts bear considerable reverse bending or stretching, generate the elastic-plastic deformation of the parts of the, when the external force is elimin-ated,steel after elastic recovery, then bestraight. This paper is based on the production of H type steel, and the Straightening process of web plate of H type steel is described. The main task is to complete the design of the straightening machine and the design of the Main drive system of the straightening machine. Main drive system by motor through the shaft coupling is connected with a speed reducer, then is connected by the gear coupling and support, finally and straightening machine and through to coupling drive the connected transmission; and through the motor and hydraulic cylinder for lifting movement. And some parts of the straightening machine and the basic structure of the design and check. Key words: bend ,Straightening, H type steel straightening machine. 目錄摘要IAbstractII引言1第一章 矯直理論以及矯直機(jī)2第一節(jié) 彈塑性彎曲2一 彈塑性彎曲的變形過程2二 彈塑性彎曲時(shí)的曲率變化2三 彎曲力矩和彈復(fù)曲率4第二節(jié) 矯直機(jī)7一 概述7二 型鋼輥式矯直機(jī)8三 壓下方案9第二章 矯直機(jī)的設(shè)備組成9第一節(jié) 主傳動(dòng)裝置10一 主電動(dòng)機(jī)和減速器的選擇10二 萬(wàn)向接軸和聯(lián)軸器10第二節(jié) 矯直機(jī)機(jī)體11一 矯直輥11二 機(jī)架11三 上輥壓下調(diào)整裝置11四 矯直輥的軸承12第三章 矯直機(jī)設(shè)計(jì)12第一節(jié) 設(shè)計(jì)任務(wù)13第二節(jié) 矯直方案確定14第三節(jié) 基本參數(shù)選擇14一 輥距t14二 輥徑D15三 輥?zhàn)訑?shù)目15五 輥身長(zhǎng)度L15第四節(jié) 矯直機(jī)力能參數(shù)計(jì)算16一 矯直力計(jì)算16二 矯直扭矩18第五節(jié) 主電動(dòng)機(jī)選擇20第四章 主減速器的設(shè)計(jì)22第一節(jié) 傳動(dòng)裝置方案的比較與總體設(shè)計(jì)22一 傳動(dòng)比的計(jì)算及分配23二 傳動(dòng)裝置運(yùn)動(dòng)以及動(dòng)力參數(shù)的計(jì)算23第二節(jié) 傳動(dòng)件的設(shè)計(jì)計(jì)算24一 高速級(jí)圓柱齒輪傳動(dòng)設(shè)計(jì)24二 低速級(jí)圓柱齒輪傳動(dòng)設(shè)計(jì)27三 軸的設(shè)計(jì)31第五章 零件校核33第一節(jié) 輥的校核33第二節(jié) 軸承的校核36第三節(jié) 減速器軸的校核(以中間軸為例)38一 齒輪傳動(dòng)的作用力38二 軸上力作用點(diǎn)的間距38三 軸的受力分析39四 軸的強(qiáng)度校核41第四節(jié) 減速器軸承的校核(以中間軸為例)42第五節(jié) 減速器鍵的校核(以中間軸為例)44第六節(jié) 減速器齒輪的校核(低速級(jí)齒輪為例)44第六章 輔助裝備45第一節(jié) 矯直前原料45第二節(jié) 矯直后原料46第七章 維護(hù)保養(yǎng)46第一節(jié) 減速器潤(rùn)滑46第二節(jié) 矯直機(jī)軸承潤(rùn)滑47結(jié)束語(yǔ)47參考文獻(xiàn)49致謝50VI引言 軋鋼生產(chǎn)是鋼鐵行業(yè)生產(chǎn)的最后環(huán)節(jié),軋鋼車間擔(dān)負(fù)著生產(chǎn)軋鋼的任務(wù),軋鋼體制在國(guó)家工業(yè)體系中占有舉足輕重的地位。近代一些工業(yè)發(fā)達(dá)的國(guó)家的軋鋼設(shè)備發(fā)展動(dòng)向是大型化、連續(xù)話、高速化和自動(dòng)化。這是對(duì)鋼材要求不斷提高產(chǎn)品常量和質(zhì)量、提高勞動(dòng)生產(chǎn)率、降低原材料和能源消耗及產(chǎn)品成本的發(fā)展結(jié)果,這也和軋鋼設(shè)備制造水平有關(guān)的重型機(jī)器制造、電機(jī)制造、計(jì)算機(jī)和自動(dòng)化控制以及液壓系統(tǒng)等科學(xué)技術(shù)發(fā)展有密切關(guān)系。 H 型鋼作為一種經(jīng)濟(jì)斷面型鋼,具有重量輕、承載能力大、外形美觀、易于鉚接、節(jié)約工時(shí)、降低造價(jià)等優(yōu)點(diǎn),已被廣泛應(yīng)用于工業(yè)與民用鋼結(jié)構(gòu)中,具有廣闊的應(yīng)用前景。但是,由于 H 型鋼的斷面結(jié)構(gòu)相對(duì)其它形式型鋼存在著腰高腿薄等特點(diǎn),矯直時(shí)因穩(wěn)定性問題,只能通過壓下腹板進(jìn)行整體矯直,這樣就存在局部變形過大,合理壓下量設(shè)置問題,因此,H 型鋼矯直過程研究和實(shí)踐研究有很多難點(diǎn)問題。 H 型鋼在軋制生產(chǎn)、冷卻等過程中,由于種種影響因素,往往會(huì)產(chǎn)生各種變形。大型 H 型鋼同其他鋼材一樣,由于斷面復(fù)雜易產(chǎn)生冷卻不均,不可避免地產(chǎn)生某些塑性變形,因此在成為成品之前必須進(jìn)行矯直。所以大型 H 型鋼的矯直是大型 H 型鋼生產(chǎn)中不可缺少的工序之一,決定著大型 H 型鋼成品的質(zhì)量。通過矯直不僅要保證大型 H 型鋼在長(zhǎng)度方向的彎曲度,而且要規(guī)整大型 H 型鋼的斷面形狀,這也就決定了大型 H 型鋼矯直的難度和大型 H 型鋼矯直機(jī)的復(fù)雜性。隨著大型 H 型鋼生產(chǎn)的發(fā)展、生產(chǎn)技術(shù)的提高及對(duì)大型 H 型鋼產(chǎn)品形狀精度的要求也不斷提高,大型 H 型鋼矯直機(jī)也就相應(yīng)需要的不斷更新發(fā)展。第一章 矯直理論以及矯直機(jī)第1節(jié) 彈塑性彎曲 一 彈塑性彎曲的變形過程 軋件在矯直機(jī)上彎曲變形時(shí),實(shí)際上是一個(gè)橫向彎曲過程。但若軋件厚度h與矯直軋件時(shí)的兩個(gè)支點(diǎn)距離t的比值(h/t)很小時(shí),可忽略剪應(yīng)力的影響,近似的認(rèn)為矯直軋件時(shí)的彎曲是個(gè)純彎曲變形。軋件在外負(fù)荷彎曲力矩M作用下產(chǎn)生彎曲變形時(shí),中性層以上的縱向纖維受到拉伸變形,中性層以下的縱向纖維受到壓縮變形。在外負(fù)荷彎曲力矩M 的作用下,軋件中同時(shí)有彈性和塑性變形的彎曲變形稱為彈塑性彎曲變形;軋件彈塑性彎曲變形的過程有兩個(gè)階段組成,在外負(fù)荷彎曲力矩作用下的彈塑性彎曲階段和除去外負(fù)荷后的彈性恢復(fù)階段(軋件產(chǎn)生彈性恢復(fù)變形)。 二 彈塑性彎曲時(shí)的曲率變化 軋件的彎曲狀態(tài)可用曲率表示,軋件的彈塑性彎曲變形過程則可用曲率的變化來說明。 (1)原始曲率 (如圖a所示)。軋件在彎曲前所具有的曲率稱為原始曲率,以表示,其中是軋件的原始曲率。曲率的方向用正負(fù)號(hào)表示,+表示彎曲凸度向上的曲率;-表示彎曲凸度向下的曲率。=0時(shí),表示軋件是平直的。=時(shí),原始曲率為最大。(2)反彎曲率(如圖a所示)。在彎曲力矩M的作用下,將原始曲率為的軋件向反方向彎曲后,軋件所具有的曲率稱為反彎曲率。反彎曲率的選擇是決定軋件能否矯直的關(guān)鍵。軋件矯直的實(shí)質(zhì)就是要選擇 “適量的”反彎曲率,以便使扎件在外負(fù)荷消除后,經(jīng)過彈性恢復(fù)而變直(即=0)。在輥式矯直機(jī)上,反彎曲率是通過輥?zhàn)拥膲合聛慝@得的。反彎曲率大小的選擇是決定軋件能否被矯直的關(guān)鍵。 (3)殘余曲率(如圖b所示)。當(dāng)除去外負(fù)荷后,軋件在彈性內(nèi)力矩 My的作用下,經(jīng)過彈復(fù)后所具有的曲率稱為殘余曲率如果軋件得到矯直,則殘余曲率等于零(=0);如果軋件還未矯直,則此殘余曲率 即為下次再?gòu)澢鷷r(shí)的原始曲率,即 = (1-1)其中,i是指第i次彎曲。 (4)彈復(fù)曲率.在彈性恢復(fù)的階段,軋件彈性恢復(fù)的曲率稱為彈復(fù)曲率,它是反彎曲率與殘余曲率的代數(shù)差,即 =- (1-2) 顯然,當(dāng)殘余曲率等于零時(shí),上式得 = (1-3) 上式表示了矯直軋件的基本原則:要使原始曲率為的軋件得到矯直,必須使反彎曲率在數(shù)值上等于彈復(fù)曲率。因此,正確計(jì)算彈復(fù)曲率進(jìn)而確定反彎曲曲率的大小是完成矯直的前提和關(guān)鍵所在。 (a)彈塑性彎曲階段 (b)彈性恢復(fù)階段 圖1-1 彈塑性彎曲時(shí)的曲率變化 三 彎曲力矩和彈復(fù)曲率 1彎曲力矩M.外力矩計(jì)算式的一般形式 使軋件產(chǎn)生彈塑性彎曲時(shí)的外力矩是軋件斷面上各層纖維應(yīng)力引起的內(nèi)矩相平衡的,按照?qǐng)D(b)所示可得出彈塑性彎曲階段彎曲力矩M的計(jì)算公式 : (1-4)式中彈性變形區(qū)內(nèi),距中性層Z處縱向纖維的應(yīng)力。dF微分?jǐn)嗝婷娣e因?yàn)?代入上式,得 (1-5)或者M(jìn)= (1-6)式中 W軋件彈性變形區(qū)的斷面系數(shù)W= (1-7) S兩倍的半段面塑性變形區(qū)的面積對(duì)中性層的面積矩 S= (1-8)軋件產(chǎn)生純彈性變形時(shí)的外力矩最小,其值為屈服力矩,對(duì)應(yīng)的軋件總變形曲率為屈服曲率。(2)理想彈塑性材料的彎曲力矩在彈性彎曲極限的狀態(tài),如圖(a)所示,此時(shí),外力矩計(jì)算公式為 (1-9)當(dāng)軋件彎曲至(c)所示的純塑形狀態(tài)時(shí),外力矩最大,其值為塑性彎曲力矩,對(duì)應(yīng)的軋件總變形曲率也將達(dá)到最大值。此時(shí),外力矩計(jì)算公式為 (1-10)式中 S矩形斷面的塑性斷面系數(shù)。Mw和Ms值分別為 (1-10) (1-10) (a)彈性彎曲變形 (b)彈塑性彎曲變形 (c)純塑形彎曲變形 圖1-2 彈塑性彎曲階段軋件的幾種變形形態(tài)2彈復(fù)曲率。彈塑性變形后的軋件在彈復(fù)階段的應(yīng)力與應(yīng)變呈直線關(guān)系。因此,可以用材料力學(xué)中曲率與力矩的關(guān)系公式來計(jì)算彈復(fù)曲率,即= (111)式中 I為軋件的慣性矩,對(duì)矩形斷面I= 對(duì)于矩形截面,其最小和最大彈復(fù)曲率分別為 (112) (113) 矩形斷面軋件的力矩方程為M= (114) 代入彈復(fù)曲率方程,得=在已知材料性能、斷面尺寸及原始曲率的情況下,求解方程,即可定量計(jì)算反彎曲率。第2節(jié) 矯直機(jī) 一 概述20世紀(jì)以來,矯直技術(shù)得到了很大的發(fā)展。但在快速發(fā)展的矯直理論背后,矯直技術(shù)在實(shí)際生產(chǎn)中的應(yīng)用卻非常滯后。矯直理論總體來說還很粗糙,因?yàn)槌C直機(jī)的許多參數(shù)還需要依靠經(jīng)驗(yàn)公式和經(jīng)驗(yàn)數(shù)據(jù)來決定,矯直機(jī)矯直輥負(fù)輥距的破壞作用的機(jī)理直到20世紀(jì)80年代才被闡明,落后于實(shí)際30多年。輥數(shù)、輥距、壓彎量、輥徑、矯直速度等許多數(shù)據(jù)還沒有權(quán)威的理論公式。直到20世紀(jì)80年代,矯直理論才逐步走向完善,現(xiàn)已開發(fā)出萬(wàn)能矯直機(jī)、行星矯直機(jī)、旋轉(zhuǎn)反彎矯直機(jī)、輥距改變的9+1輥矯直機(jī),并且矯直機(jī)實(shí)現(xiàn)了利用計(jì)算機(jī)程序?qū)崿F(xiàn)自動(dòng)控制。隨著矯直技術(shù)的發(fā)展四種矯直技術(shù)逐步發(fā)展成熟,它們是彎曲矯正技術(shù)、拉伸矯正技術(shù)、拉彎矯正技術(shù)和扭轉(zhuǎn)矯正技術(shù)。隨之而來的還有平動(dòng)矯直技術(shù),行星矯直技術(shù)、全長(zhǎng)矯直技術(shù)、變凸度及變輥距矯直技術(shù)等。由于軋材品種規(guī)格的多樣化和對(duì)其形狀精度要求的不同嗎所需要的矯直方式和矯直設(shè)備也各不相同。按用途和工作原理,矯直機(jī)可分為以下幾種基本形式:壓力矯直機(jī):如圖(a)所示,將軋件的彎曲部位支撐在工作臺(tái)的兩個(gè)支點(diǎn)之間,用壓頭對(duì)準(zhǔn)彎曲部位進(jìn)行反向壓彎,這類矯直機(jī)用來矯直大型鋼梁、鋼軌、型材、棒料和管材。主要缺點(diǎn)就是操作復(fù)雜且生產(chǎn)率低。平行輥矯直機(jī):如圖(b)所示,被矯鋼材通過上下兩排相符交錯(cuò)排列的矯直輥,利用多次反復(fù)彎曲而得到矯正。平行輥矯直機(jī)主要用于矯正板材和型鋼的矯直,這類矯直機(jī)生產(chǎn)率高且易于實(shí)現(xiàn)機(jī)械化,得到了廣泛的應(yīng)用。斜輥矯直機(jī):如圖(c)所示,采用具有類似雙曲線形狀的工作輥相互交差排列,圓材邊旋轉(zhuǎn)邊前進(jìn),從而獲得對(duì)軸線對(duì)稱的形狀,主要用于矯直棒料和管材。此類矯直機(jī)重量較輕,便于調(diào)整和維修。拉伸(張力)矯直機(jī):如圖(d)所示,矯直時(shí)由兩個(gè)鉗口將被矯金屬兩端沿寬度方向夾住,一個(gè)鉗口固定不動(dòng),另一個(gè)移動(dòng)對(duì)金屬施加超過材料屈服極限的拉力,產(chǎn)生塑性變形,從而矯直。此來矯直機(jī)生產(chǎn)率低,金屬端部會(huì)造成較大的廢料頭,損耗大。主要用來矯直極薄帶材和復(fù)雜斷面異型材。拉彎矯直機(jī):如圖(e)所示,在張力作用下的帶材,經(jīng)過彎曲輥劇烈彎曲時(shí)從而產(chǎn)生彈塑性延伸,進(jìn)而矯正。主要用于矯直各種金屬帶材尤其是薄帶材。扭轉(zhuǎn)矯直機(jī):如圖(f)所示,對(duì)發(fā)生扭轉(zhuǎn)變形的軋件,施加外扭矩使其反向扭轉(zhuǎn)而矯直,是用來消除軋件斷面相對(duì)軸線發(fā)生扭轉(zhuǎn)變形的一種矯直設(shè)備,主要用于矯直型材。 (a)壓力矯直機(jī) (b)平行輥矯直機(jī) (c)斜輥矯直機(jī) (d)拉伸矯直機(jī) (e)拉彎矯直機(jī) (f)扭轉(zhuǎn)矯直機(jī) 圖1-3 矯直機(jī)的基本類型 二 型鋼輥式矯直機(jī) 型鋼輥式矯直機(jī)的主要用途是矯直各種規(guī)格的變形型鋼,矯直機(jī)的輥?zhàn)由霞庸ち吮怀C軋件斷面相應(yīng)的孔型。按照輥?zhàn)釉跈C(jī)座中心的配置方式,型鋼輥式矯直機(jī)有開式和閉式兩種結(jié)構(gòu)。 開式矯直機(jī);如圖1-4所示,此類矯直輥是懸臂的,又稱為懸臂式矯直機(jī)。該矯直機(jī)的特點(diǎn)是在操作、調(diào)整、維修和更換軸套等方面比較方便,但因輥?zhàn)邮菓冶鄯胖玫?,矯直輥置于機(jī)架的一側(cè),故軸承受力不均,所以這種矯直機(jī)多用于矯正中小型斷面鋼材。 閉式矯直機(jī):如圖1-5所示,矯直輥置于輥軸的兩個(gè)軸承之間,兩端軸承受力均勻,鋼性較好,多用于矯直大型鋼材,其缺點(diǎn)是在生產(chǎn)中操作人員看不清鋼材的矯正情況,給調(diào)整工作造成困難。此外,更換軸套不方便,影響矯直機(jī)的作業(yè)率。 圖1-4 開式矯直機(jī) 圖1-5 閉式矯直機(jī) 三 壓下方案 矯直機(jī)矯直方案的合理確定,不僅可以有效地矯正工件,使工件平直,板形質(zhì)量得到改善,而且可以降低設(shè)備的承載能力和提高經(jīng)濟(jì)效益。在輥式矯直機(jī)上,按照每個(gè)輥?zhàn)邮构ぜa(chǎn)生的變形程度不同,主要可以分成兩種矯直方案。 第一種為小變形原則矯直方案,即逐步矯直法。小變形原則矯直方案是假設(shè)矯直機(jī)上排工作輥可以單獨(dú)調(diào)整,每個(gè)輥?zhàn)硬捎玫膲簭澚壳『媚芡耆C正前面相鄰輥?zhàn)犹幍淖畲髿堄嗲?,使殘余曲率逐漸減小的矯直方案。條材經(jīng)過反復(fù)彎曲和彈復(fù),最大原始曲率的部分被矯直,原來平直的部分被壓彎,形成新的最大彎曲,如此反復(fù),直到條材被矯直。采用這個(gè)方案各輥的壓下量相對(duì)較小,所以消耗的功率小,但是原始曲率消除緩慢,要達(dá)到既定的矯直質(zhì)量就必須增加矯直輥的數(shù)量,從而導(dǎo)致矯直機(jī)設(shè)備結(jié)構(gòu)復(fù)雜。 第二種為大變形原則矯直方案,即小殘差遞減方案。大變形原則矯直方案是在前面幾個(gè)輥?zhàn)由喜捎煤艽蟮姆磸澢?,使工件的各部分彎曲變形總曲率均達(dá)到很大的數(shù)值。這樣就可以使殘余曲率的不均勻性迅速減小,后面幾個(gè)輥?zhàn)硬捎眯∽冃纬C直法,使工件的反彎曲率逐漸減小,使工件趨于平直。采用這種方案,可以用較少的輥?zhàn)荧@得較好的矯直質(zhì)量。但是過分增加工件的變形程度會(huì)使對(duì)加工硬化明顯的材料及大斷面系數(shù)的工件增加其內(nèi)部的殘余應(yīng)力,影響產(chǎn)品質(zhì)量,而且會(huì)加大矯直機(jī)的能量消耗。第二章 矯直機(jī)的設(shè)備組成型鋼矯直機(jī)主要由主電機(jī),減速器,齒輪座,萬(wàn)向接軸,聯(lián)軸器,矯直機(jī)本體等六部分組成。第1節(jié) 主傳動(dòng)裝置 一 主電動(dòng)機(jī)和減速器的選擇 異步電機(jī)主要用于又劇烈尖峰載荷的軋機(jī)上,為了減小電機(jī)的容量,裝有飛輪。異步電機(jī)的投資費(fèi)用較低,應(yīng)用較為廣泛。 減速機(jī)采用圓齒輪傳動(dòng),由一臺(tái)電機(jī)軸輸入傳動(dòng)力矩,減速機(jī)輸出軸通過齒輪嚙合將壯舉傳遞給各矯直輥。由于矯直機(jī)的第三輥所受的扭矩最大,因此盡量使該輥為減速機(jī)的輸出軸直接傳動(dòng),以減少減速機(jī)的負(fù)荷。檢驗(yàn)復(fù)合減速機(jī)中齒輪和軸承的強(qiáng)度,若強(qiáng)度不能滿足要求,則要增加減速機(jī)的齒輪模數(shù)。在一些情況下,也可將直接傳動(dòng)第三輥改為直接傳動(dòng)相鄰輥,以改善載荷分配不均勻的情況。 二 萬(wàn)向接軸和聯(lián)軸器 軋機(jī)齒輪座,減速機(jī)或電機(jī)的運(yùn)動(dòng)和力矩都是通過聯(lián)軸器傳遞給軋輥的。常用的聯(lián)軸器有:萬(wàn)向接軸、齒輪接軸、聯(lián)合接軸和梅花接軸等。 帶有滾動(dòng)軸承的十字軸式萬(wàn)向接軸近十年來,越來越廣泛的應(yīng)用與軋機(jī)的主傳動(dòng)中,并有取代滑塊式萬(wàn)向接軸的趨勢(shì)。所以,本次設(shè)計(jì)采用了帶滾動(dòng)軸承的十字滑塊萬(wàn)向接軸。其優(yōu)點(diǎn)如下: (1)傳動(dòng)效率高。由于采用滾動(dòng)軸承,所以摩擦損失少,傳動(dòng)效率可達(dá)98.799, 可降低電力消耗515。 (2)傳動(dòng)扭矩大。多在800KMm以下。 (3)傳動(dòng)平穩(wěn)。由于滾動(dòng)軸承間隙小,接軸的沖擊和震動(dòng)顯著減小。約為滑塊式 萬(wàn)向接軸的1/101/30提高了產(chǎn)品的質(zhì)量。 (4)潤(rùn)滑條件好。用潤(rùn)滑脂潤(rùn)滑,易密封,沒有漏油現(xiàn)象,耗油量少。 (5)噪音低。使用滑塊式萬(wàn)向接軸,空轉(zhuǎn)時(shí),噪音達(dá)8090dB。而十字軸式萬(wàn)向接軸噪音可降至3040dB,改善了工作環(huán)境,有利于工人的身體健康。 (6)使用壽命長(zhǎng),一般可達(dá)12年以上,可減少更換零部件的時(shí)間。 (7)允許傾角大,可達(dá)1015度。 一般雙接頭萬(wàn)向接軸的組成包括:法蘭叉頭、花鍵叉頭、由花鍵及套管叉頭組成的中間軸。軸承蓋,法蘭叉頭采用合金鑄鋼,十字軸采用合金鍛鋼。 目前十字軸式萬(wàn)向接軸在各行各業(yè)中已趨于標(biāo)準(zhǔn)化。十字軸強(qiáng)度的計(jì)算主要是計(jì)算軸頸處的彎曲應(yīng)力,根據(jù)零件應(yīng)力狀態(tài)校核其強(qiáng)度。 萬(wàn)向接軸的尺寸:直徑 d0=40mm 中心距 L=410mm 本次設(shè)計(jì)采用梅花接軸。梅花接軸用于橫列式型鋼軋機(jī)。當(dāng)梅花接軸的請(qǐng)教小于1,接軸軸頭為普通的梅花頭。當(dāng)傾角到時(shí)。接軸軸頭一般采用外圓具有弧形半徑R的弧形梅花頭,以改善接軸與套筒的接觸狀況。第2節(jié) 矯直機(jī)機(jī)體 一 矯直輥 型鋼開式輥式矯直機(jī)的矯直輥由輥軸和帶槽孔的軸套組合而成。軋件是在由輥套所構(gòu)成的孔型中得到矯直的。 二 機(jī)架 軋鋼機(jī)架是工作機(jī)座的重要組成部分,軋輥軸承座及軋輥調(diào)整裝置都安裝在機(jī)架上。機(jī)架要承受軋制力,必須有足夠的強(qiáng)度和剛度。 對(duì)機(jī)架的要求: 有足夠的強(qiáng)度和剛度; 形狀簡(jiǎn)單,便于制造; 便于在機(jī)架上安裝附件。 本設(shè)計(jì)采用35#鑄鋼為機(jī)架材料。機(jī)架為空心矩形斷面,便于裝卸其它部件,且剛性好。機(jī)架和上蓋用大型螺栓連接,并用螺母把緊。 三 上輥壓下調(diào)整裝置 上輥壓下調(diào)整裝置本次設(shè)計(jì)采用電動(dòng)-液壓壓下裝置。電動(dòng)-液壓壓下系統(tǒng)響應(yīng)速度快,調(diào)整精度高,動(dòng)態(tài)特性大幅度提升,是產(chǎn)品的精度提高,質(zhì)量更有了保證,節(jié)約了金屬資源及能源,提高了產(chǎn)品的合格率。此外,過載保護(hù)簡(jiǎn)單可靠,簡(jiǎn)化了機(jī)械結(jié)構(gòu),較機(jī)械傳動(dòng)效率高。 四 矯直輥的軸承 由于被矯軋件對(duì)輥?zhàn)拥膲毫艽螅栽谳伿匠C直機(jī)的傳動(dòng)功率中,有相當(dāng)大的一部分是用于克服軸承中的摩擦力矩。同時(shí)懸臂式矯直機(jī)鄰近輥套的支點(diǎn)負(fù)荷沉重。實(shí)踐表明,采用滑動(dòng)軸承時(shí),軸承磨損嚴(yán)重,影響矯直機(jī)的正常運(yùn)轉(zhuǎn)。為了使矯直機(jī)的功率,最大限度地用在使軋件彎曲變形上,選用摩擦系數(shù)低、耐用度高的滾動(dòng)軸承,本次設(shè)計(jì)采用圓錐滾子軸承32320。第3章 矯直機(jī)設(shè)計(jì)輥式矯直機(jī)的基本參數(shù)包括:輥徑D,輥距t,輥數(shù)n,輥身長(zhǎng)度L和矯直速度V。其中最主要的參數(shù)是D與t。矯直機(jī)基本參數(shù)選擇關(guān)系到軋件的矯直質(zhì)量,設(shè)備的結(jié)構(gòu)尺寸和功率消耗等。而結(jié)構(gòu)參數(shù)是根據(jù)軋件的規(guī)格,材料,生產(chǎn)率以及類似設(shè)備或有關(guān)系列標(biāo)準(zhǔn)加以選擇和校核確定的。第1節(jié) 設(shè)計(jì)任務(wù) 設(shè)計(jì)矯直機(jī)對(duì)H型鋼(如圖3-1所示)腹板進(jìn)行矯直,即對(duì)2000mmX350mmx12mm的鋼板進(jìn)行矯直?;镜淖冃稳鐖D3-2所示,對(duì)于型鋼,原始平均曲率半徑可取mm 圖3-1 H型鋼 圖3-2 曲率半徑H型鋼腹板局部平面度(如圖3-3所示)允許誤差為3mm。 圖3-3 局部不平度第2節(jié) 矯直方案確定 增加輥?zhàn)拥臄?shù)量可以增加軋件的反彎次數(shù),可以提高矯直的質(zhì)量,但是輥?zhàn)犹鄷?huì)使矯直機(jī)過于復(fù)雜并增加功率消耗。理想彈性材料矯直的最少輥數(shù)為5個(gè),這也是輥式矯直機(jī)的臨界輥數(shù)。因此,此次設(shè)計(jì)的矯直機(jī)原理圖如下: 圖3-4 矯直機(jī)原理圖第3節(jié) 基本參數(shù)選擇 一 輥距t 輥距是型鋼輥式矯直機(jī)的基本參數(shù),它便是型鋼輥式矯直機(jī)的大小和能力。因此,通常用輥距來代表型鋼輥式矯直機(jī)的規(guī)格。 輥距越小,矯直精度越高。但隨著輥距的減小,被矯軋材對(duì)輥?zhàn)拥膲毫⒃龃?,?huì)加劇輥?zhàn)拥哪p,使被矯軋材表面擦傷。同時(shí)輥距過小,在結(jié)構(gòu)上輥軸直徑受到限制。但輥距也不能過大,過大則不能保證被矯軋材得到足夠的變形量,降低矯直精度。所以,輥距的最大值也應(yīng)有個(gè)限制;由此可見,輥距主要決定于軋件的矯直精度和矯直輥的強(qiáng)度條件。 由實(shí)踐和理論可知型鋼矯直機(jī)的輥距可大致去下面值 H=12mm故t取200mm 二 輥徑D 型鋼矯直機(jī)輥徑D與輥距t之間,通常具有以下比例關(guān)系 因此確定輥徑D=mm,選取輥徑160mm 三 輥?zhàn)訑?shù)目 在輥距一定的條件下,從提高矯直精度的觀點(diǎn)看,輥?zhàn)訑?shù)目越多越好。但輥?zhàn)訑?shù)目增多,使矯直機(jī)的尺寸增大,從而增加了設(shè)備的造價(jià)和傳動(dòng)矯直機(jī)的功率消耗。而且,當(dāng)輥?zhàn)訑?shù)目增加到一定數(shù)量之后,輥?zhàn)訑?shù)目對(duì)矯直質(zhì)量的影響就變得很不顯著;再增加輥?zhàn)?,就只能無意義的提高矯直機(jī)的造價(jià)。所以須根據(jù)矯直型材規(guī)格的實(shí)際情況,選擇足夠而又必需的輥?zhàn)訑?shù)目。 通常,矯直大型型鋼 n= 矯直中小型型鋼 n=所以,設(shè)計(jì)采用9輥矯直機(jī)是合適的(不包括出口處一個(gè)“標(biāo)準(zhǔn)輥”)。 四 矯直速度V 按平均輥徑計(jì)算的輥?zhàn)泳€速度叫做矯直速度。根據(jù)所要求的生產(chǎn)率不同,型鋼輥式矯直機(jī)的矯直速度在m/s的范圍內(nèi)選取,故選取矯直速度1m/s 五 輥身長(zhǎng)度L 對(duì)于懸臂式矯直機(jī)輥長(zhǎng)較短,本次設(shè)計(jì)布置1個(gè)孔型,輥身長(zhǎng)度計(jì)算公式 (3-1)式中 n-孔型數(shù); -型鋼最大寬度; b-孔型間結(jié)構(gòu)余量; a-輥端結(jié)構(gòu)余量,對(duì)于本次設(shè)計(jì),n=1 a=0.5,經(jīng)過計(jì)算L=510mm.第4節(jié) 矯直機(jī)力能參數(shù)計(jì)算一 矯直力計(jì)算 作用在矯直機(jī)輥?zhàn)由系膲毫?yīng)根據(jù)彎曲軋件時(shí)所需的彎曲力矩來計(jì)算。此時(shí),將軋件看為是一個(gè)受很多集中載荷作用的連續(xù)梁。這些集中載荷就是各輥?zhàn)訉?duì)軋件的壓力,在數(shù)值上也就是作用在輥?zhàn)由系膲毫Α?分別以、表示矯直時(shí)第1到第10輥?zhàn)訉?duì)軋件的壓力(即矯直力),分別以、表示軋件在第2到第9輥?zhàn)由系膹澢?。作用在各輥?zhàn)由系膲毫砂凑哲埣鲾嗝娴牧仄胶鈼l件求出。公式如下: (3-2)得 (3-3)得 用同樣的方法可求得:.作用在所有輥?zhàn)由系膲毫偤蜑?(3-4) 彎曲力矩值取決于彎曲變形量的大小,要精確計(jì)算是困難的,通常采用一種簡(jiǎn)化的方法,即作如下假設(shè): (1)第2、3、4輥處軋件的變形最大,彎曲力矩為塑性彎曲力矩Ms,即; (2)第n-1、n-2、n-3輥處,軋件彎曲變形最小,其彎曲力矩為屈服力矩Mw,即; (3)其余各輥下軋件的彎曲力矩為與的平均值,即將此假設(shè)代入上式,可得出作用在各矯直輥上的壓力為矯直機(jī)上,各輥的矯直力分布規(guī)律為:從第一輥至第三輥矯直力遞增;從第 n2 輥至n輥矯直力遞減;第四輥至第 n3 輥的矯直力相差不大。第三輥的矯直力最大。對(duì)于輥式矯直機(jī),當(dāng)輥?zhàn)訑?shù)目大于6時(shí),作用在所有棍子上的壓力和為 (3-5) 在本次設(shè)計(jì)中,b=350mm,h=12mm代入上式有將結(jié)果帶入上式得 二 矯直扭矩矯直扭矩是指軋件產(chǎn)生彎曲變形所需的力矩,根據(jù)矯直扭矩在輥?zhàn)由袭a(chǎn)生的矯直功等于使軋件產(chǎn)生彎曲變形功德功能相等原則,其計(jì)算公式如下: (3-6)式中 作用在第i輥上的矯直扭矩 第i棍下軋件的彎曲力矩 第i輥下軋件的塑性變形曲率,它包括進(jìn)入該輥的軋件原始曲率和軋件在該輥上產(chǎn)生的最大殘余曲率,即 (3-7) D矯直輥直徑矯直扭矩Ms的計(jì)算方法: 假設(shè)各輥?zhàn)酉萝埣膹澢囟嫉扔诩兯苄螐澢亍3C直原始曲率為0的軋件時(shí),因在第一輥與第n輥下軋件不發(fā)生彎曲變形。所以只計(jì)算第二輥到第n-1輥的塑性變形曲率,且因軋件在第n-1輥后已被矯直,即,則作用在所有輥?zhàn)由系某C直扭矩為 (3-8)在矯直原始曲率為0的軋件時(shí),因軋件在第三輥才產(chǎn)生塑性彎曲變形,其矯直扭矩為 (3-9)式中的二倍曲率是考慮到前一輥的殘余曲率是后一輥原始曲率,總塑性變形曲率是兩者之和。對(duì)于具有雙向原始曲率的軋件,其矯直力矩為 (3-10)式中 軋件的平均原始曲率,對(duì)于本次設(shè)計(jì)取=30h=360mm在不同的輥?zhàn)酉拢埣臍堄嗲适遣幌嗟鹊?,為了?jì)算方便,假設(shè)各輥?zhàn)酉碌臍堄嗲识嫉扔谧畲髿堄嗲剩猿C直扭矩為 (3-11)矩形斷面軋件 (3-12)代入上式得=420 第5節(jié) 主電動(dòng)機(jī)選擇 輥式矯直機(jī)主傳動(dòng)電機(jī)功率可按下式確定: (3-13) V被矯軋件的運(yùn)動(dòng)速度(m/s); D矯直輥輥身直徑(mm); h傳動(dòng)效率,=0.75-0.90,取0.8; M總的矯直力矩。總的矯直力矩由三部分力矩組成: (3-14)式中 M使軋件產(chǎn)生塑性變形的矯直力矩; M輥?zhàn)优c軋件的滾動(dòng)摩擦力矩,按下式計(jì)算: (3-15) 為矯直機(jī)輥?zhàn)由系目倝毫Γ?f 為輥?zhàn)优c軋件的滾動(dòng)摩擦系數(shù),取f=0.0002; M輥?zhàn)虞S承中的摩擦力矩, (3-16) 輥?zhàn)虞S承的摩擦系數(shù),取=0.005; d輥?zhàn)虞S承處直徑(滾動(dòng)軸承取中徑);將數(shù)據(jù)代入上述公式因此 電動(dòng)機(jī)的傳動(dòng)功率計(jì)算: = 故主電動(dòng)機(jī)選取Y180L-8,功率為11kW,同步轉(zhuǎn)速750/min,質(zhì)量為184kg。 第4章 主減速器的設(shè)計(jì)第1節(jié) 傳動(dòng)裝置方案的比較與總體設(shè)計(jì)1.方案比較: 圖4-1 第一種方案 圖4-2 第二種方案 第一種方案會(huì)發(fā)生帶與帶輪之間發(fā)生打滑,加劇帶的磨損,降低從動(dòng)輪的轉(zhuǎn)速,作用在軸上的徑向壓力大:第二種方案?jìng)鲃?dòng)效率高,結(jié)構(gòu)緊湊,而且傳動(dòng)比穩(wěn)定,工作可靠; 第二種方案高速級(jí)齒輪布置在遠(yuǎn)離轉(zhuǎn)矩輸入端,這樣,軸在轉(zhuǎn)矩作用下產(chǎn)生的扭轉(zhuǎn)變形和在載荷作用下軸產(chǎn)生的彎曲變形可以部分的抵消,以減緩沿齒寬載荷分布不均勻的現(xiàn)象。2. 主電動(dòng)機(jī)選取Y180L-8,功率為11kW,同步轉(zhuǎn)速750r/min,滿載轉(zhuǎn)速為=730r/min,減速器的輸出軸 (4-1)由表查得,一對(duì)軸承效率,斜齒圓柱齒輪傳動(dòng)效率,聯(lián)軸器效率因此,電動(dòng)機(jī)的額定功率為減速器壽命 一 傳動(dòng)比的計(jì)算及分配 總傳動(dòng)比 取高速級(jí)的傳動(dòng)比,則低速級(jí)的傳動(dòng)比: (4-2) 二 傳動(dòng)裝置運(yùn)動(dòng)以及動(dòng)力參數(shù)的計(jì)算1) 各軸的轉(zhuǎn)速: (4-3) (4-4) (4-6)2)各軸的功率 (4-7) (4-8) (4-9) (4-10)3)各軸的轉(zhuǎn)矩 (4-11) (4-12) (4-13) (4-14)第2節(jié) 傳動(dòng)件的設(shè)計(jì)計(jì)算 一 高速級(jí)圓柱齒輪傳動(dòng)設(shè)計(jì)大、小齒輪均選用45鋼,小齒輪調(diào)質(zhì)處理,大齒輪?;?,選用8級(jí)精度。 1.初步計(jì)算傳動(dòng)的主要尺寸對(duì)于軟齒面閉式傳動(dòng),故按齒面接觸疲勞強(qiáng)度進(jìn)行設(shè)計(jì),有 (4-15)1) 小齒輪傳遞轉(zhuǎn)矩為2) 選取載荷系數(shù)=1.43) 由表選取齒寬系數(shù)=14) 由表差得彈性系數(shù)=189.85) 初選螺旋角=12,節(jié)點(diǎn)區(qū)域系數(shù)=2.466) 齒數(shù)比u=27) 初選小齒輪齒數(shù)=20.則=u=220=40,取=40,則端面重合度為: 軸向重合度為由圖查的重合度系數(shù)8)由圖查的重合度系數(shù)8) 許用接觸應(yīng)力 由圖查的接觸疲勞極限應(yīng)力為, 小齒輪與大齒輪的應(yīng)力循環(huán)次數(shù)分別為: 由圖查的壽命系數(shù),由表取安全系數(shù)則取 初算小齒輪的分度圓直徑,有= 2.初步計(jì)算傳動(dòng)的主要尺寸 1)計(jì)算載荷系數(shù) 由表差得使用系數(shù),動(dòng)載荷系數(shù),齒間載荷分配系數(shù),齒向載荷分配系數(shù),則載荷系數(shù)2) 對(duì)進(jìn)行修正3)確定模數(shù)取4) 計(jì)算傳動(dòng)尺寸 中心距 則螺旋角為 因值與初選值相差不大,故無需對(duì)有關(guān)的參數(shù)進(jìn)行修正 ; 分度圓直徑: 取 取齒頂高 齒根高 全齒高 齒頂圓直徑 齒根圓直徑 二 低速級(jí)圓柱齒輪傳動(dòng)設(shè)計(jì)大、小齒輪均選用45鋼,小齒輪調(diào)質(zhì)處理,大齒輪常化,選用8級(jí)精度。 1.初步計(jì)算傳動(dòng)的主要尺寸對(duì)于軟齒面閉式傳動(dòng),故按齒面接觸疲勞強(qiáng)度進(jìn)行設(shè)計(jì),有 (4-16) 1)小齒輪傳遞轉(zhuǎn)矩為 2)選取載荷系數(shù)=1.4 3)由表選取齒寬系數(shù)=1 4)由表差得彈性系數(shù)=189.8 5)初選螺旋角=14,節(jié)點(diǎn)區(qū)域系數(shù)=2.44 6)齒數(shù)比u=3.05 7)初選小齒輪齒數(shù)=23.則=u=3.0525=76.25,取=77,則端面重合度為: 軸向重合度為 由圖查的重合度系數(shù) 8)由圖查的重合度系數(shù) 9)許用接觸應(yīng)力 由圖查的接觸疲勞極限應(yīng)力為, 小齒輪與大齒輪的應(yīng)力循環(huán)次數(shù)分別為: 由圖查的壽命系數(shù),由表取安全系數(shù)則取 初算小齒輪的分度圓直徑,有= 2.初步計(jì)算傳動(dòng)的主要尺寸 1)計(jì)算載荷系數(shù) 由表差得使用系數(shù),動(dòng)載荷系數(shù),齒間載荷分配系數(shù),齒向載荷分配系數(shù),則載荷系數(shù)3) 對(duì)進(jìn)行修正3)確定模數(shù)取5) 計(jì)算傳動(dòng)尺寸 中心距 則螺旋角為 因值與初選值相差較大,故需對(duì)有關(guān)的參數(shù)進(jìn)行修正 ; 由圖查得節(jié)點(diǎn)區(qū)域系數(shù)=2.44,則端面重合度為 軸向重合度為 由圖查的重合度系數(shù)由圖查的重合度系數(shù)=查得動(dòng)載系數(shù),K值不變?nèi)?中心距 則螺旋角為 修正完畢,故分度圓直徑 取 取齒頂高 齒根高 全齒高 齒頂圓直徑 齒根圓直徑 三 軸的設(shè)計(jì) 所有軸選用采用45鋼,調(diào)質(zhì)處理 1. 中間軸(軸)的設(shè)計(jì) 查表取得C=106135,取中間值120,則 (4-17) 1)軸承選擇以及軸段1、5的設(shè)計(jì) 該段安裝軸承,考慮齒輪有軸向力存在,選用角接觸球軸承,取軸承為 7208C,軸承內(nèi)徑d=40mm,外徑D=80mm,寬度B=18mm,故: 2)軸段2、4的設(shè)計(jì) 軸段2上安裝齒輪3,軸段4上安裝齒輪2,便于安裝,和應(yīng)分別高于于和,可定=50mm. 齒輪2輪轂寬度范圍為(1.2 1.5)=,取其輪轂寬度與齒輪寬度相等,左端采用軸肩定位,右邊采用套筒定位。齒輪3采用實(shí)心式,取其輪轂寬度與齒輪寬度相等,右端采用軸肩定位,左邊采用套筒定位。軸段的長(zhǎng)度應(yīng)比相應(yīng)的齒輪的輪轂略短,取 3)軸段3 該段為中間軸上的兩個(gè)齒輪提供定位,軸肩高度范圍=,取其高度為5mm,則 齒輪3的左端面與箱體內(nèi)壁的距離與齒輪2的右端面與箱體內(nèi)壁的距離均取,則箱體內(nèi)壁的距離 4)軸段1、5的長(zhǎng)度 軸承內(nèi)端面距箱體內(nèi)壁的距離取為則軸段1、5的長(zhǎng)度為:結(jié)構(gòu)如下: 圖4-3 中間軸2. 高速軸(軸)的設(shè)計(jì)同理可求軸承選用7208C結(jié)構(gòu)如下: 圖4-4 高速軸3. 低速軸(軸)的設(shè)計(jì) 同理可求軸承選用7212C結(jié)構(gòu)如下: 圖4-5 低速軸第5章 零件校核第1節(jié) 輥的校核 矯直輥軸由于在重載和沖擊載荷作用下工作,要求材料的機(jī)械性能、淬火性能好,故選用材料為40Cr。輥徑取d=100mm,r=2.5mm矯直理論和實(shí)踐證明,第三跟輥?zhàn)邮茌d最大,因此,再確定輥?zhàn)拥某叽?,以第三根輥?zhàn)訛閷?duì)象。取安全系數(shù)S=3; 由上邊的計(jì)算知道, 得第三根矯直輥的摩擦力矩為: (5-1) f矯直輥與軋件的摩擦系數(shù),取f=0.0002輥?zhàn)虞S承的摩擦系數(shù),取=0.005d輥?zhàn)虞S承處直徑(滾動(dòng)軸承取中徑);帶入數(shù)字,得 =22.43Nmm第三根矯直輥的矯直扭矩為: (5-2)=第三根矯直輥的傳動(dòng)力矩為: =(22.43+63860) =63882.4Nmm只考慮彎矩作用時(shí)的安全系數(shù): (5-3)只考慮扭矩作用時(shí)的安全系數(shù): (5-4)對(duì)稱循環(huán)應(yīng)力下的材料彎曲疲勞極限,查表得,查理論應(yīng)力集中系數(shù)表插值,得又查圖可得軸的材料的敏感系數(shù)為故有效應(yīng)力集中系數(shù)為由圖得尺寸系數(shù);由圖得扭轉(zhuǎn)尺寸系數(shù)。輥按磨削加工,由圖得表面質(zhì)量系數(shù)軸未經(jīng)表面強(qiáng)化處理,即由公式得綜合系數(shù)為合金鋼的特性系數(shù)為:彎曲應(yīng)力幅為:彎曲平均應(yīng)力扭轉(zhuǎn)切應(yīng)力為:扭轉(zhuǎn)切應(yīng)力幅和平均切應(yīng)力為:帶入上述數(shù)字得 =17,39 =2176.5 =17.4S=3故安全。第二節(jié) 軸承的校核 滾動(dòng)軸承是標(biāo)準(zhǔn)件,安裝,維修更換方便,價(jià)格也便宜,故應(yīng)用廣泛。本次設(shè)計(jì)矯直輥采用32320軸承。用小時(shí)數(shù)表示的軸承基本額定壽命為 (5-5) 對(duì)于滾子軸承,; n軸承的轉(zhuǎn)速; P軸承的當(dāng)量動(dòng)負(fù)荷; Fr徑向載荷; Fa軸向載荷 X,Y徑和軸向動(dòng)載荷系數(shù);實(shí)際上,在許多支撐中還會(huì)出現(xiàn)一些附加載荷,因此可對(duì)當(dāng)量動(dòng)載荷乘上一個(gè)根據(jù)經(jīng)驗(yàn)而定的載荷系數(shù),當(dāng)量動(dòng)載荷應(yīng)為 (5-6)因?yàn)榈谌伿芰ψ畲?,故只需?jì)算第三根即可。由設(shè)計(jì)手冊(cè)知 由上述公式有P=110.88KNX=1,Y=0,因此則h軸承壽命大約為90天查表取,則軸承合格。第3節(jié) 減速器軸的校核(以中間軸為例) 一 齒輪傳動(dòng)的作用力 齒輪 1的作用力 圓周力: 其方向與力作用點(diǎn)圓周速度方向相反 徑向力: 其方向?yàn)榱Φ淖饔命c(diǎn)指向輪1的轉(zhuǎn)動(dòng)中心 軸向力:法向力:齒輪2的各個(gè)作用力與齒輪1相應(yīng)的力大小相等,方向相反 齒輪3的作用力 圓周力: 其方向與力作用點(diǎn)圓周速度方向相反 徑向力: 其方向?yàn)榱Φ淖饔命c(diǎn)指向輪1的轉(zhuǎn)動(dòng)中心 軸向力:法向力:齒輪4的各個(gè)作用力與齒輪3相應(yīng)的力大小相等,方向相反. 二 軸上力作用點(diǎn)的間距選用軸承7208C,因此軸承反力的作用點(diǎn)距軸承外圈大端面的距離,由軸的設(shè)計(jì)圖得 三 軸的受力分析 1)畫出軸的受力簡(jiǎn)圖,如下:圖5-1 軸的受力簡(jiǎn)圖 2)計(jì)算支承反力 在水平面上: 式中負(fù)號(hào)表示與圖中所畫力的方向相反 在垂直平面上 軸承1的總支承反力為 軸承2的總支承反力為3) 畫彎矩圖 在水平面上a-a剖面圖左側(cè)為 a-a剖面圖右側(cè)為 b-b剖面右側(cè)為 b-b左側(cè)為 在垂直平面上為 合成彎矩 畫出轉(zhuǎn)矩圖 四 軸的強(qiáng)度校核1) a-a剖面的抗彎截面系數(shù)為 抗扭截面系數(shù)為 a-a左側(cè)彎曲應(yīng)力為 右側(cè)的彎曲應(yīng)力為 剪切應(yīng)力為 差表得45鋼調(diào)質(zhì)處理抗拉強(qiáng)度極限,查得軸的需用彎曲應(yīng)力 。 對(duì)于單向轉(zhuǎn)動(dòng)的轉(zhuǎn)軸,轉(zhuǎn)矩按脈動(dòng)循環(huán)處理,取折合系數(shù),則2) b-b剖面的抗彎截面系數(shù)為抗扭截面系數(shù)為a-a左側(cè)彎曲應(yīng)力為右側(cè)的彎曲應(yīng)力為剪切應(yīng)力為差表得45鋼調(diào)質(zhì)處理抗拉強(qiáng)度極限,查得軸的需用彎曲應(yīng)力。對(duì)于單向轉(zhuǎn)動(dòng)的轉(zhuǎn)軸,轉(zhuǎn)矩按脈動(dòng)循環(huán)處理,取折合系數(shù),則所以軸的強(qiáng)度滿足要求。 第4節(jié) 減速器軸承的校核(以中間軸為例) 中間軸選用軸承7208C由表得,受力如下: 圖5-2 軸承受力簡(jiǎn)圖由表差得軸承內(nèi)部軸向力計(jì)算公式,分別為外部軸向力則兩軸承的軸向力分別為 ,故只需校核軸承1的壽命。,查表得所以X=0.44,Y=1.21,當(dāng)量動(dòng)載荷為軸承的壽命為軸承壽命滿足要求。第5節(jié) 減速器鍵的校核(以中間軸為例)軸選用A型普通平鍵連接,型號(hào)分別為和;鍵的擠壓應(yīng)力為鍵、軸、齒輪的材料都是鋼,查表得,,強(qiáng)度足夠另一個(gè)處的鍵更長(zhǎng),其強(qiáng)度也足夠。外文資料AUTOMATING THE CONTROL OF MODERN EQUIPMENT FORSTRAIGHTENING FLAT-ROLLED PRODUCTS The company Severstal completed the successful introduction of new in-line plate-straightening machines (PSMs) on its 2800 and 5000 mills in August 2003 1, 2, 3. The main design featuresof the machines are as follows: each machine is equipped with hydraulic hold-down mechanisms (to improve the dynamics and accuracy of the machine adjustments and more reliablymaintain a constant gap); the machines have mechanisms to individually adjust each work roller with theaid of hydraulicylinders (this broadens the range of straightening regimes that can be realized by providing a measure of control over the change in the curvature of the plate); each work roller is provided with its own adjustable drive (to eliminate rigidkinematic constraints between the spindles); the system of rollers of the PSM is enclosed in cassettes (to facilitate repairs andreduce roller replacement costs); the PSM has a system that can be used to adjust the machine from a nine-rollerstraightening scheme to a five- roller scheme in which the distance between the rollers is doubled (this is done to widen the range of plate thick-nesses that the machine can accomodate). Thus, the new straightening machine is a sophisticated multi-function system of mechanisms th-at includes a wide range of hydraulically and electrically driven components controlled by digital and analog signals. The entire complex of PSM mechanisms can be divided into two functional groups: the main group, which includes the mechanisms that partici-pate directly in the straightening operation (the hold-down mechanisms, the mechanisms that individually adjust the rollers,the mechanisms that adjust the components for different straightening regimes, the mechanism that moves the top roller of the feeder, and the main drive); the auxiliary group (which includes the cassette replacement mechanism, the spindle-lock-ing mechanism, and the equipment that cools the system of rollers). Although the PSM has a large number of mechanisms,the use of modern hydraulic and electric drives has made it possible to almost completely automate the main and auxiliary operations performed on the PSM and the units that operate with it. Described below are the features and the automatic control systems for the most important mechanisms of the plate-straightening machine.The operating regimes of those mechanisms are also discussed.The hydraulic hold-down mechanisms (HHMs) of the sheet-straightening machine function in two main regimes:the adjustment regime;the regime in which the specified positions are maintained.There are certain requirements for the control system and certain efficiency criteria for each regime. In the adjustment regime, the control system for the hydraulic hold-down mechanisms must do the following: synchronize the movements of the hydraulic cylinders and keep the angular deeflection within prescribed limits; maximize speed in adjusting the machine for a new plate size; maintain a high degree of accuracy in positioning the mechanisms;The control system has the following requirements when operating in the maintenance regime: stabilize the coordinates of the top cassette and the top roller of the feeder with a high degree of accuracy; minimize the time needed to return the equipment to the prescribed coordinates when deviations occur (such as due to the force exerted by a plate being straightened). Need for synchronization. Experience in operating the plate-straightening machine in plate shop No. 3 at Severstal has shown that the most problematic factor in adjusting the machineis the nonuniformity of the forces applied to the hydraulic cylinders. This nonuniformity is due to the asymmetric distribution of the masses of the moving parts of the PSM (in particular, the effect of the weight of the spindle assembly). Displacement of the “hydraulic zero point” relative to the “electrical zero point” in the servo valves is also a contributing factor.The latter reason is more significant, the smaller the volume of the hydraulic cylinder.Thus, the HHM of the top roller of the feeder is the most sensitive to drift of the zero point. There are also other factors that affect the dynamism,simultaneousness,and synchronism of the operation of the hold-down mechanisms: differentiation of the frictional forces on parts of the hydraulic cylinders due to different combinations of deviations in the dimensions of the mated parts, despite the narrow tolerances; differences in the “springing” characteristics and the indices characterizing the inertia of the hydraulic supply channels (due to differences in the lengths of the pipes leading from the servo valves to the hydraulic cylinders). Thus, since the PSM is not equipped with devices to mechanically synchronize the operation ofthe cylinders, the ransmission of signals of the same amplitude to the inputs of the servo valves inevitably results in a speed difference that can seriously damage the mechanisms. To minimize and eliminate the effects of the above-mentioned factors, we developed an algorithm for electrical synchronization of the hold-down mechanisms. The HHM of the top cassette, composed of four hold-down cylinders and four balancing cylinders, is designed to ensure mobile adjustment of the machine to set the required size of straightening gap (in accordance with the thickness of the plate) and maintain that gap with a specified accuracy in the presence and absence of a load on the housings from the straightening force. The hydraulic system of the hold-down mechanism is designed in such a way that only one chamber of the hydraulic cylinders is used as the working chamber.The second chamber is always connected to the discharge channel.The top cassette is lowered when the balancing forces are overcome by the hold-down cylinders.The cassette is raised only by the action of the balancing cylinders.This arrangement has made it possible to eliminate gaps in the positioning of the equipment. The HHM of the top roller of the feeder consists of two hydraulic cylinders. Hydraulic fluid is fed into the plunger chamber when the roller is to be lowered and is fed into the rodchamber when it is to be raised. Control Principles. Individual circuits have been provided (Fig.1) to control the hydraulic cylinders of the hold-down mechanisms.The control signal (Xctl) sent to the input of the servo valve is formed by a proportional-integral (PI) controller (to improve the sensitivity of the system, we chose to use valves with “zero” overlap).The signal sent to the input of the controller (the error signal Xerr) is formed as the difference between the control-point signal for position (Xcpt) and the feedback signal (Xf.b).The latter signal is received from the linear displacement gage (G) of the given hydraulic cylinder. The gages of the HHM for the top cassette are built into the balancing hydraulic cylinders (HCs).The cylinders are installed in such a way that their movements can be considered to be equalto the displacements of the corresponding cylinder rods, with allowance for certain coefficients.The gages in the HHM for the top roller of the feeder are incorporated directly into the hold-down cylinders. The integral part of the controller is activated only during the final adjustment stage and duringstabilization of the prescribed coordinate.When the displacements exceed a certain threshold value, the functions of the PI controller are taken over by a proportional (P) controller with the transfer function W(s) = k.Thus, Xctl(t) = kXerr(t). When there are significant differences between the displacements of the working rollers,the difference (error)between the control point and the feedback signal from the linear displacement gage reaches values great enough so that the output signal which controls the operation of the servo valve reaches the saturation zone.In this case, further regulation of the displacement rate and,thus synchronization of the movements of the cylinders becomes impossible as long as the error exceeds the value at which Xctl is greater than the boundary value for the saturation zone (Xsat).The limiting errorthe largest error for which Xctldoes not reach saturationis inversely proportional to the gain of the controller k: Xerr Xsat/ k. Solving the given problem by decreasing k leads to a loss of speed in the adjustment of the PSM and a decrease in control accuracy during the straightening operation.Thus, to keep the control signal from reaching the saturation zone when there are substantial displacements, the system was designed so that the input of the controller is fed not the actual required value (Xrq) but an increment (X) of a magnitude such that the condition kX Xsat is satisfied.The control point is increased by the amount X after the position of the cylinder has been changed by the amount corresponding to the increment having the largest lag relative to the cylinders direction of motion. The adjustment of the control point is continued until the difference between the required value and the actual position of the mechanism becomes less than the increment:Xrq-xf.bx. Use of the principle of a stepped increase in the control point makes it possible synchronize the movements of the cylinders and set the control point with a high degree of accuracy for almost any ideal repetition factor. Mechanisms for Individual Adjustment of the Working Rollers.The plate-straightening machine is designed so that each working roller can be moved vertically, which is done by means of a hydraulic cylinder acting in concert with a V-belt drive.The cylinders are supplied with power from servo valves operated with proportional control.A linear displacement gage is built into each cylinder to obtain a feedback signal on the position of the roller.Since these gages are actually transmiting information on the position of the cylinder rods rather than the working rollers themselves, the following conversion is performed to obtain the rollers coordinates:Xrol= kredXf.b, Where kred is the gear ratio of the drive;Xf.b is the position of the cylinder rod measured by the linear displacement transducers. Thus, a position feedback circuit is provided to control the position of each working roller. Figure 1 presents a diagram of one of the circuits. The control signals are generated by means of the PI controllere, which has made it possible to achieve a high degree of accuracy in adjusting the system without sacrificing speed.The individual drive of the rollers. The above-described design is based on the use of individual ac drives with motors of different powers fed from frequency converters. Each individual drive offers the following advantages over a group drive: greater reliability thanks to the absence of additional loads on the components of the mechanisms due to differences between the linear velocities of the working rollers and the speed of the plate; he possibility that the machine could continue to operate if one or even several drives malfunction;in this case,the corresponding rollers would be removed from the straightening zone; the possibility that the linear velocities of the rollers could be individually corrected in accordance with the actual speed of the plate;such a correction could be made either as a preliminary measure (on the basis of measured and calculated values) or during the straightening operation (on the basis of the data obtained from the frequency converters, which employ artificial intelligence). The main drive of the straightening machine rotates nine straightening rollers and two housing rollers.This drive must be highly reliable in operation, since the fact that the PSM is installed in the mill line means that sizable production losses can be incurred if the drive fails to work properly even for a short period of time. The requirements that must be satisfied by the drive are determined by the operational and design features of the machine as a whole: the plate being straightened must create a rigid kinematic coupling between the straightening rollers, the rollers of the housing, and the adjacent sections of the roller conveyors; the plate should undergo elongation during the straightening operation as a result of plastic deformation, with the increments in length being different on each working roller due to the differentiation of the bending radii;this situation leads to a nonuniform increase in the speed of the plate as it moves toward the end of the PSM; it must be possible to use working rollers of different diameters (this being done, for example, due to nonuniform wear or regrinding); the loads on the rollers should be differentiated in accordance with the chosen straightening regime; reverse straightening should be possible. In light of the above factors and the actual operating regimes of the plate-straightening machine being discussed here, the following requirements can be established for the electric drive: regulation of speed within broad limits, including startup of the motors under load; operation in the reverse regime; a rigid characteristic = f(M); high degree of accuracy in maintaining the prescribed speed; fully synchronous operation. The element base. The drive of the rollers was built with the use of asynchronous three-phasemotors having a short-circuit rotor.The motors were designed by the German company VEM.Theycan continue to function under severe overloads and are reliable in operation. The motors are controlled by SIMOVERT frequency converters made by the German firm Siemens.Their modular design facilitates maintenance and repair, and the presence of a built-in microprocessor block makes it possible to execute most of the functions involved in controlling the operation of the drive (maintain the prescribed speed with a high degree of stability, recalculate the frequency of rotation in accordance with the actual diameters of the rollers, diagnose the condition of the drive, control the drives operation, and exchange information on the PROFIBUS network). Motors of different powers are used in the system because of the differentiated distribution of the moments between the working rollers.Using different motors has made it possible to significantly reduce the cost of the electrical equipment and improve the performance characteristics of the machine as a whole. The machine has three main operating regimes: the working regime (semi-automatic and automatic), the transport regime, and the cassette replacement regime. Figure 2 shows a block diagram of the operations connected with realization of the working regime.In the semi-automatic variant of this regime, the operator controls the PSM from a control panel.In this case, the operator can do the following: choose the straightening regime from a database;correct the chosen regime;adjust the regime manually, which requires that the operator indicate the desired position of the bottom cassette (for five- or nine-roll straightening);adjust the gap between the top and bottom cassettes; set the coordinates for individual adjustment of the working rollers; choose the straightening speed and direction;generate a command to begin adjusting the machine to the specified regime. Fig. 2. Block diagram of the working regime of the PSM. The machine is adjusted to the chosen regime automatically.After the adjustment is completed, a signal is sent to the control panel indicating that the coordinates of the mechanisms have beenchanged and that the rollers have reached their prescribed working speeds. In the automatic variant of the working regime, the plate-straigthening machine isadjusted on the basis of data sent through a data network from a higher-level system. These data include the following information: the thickness of the plate being straightened; the group of steels (information on the properties of the material); the temperature of the plate at the inlet to the PSM. The PSM is adjusted in several stages: preliminary adjustment based on the plate thickness and steel group, for cold-rolled plates (t = 20C); further adjustment on the basis of data obtained from a pyrometer installed roughly 50m from the PSM; final adjustment on the basis of data obtained from a pyrometer installed at theentrance to the machine. In the automatic variant, control over the roller conveyors adjacent to the machine is switched over to the control system of the PSM as the next plate approaches the machine.In this case, the plate cannot enter the working zone of the machine until the adjustment is completed. If it is necessary to pass a plate through the machine without straightening it, the machine is changed over to the transport regime.In this case, the top crossarm and the cassette are elevated a prescribed amount and the speed of the rollers is changed so that it is equal to the speed of the adjacent roller conveyors. The cassette replacement regime is used in the event of breakage of a roller or when it is necessary to regrind the working and backup rollers.In this case, the operator can control the operation of the auxiliary mechanisms:the spindle-locking mechanism, the roll-out cart, the mechanism that locks the bottom cassette and the cart in position, and the hydraulic cylinder that moves the cart. The mechanisms are fixed in position by means of noncontact transducers. PSM Control System. Control of the plate-straightening machine required the development of a powerful, high-capacity system that could provide the desired control accuracy in combination with rapid operation. The control system that was created is divided into two levels: the base level, and an upper level.The diagnostic system was created as a separate system.A second controller was also provided, to control the pump station of the PSM.The base level of the control system employs a SIMATIC S7 industrial programmable controller, while the upper level and the diagnostic system were built on the basis of standard The different elements of the control system are linked by two loops of a PROFIBUS network (Fig.3).The first loop functions as the communications link between the controller, the upper-level computer, the diagnostics station, and the pump-station controller.The second loop links the PSM controller with the functional elements of the system (the frequency converters, linear displacement gages, and remote input/output module). The functions of the control system were divided between the base level and the upper level on the basis of the following principle: the base level was assigned all of the operations that involve receiving data from the sensors installed on the mechanisms, obtaining information from the automated process control system on the plate being straightened, and generating and transmitting control signals for the executive mechanisms (actuators); the upper level was assigned the functions of archiving the control points and monitoring the operation of the control panel. The following specific functions are performed by the base level of the automation system: obtaining the assigned straightening parameters (roller speeds, the coordinates of the top crossarm, and the coordinates of the rollers relative to the crossarm) from the upper-level system; processing the parameters and sending corresponding control signals to the actuators; Obtaining information from the sensors installed on the mechanisms to determinewhether or not the PSM is properly set and ready for the straightening operation; obtaining information from the feedback transducers installed on the mechanisms tocalculate the control actions; analyzing the readin
收藏