轉向柱式電動助力轉向系統(tǒng)設計-分圖版【含10張CAD圖紙】
喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有,請放心下載,原稿可自行編輯修改【QQ:1304139763 可咨詢交流】= 喜歡就充值下載吧。資源目錄里展示的全都有,下載后全都有,請放心下載,原稿可自行編輯修改【QQ:1304139763 可咨詢交流】=
SY-025-BY-2畢業(yè)設計(論文)任務書學生姓名李東輝系部汽車與交通工程學院專業(yè)、班級車輛07-6班指導教師姓名安永東職稱副教授從事專業(yè)車輛工程是否外聘否題目名稱轉向柱式電動助力轉向系統(tǒng)設計一、設計(論文)目的、意義1、目的:本設計根據(jù)汽車轉向系統(tǒng)的工作過程和工作要求,設計一套汽車動力轉向系統(tǒng),此電動助力轉向系統(tǒng)采用電機帶動油泵,根據(jù)車速信號、轉向盤信號控制泵油量,達到變助力的轉向。2、意義:本設計所設計的動力轉向系統(tǒng),可以為設計研制一種汽車助力轉向系統(tǒng)提供一種途徑,對生產(chǎn)實際具有一定的實用價值和應用前景,也可通過本設計進一步培養(yǎng)學生綜合運用知識的能力,培養(yǎng)其分析問題和解決問題的能力,增強工程設計能力。二、設計(論文)內容、技術要求(研究方法)1、設計內容:設計汽車電動助力轉向系統(tǒng)。通過電動機帶動減速機構上,產(chǎn)生助動力施加到轉向柱上,協(xié)助駕駛員進行轉向。具體完成扭轉傳感器、助力電機、電磁離合器的選取和減速機構、轉向器的設計。2、主要技術指標主要技術指標:前軸載荷:650kg;齒條力:6000N;轉向傳動比:40確定轉向盤平均作用力和轉向盤最大作用力,據(jù)此計算出性能參數(shù),并對各部件進行設計計算。減速機構為渦輪蝸桿式,轉向器為齒輪齒條式。設計說明書要完整,計算過程要準確,公式、符號等書寫要規(guī)范。圖紙繪制要依據(jù)機械制圖標準來完成。三、設計(論文)完成后應提交的成果1、設計說明書一份,約為1.5萬字。2、轉向器結構裝配圖一張、減速機構裝配圖一張、助力系統(tǒng)布置圖一張、零件圖若干張、設計說明書一份,折合三張A0圖紙。四、設計(論文)進度安排1、進行文獻檢索查,查看相關資料,對課題的基本內容有一定的認識和了解。完成開題報告。第1-2周(2月28日3月11日)2、初步確定設計的總體方案,討論確定方案;對動力轉向系統(tǒng)的選用件進行計算選取。第3-6周(3月14日4月8日)3、提交設計草稿,進行討論,修定。第7周(4月11日4月15日)4、完善轉向系統(tǒng)的設計;完成轉向器的設計,繪制裝配圖及相應零件圖。第8-12周(4月18日5月20日)5、提交正式設計,教師審核。第13-14周(5月23日6月3日)6、按照審核意見進行修改。第15周(6月6日6月10日)7、整理所有材料,裝訂成冊,準備答辯。第16周(6月13日6月17日)五、主要參考資料1林逸,施國標.汽車電動助力轉向技術的發(fā)展現(xiàn)狀和趨勢.公路交通科技,2006.18(3)2龔培康,萬沛霖.汽車電子轉向系統(tǒng).重慶工業(yè)管理學院學報,2005.10(4)3楊通順.ZF電子助力轉向器.汽車與配件2005.4 4汽車工程手冊編委會.汽車工程手冊一設計篇.人民交通出版社.北京.20015GB1589一2004,道路車輛外廓尺寸、軸荷及質量限值6GB7258一2004,機動車運行安全技術條件7QC/T530一2000,汽車動力轉向器總成技術條件六、備注指導教師簽字:年 月 日教研室主任簽字: 年 月 日本科學生畢業(yè)設計 轉向柱式電動助力轉向系統(tǒng)設計 院部名稱: 汽車與交通工程學院 專業(yè)班級: 車輛工程07-6班 學生姓名: 李東輝 指導教師: 安永東 職 稱: 副教授 黑 龍 江 工 程 學 院二一一年六月The Graduation Design for Bachelors DegreeDesign of The Steering Type Electric Power Steering System Candidate:LiDongHuiSpecialty:Vehicle engineeringClass:B07-6Supervisor:Associate Prof. AnYongDongHeilongjiang Institute of Technology2011-06Harbin畢業(yè)設計(論文)開題報告設計(論文)題目: 轉向柱式電動助力轉向系統(tǒng)設計 院 系 名 稱: 汽車與交通工程學院 專 業(yè) 班 級: 車輛07-6班 學 生 姓 名: 李東輝 導 師 姓 名: 安永東 開 題 時 間: 2011年2月28日 指導委員會審查意見: 簽字: 年 月 日開題報告撰寫要求一、“開題報告”參考提綱1. 課題研究目的和意義;2. 文獻綜述(課題研究現(xiàn)狀及分析);3. 基本內容、擬解決的主要問題;4. 技術路線或研究方法;5. 進度安排;6. 主要參考文獻。二、“開題報告”撰寫規(guī)范請參照黑龍江工程學院本科生畢業(yè)設計說明書及畢業(yè)論文撰寫規(guī)范要求。字數(shù)應在4000字以上,文字要精練通順,條理分明,文字圖表要工整清楚。 畢業(yè)設計(論文)開題報告學生姓名李東輝系部汽車工程系專業(yè)、班級車輛工程 07-6班指導教師姓名安永東職稱副教授從事專業(yè)車輛工程是否外聘是否題目名稱轉向柱式電動助力轉向系統(tǒng)設計一、課題研究現(xiàn)狀、選題目的和意義1、研究現(xiàn)狀1988 年2 月日本鈴木公司首次在其Cervo 車上裝備EPS , 隨后還用在了其Alto 車上。在此之后, 電動助力轉向技術如雨后春筍般得到迅速發(fā)展。日本的大發(fā)汽車公司、三菱汽車公司、本田汽車公司, 美國的Delphi 汽車系統(tǒng)公司、TRW公司, 德國的ZF 公司, 都相繼研制出各自的EPS。比如: 大發(fā)汽車公司在其Mi2ra 車上裝備了EPS , 三菱汽車公司則在其Minica 車上裝備了EPS ; 本田汽車公司的Accord 車目前已經(jīng)選裝EPS , S2000 轎車的動力轉向也將傾向于選擇EPS ;Delphi 汽車系統(tǒng)公司已經(jīng)為大眾的Polo 、歐寶的318i以及菲亞特的Punto 開發(fā)出EPS 。TRW從1998 年開始, 便投入了大量人力、物力和財力用于EPS 的開發(fā)。他們最初針對客車開發(fā)出轉向柱助力式EPS , 如今小齒輪助力式EPS 開發(fā)也已獲成功。1999 年3 月, 他們的EPS 已經(jīng)裝備在轎車上, 如Ford Fiesta 和Mazda 323F 等 。Mercedes OBenz 和Siemens Automotive 兩大公司共同投資6 500 萬英鎊用于開發(fā)EPS , 他們的目標是到2002 年裝車, 年產(chǎn)300 萬套, 成為全球EPS 制造商。他們計劃開發(fā)出適用于汽車前橋負荷超過1200kg的EPS,因此貨車也將可能成為EPS的裝備目標。而我國在2002 年才開始研制開發(fā)汽車EPS 產(chǎn)品, 目前已經(jīng)知道的有13 家企業(yè)和科研院校正在研制中。其中南摩股份有限公司( 生產(chǎn)轉向柱式的EPS 產(chǎn)品) 在2003 年開始進入小批量生產(chǎn)階段, 其他廠家和科研院校均在開發(fā)階段中。經(jīng)過20 幾年的發(fā)展, EPS 技術日趨完善。其應用范圍已經(jīng)從最初的微型轎車向更大型轎車和商用客車方向發(fā)展, 如本田的Accord 和菲亞特的Punto 等中型轎車已經(jīng)安裝EPS ,本田甚至還在其Acura NSX賽車上裝備了EPS 。EPS 的助力型式也從低速范圍助力型向全速范圍力型發(fā)展, 并且其控制形式與功能也進一步加強。日本早期的EPS 僅僅在低速和停車時提供助力, 高速時EPS 將停止工作。新一代的EPS 則不僅在低速和停車時提供助力, 而且還能在高速時提高汽車的操縱穩(wěn)定性。如鈴木公司裝備在Wagon R + 車上的EPS 是一個負載-路面-車速感應型助力轉向系統(tǒng) 。由Delphi 為Punto 車開發(fā)的EPS 屬全速范圍助力型, 并且首次設置了兩個開關, 其中一個用于郊區(qū), 另一個用于市區(qū)和停車。當車速大于70km/ h 后, 這兩種開關設置的程序則是一樣的, 以保證汽車在高速時有合適的路感。這樣即使汽車行駛到高速公路時駕駛員忘記切換開關也不會發(fā)生危險。市區(qū)型開關還與油門相關,使得在踩油門加速和松油門減速時, 轉向更平滑。隨著直流電機性能的改進, EPS 助力能力的提高, 其應用范圍將進一步拓寬, 現(xiàn)在3 升級的運動型跑車也有安裝EPS。EPS 代表未來動力轉向技術的發(fā)展方向, 將作為標準件裝備到汽車上, 并將在動力轉向領域占據(jù)主導地位。據(jù)TRW公司預測, 到2010 年全世界生產(chǎn)的每3 輛轎車中就有1 輛裝備EPS。特別是低排放汽車(LEV) 、混合動力汽車(HEV) 、燃料電池汽車( FCEV) 、電動汽車(EV) 四大EV 汽車將構成未來汽車發(fā)展的主體,這給EPS 帶來了更加廣闊的應用前景。盡管EPS 已達到了其最初的設計目的, 但仍然存在一些問題需要解決, 其中, 進一步改善電動機的性能是關鍵問題。因為電動機的性能是影響控制系統(tǒng)性能的主要因素, 電動機本身的性能及其與電動助力轉向系統(tǒng)的匹配都將影響到轉向操縱力、轉向路感等問題。概括地說, 電動助力轉向技術的發(fā)展方向主要為: 改進控制系統(tǒng)性能和降低控制系統(tǒng)的制造成本。只有進一步改進控制系統(tǒng)性能, 才能滿足更高檔轎車的使用要求。另外, EPS 的控制信號將不再僅僅依靠車速與扭矩, 而是根據(jù)轉向角、轉向速度、橫向加速度、前軸重力等多種信號進行與汽車特性相吻合的綜合控制, 以獲得更好的轉向路感。未來的EPS 將朝著電子四輪轉向的方向發(fā)展, 并與電子懸架統(tǒng)一協(xié)調控制。2、目的、依據(jù)和意義隨著汽車行業(yè)的蓬勃發(fā)展,人們對于汽車功能的要求變得越來越高,EPS系統(tǒng)也迎來了巨大的市場需求,許多廠商都以EPS系統(tǒng)作為一個賣點,來吸引顧客買車。所謂電動轉向( EPS) , 就是在機械轉向系統(tǒng)中,用電池作為能源, 電動機為動力, 以轉向盤的轉速和轉矩以及車速為輸入信號, 通過電子控制裝置, 協(xié)助人力轉向, 并獲得最佳轉向力特性的伺服系統(tǒng)。EPS汽車轉向系統(tǒng)的性能直接影響到汽車的操縱穩(wěn)定性, 對于確保車輛的安全行駛、減少交通事故以及保護駕駛員的人身安全、改善駕駛員的工作條件起著重要的作用。特別是EPS用電動機直接提供助力,助力大小由電子控制單元(ECU)控制。它能在汽車低速行駛轉向時減輕轉向力使轉向輕便、靈活; 在汽車高速行駛轉向時, 適當加重轉向力, 從而提高了高速行駛時的操縱穩(wěn)定性, 增強了路感 。不僅如此,EPS的能耗是HPS能耗的1 /3以下, 且前者比后者使整車油耗下降可達3% - 5%, 因而, 它能節(jié)約燃料,提高主動安全性,且有利于環(huán)保。二、設計(論文)的基本內容、擬解決的主要問題1、研究的基本內容(1)分析轉向柱式電動助力轉向系統(tǒng)的結構形式及工作原理。(2)分析助力電機與電磁離合器的工作原理,選取合適的助力電機和電磁離合器。(3)分析減速機構蝸輪蝸桿式的工作原理 ,確定具體的參數(shù)。(4)齒輪齒條式轉向器的設計。(5)聯(lián)軸器的選擇。(6)扭轉傳感器的選擇。2、擬解決的主要問題(1)利用Autocad完成蝸輪蝸桿與轉向器裝配圖的繪制。 (2)利用強度校核公式對蝸輪蝸桿及轉向器各部件進行校核,確保符合實際應用。(3)繪制助力系統(tǒng)分布圖。 (4)確定蝸桿相對蝸輪的布置方式。三、技術路線(研究方法)調研、收集資料及總體方案論證分析轉向柱式電動助力轉向器內部結構及工作原理助力電機的選擇電磁離合器的選擇扭轉傳感器的選擇擇選擇減速機構設計轉向器設計撰寫設計說明書蝸桿軸徑向、軸向尺寸確定蝸輪軸徑向、軸向尺寸確定四、進度安排(1)調研、資料收集,完成開題報告 第4周(3月24日3月30日)(2)助力電動機、電磁離合器、扭轉傳感器的選擇 第45周(3月214月1日)(3)減速機構的設計及校核 第57周(4月1日4月19日)(4)轉向器的設計第812周(4月205月24日)(5)撰寫說明書第1314周(5月256月7日)(6)設計審核、修改 第15、16周(6月9日6月22日)(7)畢業(yè)設計答辯準備及答辯 第17周(6月23日6月 29日)五、參考文獻1馮櫻等.電子控制式電動助力轉向系統(tǒng)的開發(fā)前景J.汽車科技,2001(3) : 4- 6.2卓敏等.汽車電動助力轉向技術分析J.機電工程技術,200231(5):17- 19.3 NakayamaT,Suda E.The Present and Future of Electric Power Steer2.ing.Int.J1 of Vehicle Design,1994, 15(3,4,5): 243 - 254.4Ken Rogers , William Kimberley. Turning Steering to Electric. Automo2.tive Engineer , 2000 , 108 (2) : 39 - 41.5Kami Buchholz.TRW Demonstrates Electrically Powered Steering and Active Roll Control . Automotive Engineer , 1996 , 104 (12) : 42.6林逸,施國標.汽車電動助力轉向技術的發(fā)展現(xiàn)狀和趨勢.公路交通科技,2006.18(3).7龔培康萬沛霖,汽車電子轉向系統(tǒng)。重慶工業(yè)管理學院,2005.10(4).8楊通順ZF 電子助力轉向器,汽車與配件2005.4.9王望予.汽車設計M.北京:機械工業(yè)出版社,2004:78-111. 10馬秋生.機械設計基礎M.北京:機械工業(yè)出版社,2003:150-221.11周松鶴.工程力學M.北京:機械工業(yè)出版社,2005:209-222.12王豪等.電動轉向系統(tǒng)及其發(fā)展現(xiàn)狀J .汽車運用,2002(8) : 9- 11.13張松林.最新軸承手冊M.北京:電子工業(yè)出版社,2007:374-378.14苗立東等.汽車電動轉向技術發(fā)展綜述J .長安大學學報,2004,24(1) : 79- 84.15汽車工程手冊編委會。汽車工程手冊-設計篇.人民交通出版社.北京.2001. 六、備注指導教師意見:簽字: 年 月 日黑龍江工程學院本科生畢業(yè)設計摘 要電動助力轉向系統(tǒng)就是在機械轉向系統(tǒng)中,用電池作為能源, 電動機為動力, 以轉向盤的轉速和轉矩以及車速為輸入信號, 通過電子控制裝置, 協(xié)助人力轉向, 并獲得最佳轉向力特性的伺服系統(tǒng)。EPS汽車轉向系統(tǒng)的性能直接影響到汽車的操縱穩(wěn)定性, 對于確保車輛的安全行駛、減少交通事故以及保護駕駛員的人身安全、改善駕駛員的工作條件起著重要的作用。電動助力轉向系統(tǒng)主要由減速機構和轉向機構組成,減速機構把電動機的輸出經(jīng)過減速增扭傳遞到動力輔助單元,實現(xiàn)助力。由于蝸輪蝸桿傳動比大,傳動平穩(wěn)噪聲低故減速機構選為蝸輪蝸桿式。由于齒輪齒條式轉向器,傳動平穩(wěn),結構簡單故轉向機構選為齒輪齒條式。本文設計研究了電動助力轉向系統(tǒng),對其工作原理做了闡述,對蝸輪蝸桿減速器中的蝸輪與蝸桿做了詳細的設計計算,并進行了選型。同時對齒輪齒條式轉向器的結構進行分析,并對其重要零件進行了設計計算與強度校核。關鍵字:減速器;轉向器;設計;齒輪;軸;校核ABSTRACTElectric power steering system is in mechanical steering system, use battery as energy, motor as a driving force, the steering dish speed and torque and speed of the input signal, through the electronic control unit, to help the human steering, and get the best to force characteristics of servo system. EPS automobile steering system performance directly influence to the cars steering stability, to ensure that the vehicles safety driving, reduce the number of traffic accidents and protecting the personal safety of the driver, improve the working conditions of the driver plays an important role. Electric power steering system mainly consists of deceleration institutions and steering mechanism composition, slowing institutions to increase the output after slowing motor relay to the power auxiliary units twisted, realize the power. Because worm transmission large and stable transmission low noise so slow institutions elected worm type. Because rack-and pinion steering gear-component with simple structure, stable transmission, is steering mechanism selected for rack-and pinion type. The paper presents the design of electric power steering system was studied, the principle of work of worm gear and worm reducer elaboration, the worm gear and worm to do a detailed design calculation, and a selection. Meanwhile to the structure of rack-and pinion steering gear-component are analyzed, and the important parts of the design calculation and strength check. Keywords : reducer; steering gear; Design; Gear; Axis;CheckingIISY-025-BY-5畢業(yè)設計(論文)中期檢查表填表日期2011年 4月20 日迄今已進行 8 周剩余 8 周學生姓名李東輝院系車輛與交通工程專業(yè)、班級車輛工程07-6班指導教師姓名安永東職稱副教授從事專業(yè)車輛工程是否外聘是否題目名稱轉向柱式電動助力轉向系統(tǒng)設計學生填寫畢業(yè)設計(論文)工作進度已完成主要內容待完成主要內容1、電動機、電磁離合器、扭轉傳感器都選擇完畢。2、減速機構的基本參數(shù)以計算完畢。3、 減速機構的裝配圖繪制已完畢。4、 助力系統(tǒng)布置圖繪制完畢。1、齒輪齒條式轉向器基本參數(shù)的設計。2、齒輪齒條式轉向器裝配圖的繪制。3、說明書的撰寫存在問題及努力方向存在問題:在對角接觸球軸承的校核過程中純在一些問題,將其與深溝球軸承的校核方式弄混了,導致結果錯誤。努力方向:通過細心查閱資料上述問題已經(jīng)解決,但通過該問題使我了解到我對該方面的認識還有些不足,我以后會多收集,多學習有關該方面的書。學生簽字: 李東輝 指導教師意 見 指導教師簽字: 年 月 日教研室意 見教研室主任簽字: 年 月 日畢業(yè)論文指導教師評分表學生姓名李東輝院系汽車與交通工程學院專業(yè)、班級車輛07-6班指導教師姓名安永東職稱副教授從事專業(yè)車輛工程是否外聘是否題目名稱轉向柱式電動助力轉向系統(tǒng)設計序號評 價 項 目滿分得分1選題與專業(yè)培養(yǎng)目標的符合程度,綜合訓練情況;題目難易度102題目工作量;選題的理論意義或實際價值103查閱文獻資料能力;綜合運用知識能力154研究方案的設計能力;研究方法和手段的運用能力;外文應用能力255文題相符程度;寫作水平156寫作規(guī)范性;篇幅;成果的理論或實際價值;創(chuàng)新性157科學素養(yǎng)、學習態(tài)度、紀律表現(xiàn);畢業(yè)論文進度10得 分 X= 評 語:(參照上述評價項目給出評語,注意反映該論文的特點)工作態(tài)度: 好 較好 一般 較差 很差研究能力或設計能力:強 較強 一般 較弱 很弱工作量: 大 較大 適中 較少 很少規(guī)范性: 好 較好 一般 較差 很差成果質量(研究方案、研究方法、正確性):好 較好 一般 較差 很差其他: 指導教師簽字: 年 月 日畢業(yè)設計指導教師評分表學生姓名李東輝院系汽車與交通工程 學院專業(yè)、班級車輛07-6班指導教師姓名安永東職稱副教授從事專業(yè)車輛工程是否外聘是否題目名稱轉向柱式電動助力轉向系統(tǒng)設計序號評 價 項 目滿分得分1選題與專業(yè)培養(yǎng)目標的符合程度,綜合訓練情況;題目難易度102題目工作量;題目與工程實踐、社會實際、科研與實驗室建設等的結合程度103綜合運用知識能力(設計涉及學科范圍,內容深廣度及問題難易度);應用文獻資料能力154設計(實驗)能力;計算能力(數(shù)據(jù)運算與處理能力);外文應用能力205計算機應用能力;對實驗結果的分析能力(或綜合分析能力、技術經(jīng)濟分析能力)106插圖(圖紙)質量;設計說明書撰寫水平;設計的實用性與科學性;創(chuàng)新性207設計規(guī)范化程度(設計欄目齊全合理、SI制的使用等)58科學素養(yǎng)、學習態(tài)度、紀律表現(xiàn);畢業(yè)論文進度10得 分 X= 評 語:(參照上述評價項目給出評語,注意反映該論文的特點)工作態(tài)度: 好 較好 一般 較差 很差研究能力或設計能力:強 較強 一般 較弱 很弱工作量: 大 較大 適中 較少 很少說明書規(guī)范性: 好 較好 一般 較差 很差圖紙規(guī)范性: 好 較好 一般 較差 很差成果質量(設計方案、設計方法、正確性)好 較好 一般 較差 很差其他: 指導教師簽字: 年 月 日 畢業(yè)論文評閱人評分表學生姓名李東輝專業(yè)班級車輛07-6班指導教師姓名安永東職稱副教授題目轉向柱式電動助力轉向系統(tǒng)設計評閱組或預答辯組成員姓名出席人數(shù)序號評 價 項 目滿分得分1選題與專業(yè)培養(yǎng)目標的符合程度,綜合訓練情況;題目難易度152題目工作量;選題的理論意義或實際價值103查閱文獻資料能力;綜合運用知識能力204研究方案的設計能力;研究方法和手段的運用能力;外文應用能力255文題相符程度;寫作水平156寫作規(guī)范性;篇幅;成果的理論或實際價值;創(chuàng)新性15得 分 Y= 評 語:(參照上述評價項目給出評語,注意反映該論文的特點)回答問題: 正確 基本正確 基本不正確 不能回答所提問題研究能力或設計能力:強 較強 一般 較弱 很弱工作量: 大 較大 適中 較少 很少規(guī)范性: 好 較好 一般 較差 很差成果質量(研究方案、研究方法、正確性):好 較好 一般 較差 很差其他: 評閱人或預答辯組長簽字: 年 月 日注:畢業(yè)設計(論文)評閱可以采用2名評閱教師評閱或集體評閱或預答辯等形式。 畢業(yè)設計評閱人評分表學生姓名李東輝專業(yè)班級車輛07-6班指導教師姓名安永東職稱副教授題目轉向柱式電動助力轉向系統(tǒng)設計評閱組或預答辯組成員姓名出席人數(shù)序號評 價 項 目滿分得分1選題與專業(yè)培養(yǎng)目標的符合程度,綜合訓練情況;題目難易度102題目工作量;題目與工程實踐、社會實際、科研與實驗室建設等的結合程度103綜合運用知識能力(設計涉及學科范圍,內容深廣度及問題難易度);應用文獻資料能力154設計(實驗)能力;計算能力(數(shù)據(jù)運算與處理能力);外文應用能力255計算機應用能力;對實驗結果的分析能力(或綜合分析能力、技術經(jīng)濟分析能力)156插圖(圖紙)質量;設計說明書撰寫水平;設計的實用性與科學性;創(chuàng)新性207設計規(guī)范化程度(設計欄目齊全合理、SI制的使用等)5得 分 Y= 評 語:(參照上述評價項目給出評語,注意反映該論文的特點)回答問題: 正確 基本正確 基本不正確 不能回答所提問題研究能力或設計能力:強 較強 一般 較弱 很弱工作量: 大 較大 適中 較少 很少說明書規(guī)范性: 好 較好 一般 較差 很差圖紙規(guī)范性: 好 較好 一般 較差 很差成果質量(設計方案、設計方法、正確性)好 較好 一般 較差 很差其他: 評閱人或預答辯組長簽字: 年 月 日注:畢業(yè)設計(論文)評閱可以采用2名評閱教師評閱或集體評閱或預答辯等形式。畢業(yè)論文答辯評分表學生姓名李東輝專業(yè)班級車輛07-6班指導教師安永東職 稱副教授題目轉向柱式電動助力轉向系統(tǒng)設計答辯時間月 日 時答辯組成員姓名出席人數(shù)序號評 審 指 標滿分得分1選題與專業(yè)培養(yǎng)目標的符合程度,綜合訓練情況,題目難易度、工作量、理論意義或價值102研究方案的設計能力、研究方法和手段的運用能力、綜合運用知識的能力、應用文獻資料和外文的能力203論文撰寫水平、文題相符程度、寫作規(guī)范化程度、篇幅、成果的理論或實際價值、創(chuàng)新性154畢業(yè)論文答辯準備情況55畢業(yè)論文自述情況206畢業(yè)論文答辯回答問題情況30總 分 Z= 答辯過程記錄、評語:自述思路與表達能力:好 較好 一般 較差 很差回答問題: 正確 基本正確 基本不正確 不能回答所提問題研究能力或設計能力:強 較強 一般 較弱 很弱工作量: 大 較大 適中 較少 很少規(guī)范性: 好 較好 一般 較差 很差成果質量(研究方案、研究方法、正確性):好 較好 一般 較差 很差其他: 答辯組長簽字: 年 月 日畢業(yè)設計答辯評分表學生姓名李東輝專業(yè)班級車輛07-6班指導教師安永東職 稱副教授題目轉向柱式電動助力轉向系統(tǒng)設計答辯時間月 日 時答辯組成員姓名出席人數(shù)序號評 審 指 標滿分得分1選題與專業(yè)培養(yǎng)目標的符合程度,綜合訓練情況,題目難易度、工作量、與實際的結合程度102設計(實驗)能力、對實驗結果的分析能力、計算能力、綜合運用知識能力103應用文獻資料、計算機、外文的能力104設計說明書撰寫水平、圖紙質量,設計的規(guī)范化程度(設計欄目齊全合理、SI制的使用等)、實用性、科學性和創(chuàng)新性155畢業(yè)設計答辯準備情況56畢業(yè)設計自述情況207畢業(yè)設計答辯回答問題情況30總 分 Z= 答辯過程記錄、評語:自述思路與表達能力:好 較好 一般 較差 很差回答問題: 正確 基本正確 基本不正確 不能回答所提問題研究能力或設計能力:強 較強 一般 較弱 很弱工作量: 大 較大 適中 較少 很少說明書規(guī)范性: 好 較好 一般 較差 很差圖紙規(guī)范性: 好 較好 一般 較差 很差成果質量(設計方案、設計方法、正確性)好 較好 一般 較差 很差其他: 答辯組長簽字: 年 月 日畢業(yè)設計(論文)成績評定表學生姓名李東輝性別男院系汽車與交通工程學院專業(yè)車輛工程班級07-6設計(論文)題目轉向柱式電動助力轉向系統(tǒng)設計平時成績評分(開題、中檢、出勤)指導教師姓名職稱指導教師評分(X)評閱教師姓名職稱評閱教師評分(Y)答辯組組長職稱答辯組評分(Z)畢業(yè)設計(論文)成績百分制五級分制答辯委員會評語:答辯委員會主任簽字(蓋章): 院系公章: 年 月 日注:1、平時成績(開題、中檢、出勤)評分按十分制填寫,指導教師、評閱教師、答辯組評分按百分制填寫,畢業(yè)設計(論文)成績百分制=W+0.2X+0.2Y+0.5Z 2、評語中應當包括學生畢業(yè)設計(論文)選題質量、能力水平、設計(論文)水平、設計(論文)撰寫質量、學生在畢業(yè)設計(論文)實施或寫作過程中的學習態(tài)度及學生答辯情況等內容的評價。優(yōu)秀畢業(yè)設計(論文)推薦表題 目轉向柱式電動助力轉向系統(tǒng)設計類別畢業(yè)設計學生姓名李東輝院(系)、專業(yè)、班級汽車與交通工程學院 車輛工程07-6班指導教師安永東職 稱副教授設計成果明細:答辯委員會評語:答辯委員會主任簽字(蓋章): 院、系公章: 年 月 日備 注: 注:“類別”欄填寫畢業(yè)論文、畢業(yè)設計、其它黑龍江工程學院本科生畢業(yè)設計目 錄摘要IABSTRACTII第1章 緒 論11.1汽車的發(fā)展趨勢11.2汽車轉向技術的發(fā)展11.3電動助力轉向系統(tǒng)研究的狀況及發(fā)展趨勢21.4電動助力轉向系統(tǒng)設計的目的和意義31.5 研究的主要內容3第2章 電動助力轉向系統(tǒng)主要參數(shù)的確定42.1電動助力轉向系統(tǒng)的分析42.1.1電動助力轉向系統(tǒng)的工作原理42.1.2電動助力轉向系統(tǒng)的類型42.2 助力電動機的選擇62.2.1電動機的概述 62.2.2電動機的參數(shù)計算72.3 電磁離合器的選擇82.4 扭矩傳感器的選擇92.5 本章小結9第3章 電動助力轉向系統(tǒng)減速機構參數(shù)的設計103.1減速機構的分析及布置形式的確定103.2蝸輪蝸桿材料的選擇113.3普通圓柱蝸桿傳動的主要參數(shù)及幾何尺寸計算113.3.1設計要求113.3.2選擇蝸桿傳動類型113.3.3蝸桿模數(shù)及分度圓直徑的確定113.3.4蝸桿與蝸輪的主要參數(shù)及幾何尺寸的確定133.4蝸輪齒根彎曲疲勞強度的校核153.5本章小結17第4章 減速機構軸和軸承的設計及校核184.1軸的概述184.2轉向軸的設計與校核184.2.1轉向軸的設計184.2.2轉向軸的校核204.3蝸桿軸的設計及校核234.3.1蝸桿軸的設計234.3.2蝸桿軸鍵的選取234.3.3蝸桿軸的校核234.4軸承的選取與校核264.4.1軸承的選取264.4.2軸承的校核264.5 本章小結28第5章 齒輪齒條式轉向器的設計295.1齒輪齒條式轉向器的概述295.1.1齒條的概述295.1.2齒輪的概述295.1.3設計要求295.2齒輪齒條材料的選擇與參數(shù)的確定295.2.1材料的選擇295.2.2計算許用應力295.2.3初步確定齒輪的基本參數(shù)的主要尺寸305.2.4確定齒輪傳動主要參數(shù)的幾何尺寸315.2.5齒輪強度校核325.3軸設計與軸承的選擇345.3.1軸的設計345.3.2軸的校核345.3.3軸承的選取355.4 本章小結36結論37參考文獻38致謝39附錄40黑龍江工程學院本科生畢業(yè)設計第1章 緒 論1.1 汽車的發(fā)展趨勢自1886年德國人卡爾.本茨(CarlBenZ)研制成功世界上第一臺單缸兩沖程汽油三輪汽車以來,汽車工業(yè)已經(jīng)走過了一個多世紀曲折而輝煌的歷程。上個世紀二十年代汽車工業(yè)已經(jīng)開始大規(guī)模生產(chǎn),隨著相關技術的發(fā)展,特別是在第二次世界大戰(zhàn)中的技術更新,進一步促進了汽車工業(yè)的迅速發(fā)展和進步。今天,汽車產(chǎn)業(yè)在世界上大多數(shù)國家的國民經(jīng)濟中都成為了支柱產(chǎn)業(yè)。據(jù)統(tǒng)計,2000年世界汽車產(chǎn)量己達到5733萬輛,比1999年增長2.8%。我國2000年生產(chǎn)汽車206.82萬輛,2003年生產(chǎn)汽車444萬輛,目前已成為美國、日本、德國之后的世界第四大汽車生產(chǎn)國。不久前,商務部公布中國汽車近三年來的年產(chǎn)量正以50%的速度增長。由于中國及其他發(fā)展中國家汽車市場的擴大,全球汽車這種增長趨勢還會持續(xù)下去。但是,這種快速增長也帶來了一些負面影響,如空氣污染、交通事故和能源緊張等問題。隨著人們對汽車特別是轎車的經(jīng)濟性、舒適性、環(huán)保性和安全性的日益重視,低排放汽車(LEV)、混合動力汽車(HEv)、燃料電池汽車(FCEV)、電動汽車(EV)這四大類型汽車將構成未來汽車發(fā)展的主體。1.2 汽車轉向技術的發(fā)展汽車在行駛過程中,經(jīng)常需要改變行駛的方向,稱為轉向。輪式汽車行駛是通過轉向輪(一般是前輪)相對于汽車縱向軸線偏轉一定的角度來實現(xiàn)的。汽車轉向系統(tǒng)是用于改變或保持汽車行駛方向的專用機構。其作用是使汽車在行駛過程中能按照駕駛員的操縱要求而適時地改變其行駛方向,并在受到路面?zhèn)鱽淼呐既粵_擊及汽車意外偏離行駛方向時,能與行駛系統(tǒng)配合共同保持汽車繼續(xù)穩(wěn)定行駛。因此,轉向系統(tǒng)的性能直接影響著操縱穩(wěn)定性和安全性。按轉向動力能源不同,汽車轉向系統(tǒng)可分為機械式轉向系統(tǒng)和動力轉向系統(tǒng)兩大類。機械式轉向系統(tǒng)是以人的體力為轉向能源的,其中所有的傳力件都是機械的,它主要由轉向操縱機構、轉向器和轉向傳動機構三部分組成。汽車轉向器作為汽車轉向系統(tǒng)的重要零部件,其性能的好壞直接影響到汽車行駛的安全性和可靠性。汽車動力轉向系統(tǒng)是在機械轉向系的基礎上增設了一套轉向加力裝置所構成的轉向系(如液壓動力轉向系統(tǒng)中的轉向油罐、油泵、控制閥、動力缸等),它兼用駕駛員的體力和發(fā)動機動力作為轉向能源。在正常的情況下,汽車轉向所需的力大部分由發(fā)動機通過轉向加力裝置提供,只有一小部分由駕駛員提供。但在動力轉向失效時,駕駛員仍能通過機械轉向系統(tǒng)實現(xiàn)汽車的轉向操縱。長期以來,汽車轉向系統(tǒng)一直存在著“輕”與“靈”的矛盾。為緩和這一矛盾,過去人們常將轉向器設計成可變速比,在轉向盤小轉角時以“靈”為主,在轉向盤大轉角時以“輕”為主。但“靈”的范圍只在轉向盤中間位置附近,僅對高速行駛有意義,并且傳動比不能隨車速變化,所以不能根本解決這一矛盾。隨著動力轉向系統(tǒng)的產(chǎn)生,液壓動力轉向系統(tǒng)(HPS)以其具有的轉向操縱靈活、輕便,設計汽車時對轉向器結構形式的選擇靈活性增大,并可吸收路面對前輪產(chǎn)生的沖擊等優(yōu)點,自20世紀50年代以來,在各國汽車上得到普遍采用。但傳統(tǒng)的液壓動力轉向系統(tǒng)需消耗一定的能量,增加了汽車的燃油消耗量,液壓動力轉向系統(tǒng)所引起的燃油消耗量約占整車燃油消耗量的約30%。隨著電子技術的發(fā)展,電子控制式機械液壓動力轉向系統(tǒng)(EHPS)應運而生,該系統(tǒng)在某些性能方面優(yōu)于傳統(tǒng)的液壓動力轉向系統(tǒng),但仍然無法根除液壓動力轉向系統(tǒng)的固有缺憾。此外,傳統(tǒng)液壓動力轉向系統(tǒng)在選定參數(shù)完成設計之后,轉向系統(tǒng)的性能就確定了,不能再對其進行調節(jié)與控制。因此,傳統(tǒng)液壓動力轉向系統(tǒng)協(xié)調轉向力與操縱“路感”的關系困難。低速轉向力小時,高速行駛時轉向力往往過輕、“路感”差,甚至感覺汽車發(fā)“飄”,從而影響操縱穩(wěn)定性;而按高速性能要求設計轉向系統(tǒng)時,低速時轉向力往往過大。電動助力轉向系統(tǒng)(Electric Power Steering System,簡稱EPS),是繼液壓動力轉向系統(tǒng)后產(chǎn)生的一種新的動力轉向系統(tǒng)。電動助力轉向系統(tǒng)由電機提供助力,助力大小由電控單元(ECU)實時調節(jié)與控制,可以較好地解決上述液壓動力轉向系統(tǒng)所不能解決的矛盾。目前,電動助力轉向系統(tǒng)有代替液壓動力轉向系統(tǒng)的趨勢。1.3 電動助力轉向系統(tǒng)研究的狀況及發(fā)展趨勢1988 年2 月日本鈴木公司首次在其Cervo 車上裝備EPS , 隨后還用在了其Alto 車上。在此之后, 電動助力轉向技術如雨后春筍般得到迅速發(fā)展。日本的大發(fā)汽車公司、三菱汽車公司、本田汽車公司, 美國的Delphi 汽車系統(tǒng)公司、TRW公司, 德國的ZF 公司, 都相繼研制出各自的EPS。比如: 大發(fā)汽車公司在其Mi2ra 車上裝備了EPS , 三菱汽車公司則在其Minica 車上裝備了EPS ; 本田汽車公司的Accord 車目前已經(jīng)選裝EPS , S2000 轎車的動力轉向也將傾向于選擇EPS ;Delphi 汽車系統(tǒng)公司已經(jīng)為大眾的Polo 、歐寶的318i以及菲亞特的Punto 開發(fā)出EPS 。TRW從1998 年開始, 便投入了大量人力、物力和財力用于EPS 的開發(fā)。他們最初針對客車開發(fā)出轉向柱助力式EPS , 如今小齒輪助力式EPS 開發(fā)也已獲成功。1999 年3 月, 他們的EPS 已經(jīng)裝備在轎車上, 如Ford Fiesta 和Mazda 323F 等 。Mercedes OBenz 和Siemens Automotive 兩大公司共同投資6500萬英鎊用于開發(fā)EPS , 他們的目標是到2002 年裝車, 年產(chǎn)300 萬套, 成為全球EPS 制造商。他們計劃開發(fā)出適用于汽車前橋負荷超過1200kg的EPS,因此貨車也將可能成為EPS的裝備目標。而我國在2002 年才開始研制開發(fā)汽車EPS 產(chǎn)品, 目前已經(jīng)知道的有13 家企業(yè)和科研院校正在研制中。其中南摩股份有限公司( 生產(chǎn)轉向柱式的EPS 產(chǎn)品) 在2003 年開始進入小批量生產(chǎn)階段, 其他廠家和科研院校均在開發(fā)階段中。EPS當前已經(jīng)較多應用在排量在1.3L-1.6L(含MMPV 微型多功能車) 的各類輕型轎車上,其性能已經(jīng)得到廣泛的認可。隨著直流電機性能的提高和42V電源在汽車組件上的應用,其應用范圍將進一步擴寬,并逐漸向微型車、輕型車和中型車擴展。另外EPS 的控制信號將不再僅僅依靠車速與扭矩, 而是根據(jù)轉向角、轉向速度、橫向加速度、前軸重力等多種信號進行與汽車特性相吻合的綜合控制, 以獲得更好的轉向路感。未來的EPS將朝著電子四輪轉向的方向發(fā)展, 并與電子懸架統(tǒng)一協(xié)調控制。1.4 電動助力轉向系統(tǒng)設計的目的和意義隨著汽車行業(yè)的蓬勃發(fā)展,人們對于汽車功能的要求變得越來越高,EPS系統(tǒng)也迎來了巨大的市場需求,許多廠商都以EPS系統(tǒng)作為一個賣點,來吸引顧客買車。所謂電動轉向( EPS) , 就是在機械轉向系統(tǒng)中,用電池作為能源, 電動機為動力, 以轉向盤的轉速和轉矩以及車速為輸入信號, 通過電子控制裝置, 協(xié)助人力轉向, 并獲得最佳轉向力特性的伺服系統(tǒng)。EPS汽車轉向系統(tǒng)的性能直接影響到汽車的操縱穩(wěn)定性, 對于確保車輛的安全行駛、減少交通事故以及保護駕駛員的人身安全、改善駕駛員的工作條件起著重要的作用。特別是EPS用電動機直接提供助力,助力大小由電子控制單元(ECU)控制。它能在汽車低速行駛轉向時減輕轉向力使轉向輕便、靈活; 在汽車高速行駛轉向時, 適當加重轉向力, 從而提高了高速行駛時的操縱穩(wěn)定性, 增強了路感 。不僅如此,EPS的能耗是HPS能耗的1 /3以下, 且前者比后者使整車油耗下降可達3% - 5%, 因而, 它能節(jié)約燃料,提高主動安全性,且有利于環(huán)保。1.5 研究的主要內容1、對電動助力轉向系統(tǒng)進行分析確定其布置形式。2、電動機、電磁離合器、扭距傳感器的選取。3、在對EPS系統(tǒng)機構進行分析的基礎上,設計了一套減速機構。4、設計齒輪齒條式轉向器。第2章 電動助力轉向系統(tǒng)主要參數(shù)的確定2.1 電動助力轉向系統(tǒng)的分析2.1.1 電動助力轉向系統(tǒng)的工作原理EPS 主要由扭矩傳感器、車速傳感器、電子控制單元( ECU) 、電動機和減速機構組成。其主要工作原理是: 汽車在轉向時, 扭矩傳感器會“ 感覺”到轉向盤的力矩和擬轉動的方向。這些信號會通過數(shù)據(jù)總線發(fā)給電子控制單元, 電控單元會根據(jù)傳動力矩、擬轉的方向和車輛速度等數(shù)據(jù)信號, 向電動機控制器發(fā)出動作指令。電動機就會根據(jù)具體的需要輸出相應大小的轉動力矩以產(chǎn)生助動力, 從而實現(xiàn)了助力轉向的實時控制。如果不轉向, 則本套系統(tǒng)處于休眠狀態(tài)等待調用。由于它不轉向時不工作, 所以也節(jié)省了能源。圖2.1 EPS結構系統(tǒng)圖2.1.2 電動助力轉向系統(tǒng)的類型EPS的類型通??梢园雌潆妱訖C的減速機構的形式不同或電動機的布置位置不同進行分類。EPS系統(tǒng)一般都有減速機構,電動機轉矩輸出經(jīng)過減速機構減速增矩對EPS進行助力。根據(jù)汽車上轉向器結構形式不同,EPS可分為:循環(huán)球螺母式(圖2.2)、蝸輪蝸桿式(圖2.3)、齒輪齒條式(圖2.4)三種。循環(huán)球螺母式EPS電動機力矩的傳遞路線為:電動機循環(huán)球螺母齒輪條。蝸輪蝸桿式EPS電動機力矩的傳遞路線為:電動機蝸輪一齒輪條。齒輪齒條式EPS的電動機力矩的傳遞路線為:電動機行星齒輪副另設齒輪齒條。 1力矩傳感器 1電磁離合器 2循環(huán)球螺母 2電動機 3功率放大器 3扭矩傳感器 4電控單元 4轉向軸 5齒條 5蝸輪蝸桿機構 6轉向盤 6齒輪齒條機構 7電動機 8轉向減速機構圖2.2 循環(huán)球螺母式 圖2.3 蝸輪蝸桿式 1扭矩傳感器 2轉接盤3電動機 4電磁離合器5齒輪齒條機構 圖2.4 齒輪齒條式根據(jù)電動機布置位置不同,EPS可分為:轉向軸助力式、齒輪助力式、齒條助力式三種,如圖2.5所示。轉向軸助力式EPS的電動機固定在轉向柱一側,通過減速機構與轉向軸相近,直接驅動轉向軸助力轉向。齒輪助力式EPS的電動機和減速機構與小齒輪相近,直接驅動齒輪助力轉向。齒條助力式EPS的電動機和減速機構則直接驅動齒條提供助力。圖2.5 電動機布置位置不同的EPS的類型2.2 助力電動機的選擇2.2.1 電動機的概述助力電動機是EPS 系統(tǒng)的動力源, 它根據(jù)ECU 輸出的控制指令, 在不同的工況下輸出不同的助力轉矩, 對整個EPS 性能影響很大, 因此需要具備良好的動態(tài)特性、調速特性和隨動特性并易于控制, 而且要求輸出波動小、低轉大轉矩、轉動慣量小、尺寸小質量輕等, 因此, 常采用無刷式永磁直流電動機。為改善操縱感、降低噪音和減少振動, 在電動機轉子外表面開出斜槽或螺旋槽, 而改變定子磁鐵的中心處或端部厚度, 將定子磁鐵設計成不等厚。2.2.2 電動機的參數(shù)計算根據(jù)任務書上的基本參數(shù)可知 式中 f輪胎和路面間的滑動摩擦因數(shù);轉向軸負荷,單位為N;P輪胎氣壓,單位為;原地轉向阻力矩;作用在轉向盤的手力矩為 式中 轉向搖臂長, 單位為mm;原地轉向阻力矩, 單位為Nmm轉向節(jié)臂長, 單位為mm;為轉向盤直徑,單位為mm;Iw轉向器角傳動比;+轉向器正效率;因齒輪齒條式轉向傳動機構無轉向搖臂和轉向節(jié)臂,故、不代入數(shù)值。從而可知,人所需用的轉矩為T=Fh=103.847200=20769.4Nmm設此力矩完全由電動機提供可得電動機轉矩。蝸桿=1 蝸輪 =30T2=T1300.7故選電動機為:無刷永磁直流電動機。額定電壓(V)12額定扭矩(N.m)1.76額定電流(A)30額定轉速(V/min)1210最大外形尺寸(mm)60115根據(jù)電動機額定轉矩可知蝸輪T2=1.761000300.7=36N.m2.3 電磁離合器的選擇電動式EPS轉向助力一般都是工作在一個設定的范圍。當車速低于某一設定值時,系統(tǒng)提供轉向助力,保證轉向的輕便性; 當車速高于某一設定值時,系統(tǒng)提供阻尼控制,保證轉向的穩(wěn)定性;而當車速處于兩個設定值之間時,電動機停止工作,系統(tǒng)處于Standy狀態(tài),此時為了不使電動機和電磁離合器的慣性影響轉向系統(tǒng)的工作,離合器應及時分離,以切斷輔助動力。另外,當EPS系統(tǒng)發(fā)生故障時,離合器應自動分離,此時仍可利用手動控制轉向,保障系統(tǒng)的安全性。EPS系統(tǒng)中電磁離合器應用較多的為單片干式電磁離合器,其工作原理如圖所示圖2.6 電磁離合器離合器 類型 干式單片電磁式額定電壓(V)12v額定傳遞扭矩15/12v繞阻()19.5/20 c2.4 扭矩傳感器的選擇扭矩傳感器的功能是測量駕駛員作用在轉向盤上的力矩大小與方向,以及轉向盤的大小和方向。目前采用較多的是在轉向軸位置加以扭桿,通過測量扭桿的變形得到扭矩。另外也有采用非接觸式扭距傳感器。圖2.7所示的非接觸式扭矩傳感器中有一對磁極環(huán),其原理是:當輸入軸與輸出軸之間發(fā)生相對扭轉位移時,磁極環(huán)之間的空氣間隙發(fā)生變化,從而引起電磁感應系數(shù)變化。非接觸式扭矩傳感器的優(yōu)點是體積小精度高,缺點是成本高。圖2.7 非接觸式扭距傳感器扭矩傳感器額定電壓 5V額定輸出電壓 2.5最大阻抗 2.180.662.5 本章小結本章主要對電動助力轉向系統(tǒng)進行了分析,并對其結構組成有了深入的了解。同時還進行了電動機電磁離合器扭矩傳感的選取,并對其工作原理進行了分析。 第3章 電動助力轉向系統(tǒng)減速機構參數(shù)的設計3.1 減速機構的分析及布置形式的確定電動助動轉向系統(tǒng)的機構部分是該系統(tǒng)不可缺少的重要組成部分,其減速機構把電動機的輸出,經(jīng)過減速增扭傳遞到動力輔助單元,實現(xiàn)助力。因此,減速機構的設計是EPS系統(tǒng)的關鍵技術之一。目前常用的減速機構有多種結構形式,主要分為蝸輪蝸桿式、行星齒輪式和循環(huán)球螺母式等三種。而我選用了蝸輪蝸桿式減速機構。采用蝸輪蝸桿減速機構,見圖3.1,其傳動機構有如下兩大優(yōu)點:(1)實現(xiàn)大的傳動比。在動力傳動中,一般傳動比i=580;在分度機構或手動機構的傳動中,傳動比可達300;若只傳遞運動,傳動比可達1000由于傳動比大,零件數(shù)目又少,因而結構很緊湊。(2)在蝸桿傳動中,由于蝸桿齒是連續(xù)不斷的螺旋齒,它的蝸輪是逐漸進入嚙合逐漸退出嚙合的,同時嚙合的齒對數(shù)較多,故沖擊載荷小,傳動平穩(wěn),噪音低。圖3.1 減速機構3.2 蝸輪蝸桿材料的選擇考慮到蝸桿傳動傳遞的功率不大,速度只是中等,故蝸桿用45號鋼;因希望效率高些,耐磨性好些,故蝸輪螺旋面要求淬火并且調質處理,硬度為4555HRC。蝸輪用鑄錫磷青銅ZcuSn10Pb,金屬模鑄造。這種材料耐磨性好,但價格較高,用于滑動速度3m/s的重要傳動。為了盡量節(jié)約貴重的有色金屬,僅齒圈用青銅制造,而輪芯用鑄鐵HT150制造。為了防止變形,常對蝸輪進行時效處理。3.3 普通圓柱蝸桿傳動的主要參數(shù)及幾何尺寸計算3.3.1 設計要求普通圓柱蝸桿閉式傳動(用于EPS系統(tǒng)中電機輸出到轉向軸),蝸桿轉速=1210r/min,扭矩=1760Nmm,傳動比i=30.雙側工作,工作載荷較穩(wěn)定,沖擊不大。要求壽命為5年(按每年365天,每天8小時),則使用壽命=53658=14600h3.3.2 選擇蝸桿傳動類型根據(jù)GB10085-88的推薦,采用漸開線蝸桿(ZI)。傳動比i介于580之間,由表3.1可確定蝸桿頭數(shù)=1。表3.1 蝸桿頭數(shù) 蝸輪齒數(shù)推薦值傳動比i=z1/z25871615323083蝸桿頭數(shù)z16421渦輪齒數(shù)z23048286430643083單頭蝸桿傳動的傳動比大,但效率低,發(fā)熱量大,易自鎖。不過,蝸桿頭數(shù)過多,導程角大,制造困難。蝸輪的齒數(shù)=i。當傳遞動力時,為保證傳動平穩(wěn)性,應不少于28。但過過大將使蝸輪尺寸增大,蝸桿跨距隨之增大,降低蝸桿的剛度,影響嚙合精度。通常取=2880,一般不大于100。故取=303.3.3 蝸桿模數(shù)及分度圓直徑的確定蝸桿頭數(shù)=1 蝸輪=30因載荷平穩(wěn)載荷系數(shù)K=1.11.3之間取故K=1.2表3.2 錫青銅蝸輪許用接觸應力 蝸輪材料鑄造方法適用的滑動速度V/(m.s)蝸桿齒面硬度45HRC45HRCZCuSn10Pb1砂型金屬型1225150220180268ZCuSn5Pb5Zn5砂型金屬型1012113128135140 MK () (3.1)M1.236960()M171.5304經(jīng)查表3.3可知m=2.5 q=11.2 =28 表3.3 普通圓柱蝸桿傳動的基本尺寸和參數(shù)模數(shù)m/mm分度圓直徑d/mm直徑系數(shù)q蝸桿頭數(shù)Md/mm模 數(shù)m/mm分度圓直徑d/mm直徑系數(shù)q蝸桿頭數(shù)Md/mm 11818.000 1 18 6.3(80)12.6981,2,431751.252016.000 1 31.2511217.7781444522.417.920 1 35 8(63)7.8751,2,440321.62012.5001,2,451.28010.0001,2,4,653762817.500 171.68(100)12.5001,2,46400 2(18) 9.0001,2,4 7214017.5001896022.411.2001,2,4,689.6 10(71)7.1001,2,47100(28)14.0001,2,4112909.0001,2,4,6900035.517.750 1 142(112)11.2001,2,411200 2.5(22.4) 8.9601,2,414016016.0001160002811.2001,2,4,617512.5(90)7.2001,2,414062(35.5)14.0001,2,4221.91128.9601,2,4175004518.000 1281(140)11.2001,2,421875 3.15(28) 8.8891,2,427820016.00013125035.511.2701,2,4,6352 16(112)7.0001,2,4286724514.2861,2,4447.51408.7501,2,4358405617.778 1556(180)11.2501,2,446080 4(31.5) 7.8751,2,450425015.6251560004010.0001,2,4,6640 20(140)7.0001,2,456000(50)12.5001,2,48001608.0001,2,4640007117.740 11136(224)11.2001,2,489600 5(40) 8.0001,2,4100031515.75011260005010.0001,2,4,61250 25(180)7.2001,2,4112500(63)12.6001,2,415752008.0001,2,41250009018.000 12250(280)11.2001,2,41750006.3(50) 7.9361,2,4198540016.00012500006310.0001,2,4,62500 3.3.4 蝸桿與蝸輪的主要參數(shù)及幾何尺寸的確定蝸桿蝸桿分度圓直徑=2.8齒頂圓直徑=m(q+2)= 2.5(11.2+2) =33=m(q-2.4) =2.5(11.2-2.4) =22齒頂高=m=2.5齒根高=1.2m=1.22.5=3頂隙C=0.2m=0.242.5=0.5蝸輪分度圓柱的導程角r=arctan=arctan5.1中心距a=m(q+) = 2.5(11.2+30) =51.5蝸桿齒寬(11+0.06)m(11+0.00630)2.532=32蝸輪蝸輪分度圓直徑=mz=2.530=75齒頂圓直徑d=m(z+2) =2.5(30+2) =80齒根圓直徑d=m(z-2.4) =2.5(30-2.4) =69齒頂高h=m=2.5齒根高h=1.2m=3蝸輪齒寬z3時 b0.75 0.7533 24.75b=203.4 蝸輪齒根彎曲疲勞強度的校核=YY (3.2)Y 螺旋角影響系數(shù),Y=1-;Y 蝸輪齒形系數(shù),按當量齒數(shù)z=z/cos查取;蝸輪的許用彎曲應力,單位為MPa。Y=1-=1-=0.94z=30.35914403經(jīng)查表3-4可知,Y=2.52表3.4 齒形系數(shù)及應力修正系數(shù)z17181920212223242526272829Y2.972.912.852.82.762.722.692.652.622.62.572.552.53Y1.521.531.541.551.561.571.5751.581.591.5951.61.611.62z303540455060708090100150200Y2.522.452.42.352.322.282.242.222.22.182.142.122.06Y1.6251.651.671.681.71.731.751.771.781.791.831.8651.97 應力循環(huán)次數(shù)N=60114600=35332000壽命系數(shù)K=0.85由表3.5查得 =40MPa =K =0.8540 =34表3.5 蝸輪的基本許用彎曲應力 蝸輪材料鑄錫磷青銅ZCu5nlOP1鑄錫鉛鋅青銅ZCuSn5Pb5Zn5鑄造鋁鐵青銅ZCuAlloFe3灰鑄鐵HT150HT200鑄造方法砂模鑄造金屬模制造砂模鑄造金屬模鑄造砂模鑄造金屬模鑄造砂模鑄造單側工作4056263280904048雙側工作2940222657642834=YY (3.3)=2.520.964=31.393.5 本章小結本章主要對減速機構的布置形式進行了確定,蝸輪蝸桿材料選取,對蝸輪蝸桿主要參數(shù)進行了選取與計算,確定了蝸桿與蝸輪的幾何尺寸,并進行了蝸輪齒根彎曲疲勞強度校核。第4章 減速機構軸和軸承的設計及校核4.1 軸的概述軸的主要功用是支承機器中的旋轉零件(如齒輪、帶輪、鏈輪、銑刀等),保證旋轉零件有確定的工作位置,并傳遞運動和動力。根據(jù)軸的受載情況不同,軸可以分為心軸,轉軸和傳動軸。心軸是工作中只承受彎矩作用,不傳遞動力的軸。根據(jù)心軸是否轉動,心軸又分為固定心軸和轉動心軸。轉動心軸工作時,彎曲應力一般是對稱循環(huán)變化的,而固定心軸工作時,其彎曲應力的方向一般不變。轉軸既支撐轉動零件又傳遞動力,它是既承受彎矩又承受轉矩作用的軸。傳動軸是只承受轉矩而不承受彎矩作用或彎曲作用很小的軸。4.2 轉向軸的設計與校核4.2.1 轉向軸的設計由材料力學可知,實心圓軸的扭轉強度條件為 = (4.1)由此得軸的基本直徑的估算式 d=C (4.2)式中 d 軸的估算基本直徑(mm) 軸的扭矩切應力(MPa) T 軸傳遞的轉矩(N.mm) P 軸傳遞的功率(KW) n 軸的轉速(r/min) W軸的抗扭截面系數(shù)(mm)。對實心圓軸,W=d/160.2d 許用扭轉切應力(MPa) C 計算常數(shù),取決于軸的材料及受載情況,見表4.1。.表4.1 軸常用材料的C值軸的材料Q235.20Q275.354540Cr.35SiMnC126-149112-135103-12697-112 i=30=n=40.3r/minP=0.155KW轉向軸選用45鋼,正火處理,估計直徑d100-30068049032040MnB調質25207980785480性能接近于40Cr,用于重要的軸200241-28675050033535CrMo調質100207-269735540350用于重載荷的軸20Cr滲碳淬火回火 15表面50-60HRC835540370用于要求強度.韌性及耐磨性均較高的軸60635390280 第一軸段 軸徑為20,軸長為38第二軸段 放軸承軸徑為25,軸長為16第三軸段 軸徑為25,軸長為12第四軸段 軸徑為26,軸長為38第五軸段 軸徑為25,軸長為12第六軸段 放軸承軸徑為25,軸長為184.2.2 轉向軸的校核F=-F=125.71F=-F=985.6F=-F=358.729(1) 繪制軸承受力簡圖(圖a)(2) 繪制垂直面彎矩圖(圖b) 軸承支反力: F=118.142 F=F+F=-358.729+118.142=-240.587截面C右側彎矩M=F.=240.587=9262.5995截面C左側彎矩M=F.=118.142=4548.467(3)繪制水平彎矩圖(圖C)軸承支反力:F=F=492.8截面C處的彎矩:M=F=492.8=18972.8(4)繪制合成彎矩圖(圖d)M=21113.09758M=19510.39958(5)繪制轉矩圖(圖e)(6)繪制當量彎矩圖(圖f)轉矩產(chǎn)生的扭剪應力按脈動循環(huán)變化,取a=0.16截面C處的當量彎矩力M=30619.24012校核危險截面C的強度=9.3455MPa強度足夠圖4.1 轉向軸的受力圖和彎矩圖4.3 蝸桿軸的設計及校核4.3.1 蝸桿軸的設計蝸桿用45號鋼,正火處理硬度為170-217HBS。蝸桿軸的基本直徑估計100mm由表4.2查得=600mm查表4.1取C=118D=C=118=6.715mmP=0.223KW因蝸桿齒根圓直徑d大于軸徑d故選用車制蝸桿軸徑d= d-(24)mm=22-(24)= 2018mm所求d為最小軸徑,因為該處開一鍵槽應將該軸段直接增大3%7%即d=6.7151.19=8mm放軸承位置的軸徑定為20,退刀槽徑為20,退刀槽長度為12,蝸桿齒寬為32。4.3.2 蝸桿軸鍵的選取選取A型鍵公稱尺寸bh=44=120MPa= (4.3)l=1.833式中 T傳遞的轉矩,單位N.mm d軸的直徑,單位mm l鍵的接觸長度,單位mm K鍵與輪轂接觸高度,Kh/2,單位mm 許用擠壓應力,單位為MPa故l=6,L=104.3.3 蝸桿軸的校核F=125.71F=985.6F=Ftan=985.6tan20=358.729(1) 繪制軸受力簡圖(圖a)(2) 繪制垂面彎矩圖(圖b)軸承支反力F=-11.09F=F- F=358.729-11.09=347.639計算彎矩: 截面C右側彎矩 M= F=247.639=1453.199 M= F=11.09=454.69(3) 繪制水平面彎矩圖(圖c)軸承支反力:F=F=62.855截面C處的彎矩M= F=62.855=2577.005(4) 繪制合成彎矩圖(圖d) M=14484.29819N.mm M=2616.8598(5) 繪制轉矩圖(圖e)(6) 繪制當量彎矩圖(圖f)轉矩產(chǎn)生的扭剪應力按脈動循環(huán)變化,取=0.6,截面C處的當量彎矩為M=14522.74182(7)校核危險截面C的強度= =4.04 F故可判定軸承2為壓緊端,軸承1為放松端。兩端軸承的軸向載荷F= F=112.9968F=F+ F=1098.5968求系數(shù)X和YF/ F=0.63F/ F=6.125F/ Fe時X=1,Y=0 而F/ Fe時 X=0.41,Y=0.87由表4.4可知載荷系數(shù) f=1.3表4.4 載荷系數(shù)f載荷性質及其舉例f無沖擊或輕微沖擊電機,汽輪機,水泵,通風機1.01.2中等沖擊振動車輛,機床,傳動裝置,起重機,內燃機,減速器1.21.8強大沖擊振動破碎機,軋鋼機,石油鉆機,振動篩1.83.0 P=f(xF+YF)=1.3(1179.36+0112.9968)=233.168p= f(xF+YF)=1.3(0.41179.36+0.891098.5968)=1338.11因p P取p=p=1338.11N.球軸承=3軸承C=14000NL=()=()=15778.22h14600h故該對軸承滿足預期壽命要求。4.5 本章小結本章主要進行了軸與蝸桿軸的設計,確定了各軸的長度與軸徑,并對其進行了校核,同時還對鍵進行了設計,以及軸承的選取,經(jīng)過對軸的受力分析確定軸承為角接觸球軸承,并對其進行校核,確保其使用壽命在規(guī)定年限當中。第5章 齒輪齒條式轉回器的設計5.1齒輪齒條式轉向器的概述5.1.1 齒條的概述齒條是在金屬殼體內來回滑動的,加工有齒形的金屬條。轉向器殼體是安裝在前橫梁或前圍板的固定位置上的。齒條代替梯形轉向桿系的搖桿和轉向搖臂,并保證轉向橫拉桿在適當?shù)母叨纫允顾麄兣c懸架下擺臂平衡。齒條可以比作是梯形轉向直拉桿。導向座將齒條支持在轉向器殼體上。齒條的橫向運動拉動或推動轉向橫拉桿,使前輪轉向。5.1.2 齒輪的概述齒輪是一只切有齒形的軸。它安裝在轉向器殼體上并使其齒與齒條上的齒相嚙合。齒輪齒條上的齒可以是直齒也可以是斜齒。齒輪軸上端與轉向柱內的轉向軸相連。因此,轉向盤的旋轉使齒條橫向移動以操縱前輪。齒輪軸由安裝在轉向器殼體上的球軸承支撐。斜齒的彎曲增加了一對嚙合齒輪參與嚙合的齒數(shù)。相對直齒而言,斜齒的運轉趨于平衡,并能傳遞更大的動力。5.1.3 設計要求齒輪齒條式轉向器的設計要求。齒輪齒條式轉向器的齒輪多數(shù)采用斜齒圓柱齒輪。齒輪模數(shù)取值范圍多在23mm之間。主動小齒輪齒數(shù)多數(shù)在57個齒范圍變化,壓力角取20,齒輪螺旋角取值范圍多為915。齒條齒數(shù)應根據(jù)轉向輪達到最大偏轉角時,相應的齒條移動行程應達到的值來確定。變速比的齒條壓力角,對現(xiàn)有結構在1235范圍內變化。此外,設計時應驗算齒輪的抗彎強度和接觸強度。5.2 齒輪齒條材料的選擇與參數(shù)的確定5.2.1 材料的選擇主動小齒輪選用16MnCr5或15CrNi6材料制造,而齒條常采用45鋼制造。為減輕質量,殼體用鋁合金壓鑄。故小齒輪16MnCr5 滲碳淬火,齒面硬度56-62HRC。大齒輪 45鋼 表面淬火,齒面硬度56-56HRC。5.2.2 計算許用應力a)確定和 b)計算應力循環(huán)次數(shù)N,確定壽命系數(shù)、。 c)計算許用應力取,應力修正系數(shù)5.2.3 初步確定齒輪的基本參數(shù)的主要尺寸根據(jù)齒輪傳動的工作條件,選用斜齒圓柱齒輪與斜齒條嚙合傳動。選擇齒輪傳動精度等級為7級精度。初選K=1.4 B=14 Z=7 Z=10傳動比=1.4 =1.2 Y=0.89 Y=0.7Z=17cos=17cos14=15由于Z=7 Z=10均小于15發(fā)生根切故對其進行變位X=0.55X=0.33tant=0.375112684=20.56inv=tan+inv=0.054855624Y=(-1)=0.7=Ym=21.9+0.72.5=23.65Y=X-Y=0.88-0.7=0.18= (5.1)2.1195=2.55.2.4 確定齒輪傳動主要參數(shù)的幾何尺寸主動齒輪分度圓直徑 =18.03節(jié)圓直徑 d=19.708齒頂圓直徑 =18.03+2(1+0.55-0.18)2.5 =24.88 齒根圓直徑 =18.03-2(1+0.25-0.55)2.5 =14.53 齒頂高 齒根高 = 全齒高 h=h+h=5.175 齒寬 b=d=1.218.03=21.636 因為相互嚙合齒輪的基圓齒矩必須相等 既P=P 齒輪法面基圓齒矩為P=mcos 齒條法面基圓齒矩為P=mcos 取齒條法相模數(shù)為 m=2.5 從動齒輪(齒條) 節(jié)圓 =u=1.419.708=27.59 齒條齒頂高 齒條齒根高 法面齒矩 S=(+2Xtan)m=4.5255.2.5 齒輪強度校核=ZZZZ (5.2) tan=tan/cos=tan20/cos14=0.375112684 Z= Z=2.433 =0.318dZtan=0.318=0.444 =1.88-3.2()cos14=1.07 Z= (5.3) Z=0.978764495 Z=0.985 由表5.1可知Z=189.8表5.1 彈性影響系數(shù) 彈性模量/MPa 齒輪材料配對齒輪材料灰鑄鐵球墨鑄鐵鑄鐵鍛鋼夾布膠木11.817.320.220.60.785鍛鋼162.0181.4188.9189.856.4鑄鋼161.0180.5188.0-球墨鑄鐵156.6173.9-灰鑄鐵143.7- = =111.7083902MPa 齒面接觸疲勞強度滿足要求。齒根彎曲疲勞強度計算。=0.25+0.75/=0.25+0.7=0.95= (5.4) = =206.3136 齒根彎曲疲勞強度滿足要求5.3 軸設計與軸承的選擇5.3.1 軸的設計=97=11.5mm取最小軸徑d=12mm第一軸段軸徑12,軸長12第二軸段軸徑24.88,軸長35第三軸段軸徑20,軸長22第四軸段軸徑16,軸長15第五軸段軸徑14,軸長105.3.2 軸的校核=4099.833611(1)繪制軸受力簡圖(圖a)(2)繪制垂直彎矩圖(圖b)軸承支反力: =-574.94.9461306 計算彎矩 截面C右側彎矩 截面C左側彎矩 (3) 繪制水平彎矩圖(圖c) 軸承支反力 截面C處的彎矩(4) 繪制合成彎矩圖(圖d)=53789.62116(5) 繪制轉矩圖(圖e) (6) 繪制當量彎矩圖(圖f)轉矩產(chǎn)生扭剪應力按脈動循環(huán)變化,取a=0.6,截面C處的當量彎矩為(7)校核危險截面C的強度 強度足夠5.3.3 軸承的選取軸承1 深溝球軸承6004軸承2 滾針軸承 NA4901圖5.1 軸的受力圖和彎矩圖5.4 本章小結本章主要進行了齒輪齒條材料的選取,對其基本參數(shù)及幾何尺寸進行了計算與確定,并對齒輪進行了強度校核,同時對軸進行了設計與校核,軸承選取為滾針軸承。結 論對于本次設計的電動轉向系統(tǒng)來說,其特點是:扭矩變化范圍大可以滿足不同的工況要求,結構簡單,易于生產(chǎn),使用和維修,價格低廉。電動助力轉向系統(tǒng)主要由減速機構和轉向機構組成。減速機構的傳動比為30,采用蝸輪蝸桿式,其傳動比大,傳動平穩(wěn),噪聲小,轉彎時可以提供大的轉矩,使駕駛者感覺轉向非常輕便,維修方便,大部分汽車都采用此結構。減速器設計計算中,蝸輪的破壞形式主要是蝸輪輪齒表面產(chǎn)生膠合。點蝕和磨損,在對蝸輪強度計算中,齒根彎曲疲勞強度和輪齒接觸應力都符合了要求。通過這次畢業(yè)設計,使我學到了很多東西,首先在軟件方面使我對CAD當中的二維繪圖,圖層管理,文本輸入,圖形標注,這些命令有了更深一步的認識,同時還使我學會了許多快捷方式。其次,使我對蝸輪蝸桿減速器當中的一些部件有了進一步的認識,使我對減速器設計的思路變的更加清晰。再次,再對齒輪齒條式轉向器設計當中使我學會如何變位來防止根切,同時對齒輪轉向器工作原理有了進一步的了解。電動助力轉向系統(tǒng)是車輛不可或缺的一部分,其技術已經(jīng)成熟,但對于我們還沒有踏出校門的學生來說,其中的設計理念還是很值得我們去探討,學習的。參考文獻1 劉惟信.汽車設計M.北京:清華大學出版社,20012 王望予.汽車設計M.北京:機械工業(yè)出版社,20003 李風平.機械圖學M.沈陽:東北大學出版社 20034 陳家瑞.汽車構造M.下冊.第三版.北京.人民交通出版社,20075 余志生.汽車理論M.第2版.北京:機械工業(yè)出版社,20086 鐘建國 廖耘 劉宏.汽車構造與駕駛M.長沙:中南大學出版社,20027 梁治明 材料力學M. 遼寧:高等教育出版社出版,20058 成大先 機械設計手冊M.北京:化學工業(yè)出版社,20029 楊可楨 機械設計基礎M.北京:高等教育出版社,200610 劉品 機械精度設計與檢測基礎M.哈爾濱:哈爾濱工業(yè)大學出版社,200711 李華敏 齒輪機構設
收藏