《四川省開江縣高中數(shù)學(xué) 第二章 基本初等函數(shù)(I)2.2.1 對數(shù)及對數(shù)運(yùn)算(1)課件 新人教A版必修1》由會員分享,可在線閱讀,更多相關(guān)《四川省開江縣高中數(shù)學(xué) 第二章 基本初等函數(shù)(I)2.2.1 對數(shù)及對數(shù)運(yùn)算(1)課件 新人教A版必修1(20頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、 ax=N (a0,a1)1:已知:已知a ,x,求求N的值的值2:已:已 x,N,求求a的值的值3:已知:已知a ,N,求求x的值的值 2.2.1 2.2.1 對數(shù)與對數(shù)運(yùn)算對數(shù)與對數(shù)運(yùn)算 (1)(1)一、對數(shù)的概念一、對數(shù)的概念 1. 定義:一般地,如果定義:一般地,如果 ax=N (a0,a1),), 那么數(shù)那么數(shù)x叫做叫做以以a為底為底N的對數(shù)的對數(shù),記作,記作: loga N=x, 其中其中a叫做叫做對數(shù)的底數(shù),對數(shù)的底數(shù),N 叫做真數(shù)叫做真數(shù). 因?yàn)橐驗(yàn)閍0,所以不論,所以不論x是什么實(shí)數(shù),都有是什么實(shí)數(shù),都有ax0, 這就是說不論這就是說不論x是什么數(shù),是什么數(shù),N永遠(yuǎn)是正數(shù),因
2、此永遠(yuǎn)是正數(shù),因此 負(fù)數(shù)和零沒有對數(shù)負(fù)數(shù)和零沒有對數(shù). 2. 由對數(shù)定義得:由對數(shù)定義得: (1)負(fù)數(shù)和零沒有對數(shù))負(fù)數(shù)和零沒有對數(shù) ; (2)loga1 = (3)logaa = 1的對數(shù)為的對數(shù)為0 底的對數(shù)為底的對數(shù)為1 (4)同底數(shù)原則同底數(shù)原則01指數(shù)式指數(shù)式ax=N 中,中,a叫底數(shù),叫底數(shù),x叫指數(shù),叫指數(shù),N叫冪值;叫冪值; loga N=x3. 指數(shù)式與對數(shù)式的關(guān)系:指數(shù)式與對數(shù)式的關(guān)系:ax=N對數(shù)式對數(shù)式loga N=x中中, a叫底數(shù)叫底數(shù),x叫對數(shù),叫對數(shù),N叫真數(shù)叫真數(shù).) 1, 0(aa且) 1, 0(aa且且4.常用對數(shù)常用對數(shù): 以以10為底的對數(shù)叫做常用對數(shù)
3、為底的對數(shù)叫做常用對數(shù), N的常用對數(shù)的常用對數(shù)log10 N,簡記作簡記作lgN .5.5.自然對數(shù)自然對數(shù): : 在科學(xué)技術(shù)中常常使用以無理數(shù)在科學(xué)技術(shù)中常常使用以無理數(shù)e=2.718 28 為底的對數(shù),以為底的對數(shù),以e為底的對數(shù)叫做自然對數(shù)為底的對數(shù)叫做自然對數(shù). N的自然對數(shù)的自然對數(shù)loge N簡記作簡記作ln N .73. 5)31(427336412262551164 ma)(;)(;)(;)(式:式:將下列指數(shù)式寫成對數(shù)將下列指數(shù)式寫成對數(shù)例例;)解(解(4625log15 ;)(6641log22 ;)(a 27log33m 73. 5log431)(.303. 210ln
4、4201. 0lg37128log2416log12221 )(;)(;);()(數(shù)數(shù)式式:、將將下下列列對對數(shù)數(shù)式式寫寫成成指指例例;)()(解:(解:(162114 ;)(128227 ;)(01. 01032 .104303. 2 e)(:3x求下列各式中的求下列各式中的例例.4log421lg321log2214log)1(28 exxxx)(;)(;)(;4214log121 xx)(解:解:21821log28 xx)(16 x1322 x3113 xx即即xx 211021lg3 )(10 x2424log4exex )(ex 二、對數(shù)運(yùn)算性質(zhì)二、對數(shù)運(yùn)算性質(zhì) 01001 log
5、loglogaaaaaMNMNMN如果 , , ,那么()();思考:指數(shù)有哪些運(yùn)算性質(zhì)?思考:指數(shù)有哪些運(yùn)算性質(zhì)?qNpMaaloglog,證明:設(shè)NMMNaaalogloglog1)()(性質(zhì),則qpaNaM,qpqpaaaMN,)(qpMNa logNMMNaaalogloglog)(故二、對數(shù)運(yùn)算性質(zhì)二、對數(shù)運(yùn)算性質(zhì) 0101,2,3iaaMin如果 , ,01001 logloglogaaaaaMNMNMN如果 , , ,那么()();1212log ()loglogloganaaanM MMMMM推廣:推廣:NMNMaaalogloglog2)(qNpMaaloglog,證明:設(shè),
6、則qpaNaM,qpqpaaaNM,qpNMa logNMNMaaalogloglog故,證明:設(shè)pMalog)()(RnMnManaloglog3paM 則npnaM MnManaloglog即證得npMna log二、對數(shù)運(yùn)算性質(zhì)二、對數(shù)運(yùn)算性質(zhì) )()(;)(;)()(,那么,如果RnMnMNMNMNMMNNMaaanaaaaaaaloglog3logloglog2logloglog10010。)(;)(表示下列各式:表示下列各式:,、用、用例例32log2log1logloglog1zyxzxyzyxaaaaazxyzxyaaalogloglog1 )()解:(解:(zyxaaalog
7、loglog 3232logloglog2zyxzyxaaa )()(32logloglogzyxaaa zyxaaalog31log21log2 。)(););()(、求下列各式的值:、求下列各式的值:例例5572100lg224log12 52725722log4log24log1 )()解:(解:(2log54log722 191527 5100lg2)(5210lg52 5210lg 3168 練習(xí)練習(xí)完成課本完成課本P;)(求值:、例8 . 1log7log37log235log135555;2lg5lg2lg5lg232)、(例;)(求值:求值:例例2)2(lg20lg5lg8lg3225lg33 ;)(求值:求值:例例245lg8lg344932lg2143