JH—14型礦用回柱絞車設計【說明書+CAD】
JH—14型礦用回柱絞車設計【說明書+CAD】,說明書+CAD,JH—14型礦用回柱絞車設計【說明書+CAD】,jh,14,型礦用回柱,絞車,設計,說明書,仿單,cad
河南理工大學萬方科技學院本科畢業(yè)論文
中文翻譯:
礦井用數(shù)控直流提升機系統(tǒng)研究
(機械與動力工程學院 河南理工大學)
摘要:本文簡要綜述了國內(nèi)外有關提升設備的使用現(xiàn)狀以及數(shù)控系統(tǒng)的工作原理、前景和方法的研究。在此研究基礎之上,本文研究了礦井用直流提升機系統(tǒng)。它具有安全性高、穩(wěn)定性更強、精確控制、維修方便的特性。使用此套系統(tǒng),將有助于加強采礦業(yè)的提升效率,改善施工環(huán)境,降低能量損耗,增加經(jīng)濟利潤和推進管理水平升級。
關鍵字:卷揚式絞車,摩擦提升機、變流量調(diào)節(jié)、變頻控制、可編程控制器。
1、 介紹
隨著中國原材料市場的持續(xù)繁榮,對各種礦產(chǎn)的開采和開發(fā)也在不斷加快。但是由于淺層礦物資源的不斷減少,對礦產(chǎn)的開采也就必然向更深的地層漫延。目前,大部分礦場采用的多是上世紀九十年代以前的模擬電子控制提升機。這樣的提升設備面臨著更新?lián)Q代,而其電子控制部分則將被淘汰。
礦井提升設備用于煤炭、礦石、工作人員、設備和原料在礦井內(nèi)的升降。作為礦井運輸?shù)难屎?,它在整個生產(chǎn)工程中起著至關重要的作用。一旦提升機出現(xiàn)故障,小則影響生產(chǎn),大則威脅到工人們安全。
傳統(tǒng)的提升機系統(tǒng)采用繞線式電機轉(zhuǎn)子回路串電阻的調(diào)速控制系統(tǒng)。采用串聯(lián)電阻的方式控制速度的缺點是大量的旋轉(zhuǎn)損耗、低效的速度調(diào)節(jié)、緩慢的動態(tài)響應、速度的調(diào)節(jié)難于做到平滑、直接。此外,由于串聯(lián)電阻調(diào)速系統(tǒng)只能在一個狹小的速度調(diào)整范圍內(nèi)影響線路,因此其(能夠影響到的)功率系數(shù)很低。隨著中國電力和電子技術的發(fā)展,傳統(tǒng)提升機的這些不利條件愈加明顯地阻礙了采礦業(yè)的發(fā)展。
為了促進采礦技術的發(fā)展,培訓專業(yè)的現(xiàn)場工作人員,降低生產(chǎn)成本從而提高采礦行業(yè)競爭力,一項可靠、安全、穩(wěn)定的PLC(可編程控制器)系統(tǒng)應運而生。它采用先進的數(shù)控技術、自動化理論、國際流行的線控技術和精確的模糊控制技術。這套系統(tǒng)具有易于安裝、操作簡單和自動化程度高的優(yōu)點。
2、傳統(tǒng)提升系統(tǒng)的缺點
目前,中國90%的提升機系統(tǒng)采用的是繞線式異步電機轉(zhuǎn)子回路串電阻系統(tǒng)。該系統(tǒng)的主要弊病如下:
1)低效的速度調(diào)節(jié),高能耗、低效率;
2)由于采用TKD電力控制系統(tǒng)而造成的有限的系統(tǒng)調(diào)節(jié)能力和緩慢的動力響應特性;
3)可靠性差和不易維修。
3 、數(shù)控直流提升機系統(tǒng)的特性
數(shù)控直流提升提升系統(tǒng)具有如下特性:
1)多媒體數(shù)顯代替了傳統(tǒng)的深度尺,該系統(tǒng)可顯示運轉(zhuǎn)速度、電樞電流、勵磁電流和提升設備的位置。這使得此套提升系統(tǒng)更加的嚴謹和精確。
2)直流驅(qū)動的采用改善了工作環(huán)境,減少了能量損耗。這是因為當直流電機運行于方形線圈時,可將減速和剎車過程中的動能轉(zhuǎn)化為電能。
3)使用轉(zhuǎn)化器向電機提供能量。這個控制方案采用兩條并聯(lián)的6脈沖功率轉(zhuǎn)換。這可以減少電流紊亂并降低轉(zhuǎn)化器對電網(wǎng)的負面影響。本系統(tǒng)具有高功率系數(shù),因此不需要額外增加功率系數(shù)補充裝置。12脈沖控制方案的優(yōu)點是快速的電流轉(zhuǎn)換、快速的循環(huán)反應、更小的小力矩擾動和更高的控制精度。
4)兩套獨立的可編程控制器。
5)多重編碼器可以反饋不同監(jiān)測點的位置信息。一旦哪里出現(xiàn)錯誤,可編程控制器可比照和分析這些數(shù)據(jù)并作出快速回應,這確保了控制系統(tǒng)在不同的狀況下做出不同的控制指令。整個系統(tǒng)的位置公差為1%。位移誤差為兩公分,速度誤差為0.01m/s。
6)完美的保護功能。本系統(tǒng)提供監(jiān)視器保護、最小可編程控制器保護和轉(zhuǎn)換器輸電系統(tǒng)保護等。
7)整個系統(tǒng)的模擬化監(jiān)控通過計算機及相關軟件得以實現(xiàn)。人機操作界面極大地增強了系統(tǒng)的可操作性和穩(wěn)定機能。中心計算機監(jiān)控系統(tǒng)采用三維立體成像,貼近實際情況。漢化版使得整個系統(tǒng)容易理解和易于掌握。
8)完美的實現(xiàn)了自動化的用簸萁對礦石的裝載、提升和卸載。
4、系統(tǒng)構成
這套數(shù)控直流提升系統(tǒng)包括計算機系統(tǒng)(PLC),傳輸系統(tǒng),檢測系統(tǒng),高能級的計算機系統(tǒng),控制系統(tǒng),傳感器系統(tǒng),主電機及附屬設備。
計算機系統(tǒng)是核心??删幊炭刂破鞑捎梦鏖T子SIMATIC S7-300型。盡管S7-300屬于小型模擬化的可編程控制器,但是它卻可以達到中型生產(chǎn)所需。對于各種中小型的生產(chǎn)來說,模塊化、無排氣扇結構、簡潔方便的分配模式使得S7-300無疑是便捷和經(jīng)濟實惠的。主CPU采用CPU314FIM,這是一種精密完整的數(shù)字模擬輸入/輸出中央處理器。24K的EMS內(nèi)存,滿足了設備所需的快速回饋及特殊功能。檢測CPU采用CPU312FIM,這是一套精密完整的數(shù)字模擬輸入/輸出中央處理器,具有6K的EMS內(nèi)存。輸出模塊是24伏直流電的SM322模塊,是十六位的數(shù)字輸出模塊;輸入模塊是24伏直流電的SM321模塊,是十六位的數(shù)字輸入模塊。模擬輸入/輸出系統(tǒng)采用SM334模塊,四線輸入,兩線輸出。模擬輸入模塊采用SM331模塊,四線輸入。這就像人的神經(jīng)系統(tǒng):傳感器獲得的信息通過不同的途徑傳到計算機系統(tǒng);計算機對這些外部信號作出分析,然后給操作系統(tǒng)發(fā)出相應的指令。
數(shù)控直流電機驅(qū)動系統(tǒng)采用高性能微型處理器以及與之相配的接口電路。它使用軟件程序來完成電路的調(diào)整、檢測、診斷和數(shù)據(jù)交流。其構成和工作原理如下:
1)既定速度。既定速度和其他既定值可在提升控制系統(tǒng)中基于設定的參數(shù)進行選擇,可編程控制器提供的輸出方法有0-10伏,0-20伏,4-20毫安,既定數(shù)據(jù)為其中的一種。通常,既定速度相當于電機最大轉(zhuǎn)速。最大和最小既定數(shù)據(jù)都通過嚴格的參數(shù)和連接體比對,然后傳送給斜率函數(shù)發(fā)生器。
2)斜率函數(shù)發(fā)生器由可編程控制器設定。斜率函數(shù)發(fā)生器可以控制既定速度的升降,并可以將其轉(zhuǎn)化為一種特定隨時間而變化的信號。加速和減速時間可被另外設定。除此之外,開始和結束曲線也可被設定,進而達到直接控制速度調(diào)節(jié)器的功能。
3)實際價值。通常提升速度由電機轉(zhuǎn)軸上的編碼器確定,并通過參數(shù)匹配轉(zhuǎn)化為數(shù)字信號,速度設定之后,就操作速度調(diào)節(jié)器。
4)速度調(diào)節(jié)器比照既定速度和實際速度,并依據(jù)不同之處做出PID計算,然后轉(zhuǎn)化成電流傳輸?shù)诫娏髡{(diào)節(jié)器。
5)電流調(diào)節(jié)。提升系統(tǒng)傳輸屬于軟傳輸,轉(zhuǎn)力矩的突然變化應該被避免。 除此之外,游離電流 (di/dt) 的變化是受限的,因此, 調(diào)速器的輸出電流要通過限流電阻(或轉(zhuǎn)力矩電流的限制) 之后,才能流向電流調(diào)速器。
速度調(diào)整者比較給定的電流值和真實電流值,然后針對兩者的不同進行 PID 計算。在增加被預先設定的電流值之后,結果將被直接地應用剎車裝置。
電流調(diào)整器具有獨立的比例放大鍵控脈沖和完整的均衡時間常數(shù)Ki??潭然驎r間可以被削減 (純粹的刻度或完整的調(diào)整器) 。Kp 和 Ki 能被技師人工優(yōu)化,因此電流環(huán)性能是最好的。
實際電流首先通過三相交流電在電流感應器檢驗。它然后通過電流轉(zhuǎn)換器,信號被負荷電阻收集。 最后,經(jīng)過模塊/數(shù)字轉(zhuǎn)化后,它被送到電流調(diào)節(jié)器。
6)電流預控器。電流預控器在電流回路的調(diào)節(jié)中被用來改善調(diào)節(jié)系統(tǒng)的動力特性,降低電流反應時間,該時間通常需要6-9毫秒。預控值、電流既定值與電機的反向電能有關。
7)回路無電流控制邏輯。在改變扭力矩信號時,這個4方形的裝置,回路無電流控制邏輯與電流調(diào)節(jié)電路共同完成這個邏輯控制。必要時,通過參數(shù)設定來阻擋力矩方向。
8)觸發(fā)裝置。觸發(fā)裝置采用水晶制動管觸發(fā)式脈沖。同步信號來自與主電壓同步的自動調(diào)節(jié)環(huán)。因此它與電路板的供電周期毫不相關。觸發(fā)式脈沖計時由速度調(diào)節(jié)器和預控器通過數(shù)據(jù)輸出和控制參數(shù)范圍進行調(diào)節(jié)。
監(jiān)控系統(tǒng)用于提供檢測和保護。當提升系統(tǒng)出現(xiàn)不正常狀況時,檢測系統(tǒng)可以偵察到并將信號發(fā)送到計算機系統(tǒng)。
高能級計算機系統(tǒng)是一個人機操作界面,可以顯示各種重要的提升機運行參數(shù),錯誤信息,產(chǎn)品統(tǒng)計,速度報表等。
控制與操作系統(tǒng)主要由中間繼電器和電流接觸器組成,它可以生成各種指令并發(fā)送到計算機和控制提升系統(tǒng)的每一個設備。
傳感器系統(tǒng)感知提升機每個設備的運行狀態(tài),并經(jīng)感知的信號回饋給計算機系統(tǒng)。
主電機是提升機的一項重要設備。它驅(qū)動滾軸轉(zhuǎn)動,從而帶動擋欄或簸萁在礦井中運動。
輔助設備對運行中的擋欄或簸萁提供必要的保護。它包括液壓站、冷卻通風機、潤滑站、冷卻通風感應器等。
5、程序設計
模塊化的程序設計。整套程序可被分為主程序、擋網(wǎng)程序、簸萁程序、報表程序、上層計算機編程、主控制和檢測控制通信程序。主程序內(nèi)的不同子程序可依據(jù)不同的施工情況進行下載,這增加了在整個系統(tǒng)的正常運轉(zhuǎn)下可編程控制器的利用率。程序采用LAD編程語言。將功能模塊化語言與日常用語相比,整套程序易于理解、便于學習和維修。
6、系統(tǒng)應用
龍橋鐵礦坐落于龍橋村,距洛江市東南25千米。這個礦床是一個大的地下磁鐵礦,品質(zhì)高,易于分離。附屬礦為銅精礦和硫精礦。鐵礦儲藏量為103637萬噸。附生銅礦為90144噸,硫礦為2786萬噸。鐵礦含量比率為84%。
該礦床擁有一套功率為1400KW的自動化數(shù)字直流提升系統(tǒng),日提升礦石量在6000噸以上。該系統(tǒng)可完全實現(xiàn)裝載-提升-卸載自動化控制。該系統(tǒng)可以判斷出優(yōu)先級,根據(jù)來自不同層面的不同的信號順序。這套數(shù)字直流提升系統(tǒng)的應用可以為該礦場創(chuàng)造出巨大的社會經(jīng)濟效益。
7、結論
數(shù)字直流提升系統(tǒng)運行安全、可靠,維修很少。它的高水準的動態(tài)和靜態(tài)性能指標實現(xiàn)了完美的數(shù)字控制和保護裝置。這個系統(tǒng)可以和整個企業(yè)網(wǎng)交流以實現(xiàn)礦業(yè)自動化控制管理,遠程檢測和診斷。它在礦井提升系統(tǒng)中具有廣闊的發(fā)展前景并可以創(chuàng)造出巨大的社會效益。
Study on Digital DC Hoist System of Mine-shaft LI Qixuan, SUN Huoran, MU Taisheng, WANG Bo (School of Resources friction Hoist; variable flow control; frequency-variation control; PLC 1 Introduction With the continuous booming of raw material market in China, the production and development of various mines is faster than before. Due to the reduced mineral resource in the shallow underground, existing mines are exploiting deeper part. Currently most mines are using the analog electronic control which is a before 1990s technology. These hoists have reached the end of their service lives and the electronic control parts need to be renovated 1 . The mine shaft hoist equipment is used for hoisting coal, ore, personnel, equipment and materials up and down the shaft. As a throat of the underground transportation, it plays a vital role in the whole production process. The least would be the influence of production and the most would be the safety of workers if there were any hoist failure. Traditional hoist system uses electronic motor rotator tandem with resistor classified speed control or serial speed adjustment TKD control. The disadvantages of tandem resistor classified speed control are big loss of rotation, low speed adjustment efficiency, slow dynamic response, difficult to adjust the speed steplessly and an unsmooth speed adjustment. Moreover, the tandem resistor speed control interfere the electricity network with a narrow speed adjustment scope and hence a low power factor. With the development of electricity and electronic technology in China, the disadvantages of traditional hoists are becoming more obvious and have impeded the development of mines. For the purpose of improving the technology in the mines, training some professional on site personnel, reducing the production cost and enhance the mines competition ability, a reliable, safe, stable PLC system is developed using the advanced digital technology, automatic control theory, on site international popular general line control method and the fuzzy accurate control. This system has the advantages of simple and convenient installation, easy operation and high automation level. 2 Disadvantages of Traditional Hoist System 90% of existing hoist systems in China adopts AC coil asynchronous motor rotator tandem resistor system. The main problems with this system are as following: 1) Low speed adjustment performance, high energy consumption and low efficiency. 2) Limited system adjustment capacity and slow dynamic response due to the adoption of TKD electric control system. 3) Low reliability and difficult to maintain 2-3 . 3 Characteristics of Digital DC Hoist System The digital DC hoist system has the following characteristics: 1) Adopting multi-digit display in place of traditional depth indicator, the system can display the running speed, armature current, excitation current and the location of the hoist equipment. This makes the hoist system more compact and the display more accurate. 2) The adoption of DC driving improves the working environment, reduces energy consumption. This is 894because a DC motor can generate electricity during the deceleration and braking process by changing the moving energy into the electricity when it is running in four-quadrate. 3) Using a converter to supply power to the motor. This control scheme adopts two parallel 6 pulse standard power conversion (see Fig.1). This can reduce the current disturbance and lower the negative converter influence on electricity network. No need to add power factor compensation device because of this systems high power factor. The 12 pulse control scheme has the advantages of fast current direction switch, fast speed loop response, smaller torque disturbance decrease and higher control precision. Fig.1 The 12 pulse control scheme 4) Two sets of independent PLC. 5) Adopting multiple encoders for location feedback at different control points. PLC compares and analyzes these data to respond quickly wherever has a fault, which ensures the control systems different control command based on different situations. The location tolerance of the whole system is 1%. The stopping precision tolerance is 2 cm and the speed precision tolerance is 0.01m/s. 6) Complete protection functions. This system has the monitor protection, min PLC protection and converter transmission system protection etc. 7) The simulated monitoring of the whole system is realized through the computer and the corresponding software. The human-machine interface greatly increases systems operational and maintenance functions. The central computer monitoring system adopts three dimensional animation which is very close the practical situations. The Chinese version makes the whole system easy to understand and simple to operate. 8) The complete automation of loading, lifting and unloading of ore in a dustpan can be realized. 8954 System Compositions Fig.2 The digital DC hoist system composition diagram The digital DC hoist system consists of computer system (PLC), transmission system, monitoring system, upper level computer system, control system, transducer system, main motor and auxiliary equipment. The computer system is the core. PLC adopts SIMATIC S7-300 of SIEMENS. Although S7-300 is a modularized small scale PLC, it can meet the middle scale performance applications. Modularization and no exhaust fan structure, easy distribution and simple to grasp makes S7-300 the major convenient and economical solution for various small and middle scale performance applications. The main CPU adopts CPU314FIM which is an integrated digital and analog input/output compact CPU. With a 24K EMS memory, it is applied to the equipments that demand fast reaction and special functions. The monitoring CPU adopts CPU312FIM which is an integrated digital and analog input/output compact CPU with a 6K EMS memory. The output module adopts 16 points digital output, SM 322 module of 24 VDC while the input module adopts16 points digital output, SM 321 module of 24 VDC. Analog input/output module adopts SM 334 module that is 4 lines input, 2 lines output. The analog input module adopts SM 331 module which is 4 lines input. This is just like a humans nerve system: the information from the transducer get into the computer system through different channels; then the computer system analyse, computer comprehensively on these external signals and give the control command to execution system for corresponding running functions. Digital DC control DC motor driving control system adopts 2 high performance micro-processor and their corresponding interface circuits(see Fig.3). It uses computer software programming to complete the adjustment, monitoring and diagnosis, data communication of armature circuits. The composition and the principle are as following: 1) Given speed value. Given speed value and additional given value can be selected based on the given parameters in a hoist control system, the given values are one of the output method which can adopt 0-10V , 0-20V , 8964-20 MA given by PLC. Usually 100% given value corresponds to the maximum motor rotating speed. The maximum and the minimum given values are restricted by parameters or connectors and are then sent to slope function generator. 2) Ramp function generator is given by PLC. The setting speed value is changing up and down and is changed to a certain signal changing with time by the ramp function generator. The acceleration and deceleration time can be set separately. Besides, the starting and ending curves can be set and then function on the speed adjustors directly. 3) The practical value. Generally the hoist speed is measured by the encoder on the motor axis and is changed to a digital amount through parameter match; after speed filtering, it acts on the speed adjuster. 4) Speed adjuster compares the given speed value and the actual value and perform PID calculation according to the difference, then output the result as a current to the current adjuster. The speed adjuster is a proportional integral (PI) adjuster which can select differential (D). Manual optimization method optimizes the complete speed adjusting system performance indexes with certain stable surplus. Fig.3 Digital DC control DC motor driving control system 5) Current adjuster. Hoist system transmission belongs to soft transmission and the sudden change of torque should be avoided. In addition, the change of amateur current (di/dt) is limited, therefore, the output of speed adjuster must go through current change limiting tache after current limiting (or torque limiting) before going to current adjuster. The speed adjuster compares the given current value and the actual current value and then performs PID calculation on the difference. After adding the preset current value, the result is applied directly on the trigging device. The current adjuster has independent scale magnifier Kp and integral time constant Ki. The scale or time can be cut (pure scale or integral adjuster).Kp and Ki can be determined by manual optimization with the principal that the current loop performance is the best. The actual current value firstly goes through the inspection of current transducer by the three phases AC. It is then commutated through electric switch and the signal is collected by load resistor. At last it is sent to current adjustor after module/digit change. 6) Current pre-controller. The current pre-controller in the current adjusting circuit is used to improve the adjusting systems dynamic response and reduce the current response time which is usually 6-9 ms. The pre-controlled value and the given current value is related to the motors reverse electricity energy. The rapid change of trigging angle when in continuous and periodical working conditions and when changing torque signal should be considered too. 897 7) Loop less current control logic. As a four quadrate device, this loop less current control logic works with current adjusting circuit to complete the logic control when changing the torque signals. When necessary, block a torque direction with the help of parameters. 8) Trigging device. Trigging device develops the trigging pulse of crystal brake tube. The synchronous signals come from the self-determined loop which is synchronous with the main circuit voltage. Therefore it is irrelevant to the power supply phase of the electronic board. The trigging pulse timing is determined by the speed adjuster and pre-controller output and controls limits through parameters. The function of monitoring system is monitoring and protection. When there is an abnormal situation in hoisting system, the monitoring system can detect and send signals to the computer system. The upper level computer system is a human-machine interface, which is used for display various important hoister running parameters, fault information, production statistics, speed chart, etc. The control and execution system is mainly composed of intermediate relay and contactor, which executes different commands, sent from the computer and controls every equipment in the hoisting system. The transducer system senses the running status of every equipment of hoister, and feedback the sensed signals to the computer system. The main motor is an important equipment of the hoist. It drives the roller to rotate and therefore the movement of cage or dustpan in the shaft. The auxiliary equipment provides necessary support to the running of cage or dustpan. It includes hydraulic station, cooling ventilator, lubricating station, cooling ventilator transducer, etc. 5 Programming Design Programming design adopts modularized programming. The complete programming is divided into major programming, cage programming, dustpan programming, report forms programming, upper level computer programming and main control and monitoring control communication programming. Different sub programming within the main programming can be loaded according to different operating conditions, which increases the utilization of PLC under the normal running of the complete system. LAD programming language is adopted. Compared with function module language and sentence form language, the complete programming is easy to understand and convenient to learn and maintain. 6 System Application Longqiao Iron Mine locates in Longqiao county, 25 km southeast of Lujiang City. The mine is a large underground magnetite with high ore grade and easy distractibility. The side products are copper concentrate abd sulphur concentrate. The deposit of iron ore is103.637 million tons. The accompanying copper deposit is 90144 tons, the accompanying sulphur is 2.786 million tons. The occupancy rate of magnetic iron is 84%. The mine owns a set of 1400kw automatic digital DC hoisting system with maximum daily ore lifting of over 6000 tons. This system can realize complete automatic control of loading-lifting-unloading. The system can judge the preferential level according to the different sequence of signals from different levels. The application of this digital DC hoist system has created huge social and economical profits for this mine. 7 Conclusions The digital DC hoist system runs safely and reliably with small maintenance. Its high dynamic and resting performance indexes realizes the complete digital control and with complete protection devices. The system can communicate with the whole enterprise net to realize mine automatic control management, long distance monitoring and diagnosis. It has extensive application prospect in the shaft hoist system and will create huge social profit. References 1 Li Hong, The performance Characteristics and Application of Mine Shaft Hoist Electrical Control System. Metal Mine, 2003 (4):54-55(in Chinese). 2 Wang Qingling, Gong Youmin. Modern Mine Shaft Hoist Electrical Control System. Beijing: Mechanical Industry Publishing Company, 1996(in Chinese) 3 Wang Shunhuang, Shu Diqian. Intelligent Control System and Its Application. Beijing: Mechanical Industry Publishing Company, 1995(in Chinese). 898
收藏