機(jī)械專業(yè)-鋼筋矯直切斷機(jī)的設(shè)計(jì)【含CAD圖紙】
機(jī)械專業(yè)-鋼筋矯直切斷機(jī)的設(shè)計(jì)【含CAD圖紙】,含CAD圖紙,機(jī)械,專業(yè),鋼筋,矯直,切斷,設(shè)計(jì),CAD,圖紙
鋼筋矯直切斷機(jī)的設(shè)計(jì)
摘 要
設(shè)計(jì)較為全面、系統(tǒng)地研究了冷軋帶肋鋼筋的矯直理論及矯直及矯直切斷機(jī)的基本形式、結(jié)構(gòu)、參數(shù)和選型方法,確定了鋼筋矯直切斷機(jī)的總體設(shè)計(jì)方案。設(shè)計(jì)運(yùn)用材料力學(xué)和彈塑性力學(xué)的基本原理,將矯直過程中的鋼筋看成一個(gè)連續(xù)彎曲的梁,對(duì)冷軋帶肋鋼筋的彎曲變形作了詳盡的闡述。設(shè)計(jì)對(duì)冷軋帶肋鋼筋的矯直原理作了進(jìn)一步的敘述,在此理論的基礎(chǔ)上,研究分析了矯直系統(tǒng)參數(shù)確定方法。提出了新的輥系配置方案,并針對(duì)此種新的輥型配置方案,計(jì)算出了矯直系統(tǒng)力學(xué)參數(shù)及矯直功率。設(shè)計(jì)設(shè)計(jì)了一種較為簡(jiǎn)單實(shí)用的剪切機(jī)構(gòu)。設(shè)計(jì)創(chuàng)造性的在矯直切斷機(jī)上引入了行程開關(guān),實(shí)現(xiàn)鋼筋的自動(dòng)定尺切斷,提高了自動(dòng)化程度。
鋼筋技術(shù)推廣的社會(huì)和經(jīng)濟(jì)效益十分顯著,因此高強(qiáng)鋼筋得到了廣泛應(yīng)用。歐美等工業(yè)發(fā)達(dá)國家對(duì)混凝土結(jié)構(gòu)中鋼筋的性能要求較高,多采用可焊鋼筋,其實(shí)物的質(zhì)量高于標(biāo)準(zhǔn)規(guī)定。盤卷供料的鋼筋需經(jīng)矯直切斷后才可使用,目前國內(nèi)滿足矯直性能要求的高強(qiáng)鋼筋矯直切斷機(jī)還很少,市場(chǎng)上急需該類產(chǎn)品。設(shè)計(jì)在理論分析的基礎(chǔ)上,充分聯(lián)系實(shí)際中已有的矯直切斷機(jī)原理結(jié)構(gòu),在降低機(jī)器成本的基礎(chǔ)上,提高了切斷效率,并實(shí)現(xiàn)了自動(dòng)化。
關(guān)鍵字: 冷軋帶肋鋼筋;矯直;行程開關(guān);剪切
Abstract
This dissertation comprehensively and systematically investgates straightening technology og cold-rolled ribbed bars,straightening theory of bars,the straightening machines basis type,congigureation,parameter and the method of choosing bars straightening machine type. Utilizing the basis of material mechanics, elastic-plastic mechanics and regarding a bar as a continous bending beam in the peocess of straightightening, bend transform of cold ribbed bars is explained elaborately. Straightening theory of cold-rolled ribbed bars is farther depicted and on the basis of this theory, confirming method of straightening system parameter is researched. The new roller type configuration theme is put forward and straightening system mechanical parameter and straightening power of this new theme is calculated. An simple cutting mechanism is designed.The dissertation draw into the distance-button on the straightening machines, the bars can be cutting in certain size automly, make it more automly.
The dissertation on the basis of theory analyse, combine with the straightening machines used, on the basis of lower cost, raise the cutting efficiency, and to be autom.
Keywords: Cold rolld ribbed bars; Straightening; Distance-button; Cutting
目 錄
摘 要 I
Abstract II
第1章 緒 論 1
1.1國內(nèi)外鋼筋矯直切斷技術(shù)的發(fā)展?fàn)顩r 1
1.2冷軋帶肋鋼筋的概述 1
1.2.1鋼筋的種類 1
1.2.2冷軋帶肋鋼筋的表面形式 2
1.3課題的提出和意義 2
第2章 鋼筋矯直理論及金屬材料的彈塑性彎曲 3
2.1矯直理論與技術(shù)總體概況 3
2.1.1 國內(nèi)外對(duì)矯直理論和技術(shù)的研究綜述 3
2.1.2矯直基本理論和技術(shù)的研究 3
2.1.3對(duì)矯直設(shè)備和矯直質(zhì)量的研究 4
2.2對(duì)鋼筋類金屬材料彈塑性彎曲的分析 5
2.2.1概述 5
2.2.2彈塑性彎曲的變形過程 6
2.2.3彈塑性彎曲的彎矩 6
2.2.4強(qiáng)化金屬材料彈塑性彎曲的彎矩 8
2.2.5彈塑性彎曲的變形能 8
2.2.6旋轉(zhuǎn)彎曲的變形能 10
2.3本章小結(jié) 11
第3章 矯直裝置的選取和分析 12
3.1矯直原理 12
3.1.1反彎矯直、拉伸矯直及拉彎矯直 12
3.1.2旋轉(zhuǎn)矯直 12
3.2冷軋帶肋鋼筋矯直機(jī)矯直系統(tǒng)參數(shù)設(shè)計(jì) 16
3.2.1矯直輥的研究設(shè)計(jì) 16
3.2.2矯直輥輥系的配置 21
3.2.3 矯直速度 22
3.2.4對(duì)矯直質(zhì)量影響的幾個(gè)因素 23
3.2.5矯直系統(tǒng)設(shè)計(jì)計(jì)算 23
3.3轉(zhuǎn)轂式斜輥矯直力能參數(shù)計(jì)算 24
3.4轉(zhuǎn)轂式斜輥矯直機(jī)矯直功率計(jì)算 26
3.4.1鋼筋低頻彎曲塑性變形所需功率 26
3.4.2旋轉(zhuǎn)彎曲的塑性變形功率 26
3.4.3矯直輥摩擦功率 26
3.4.4轉(zhuǎn)轂軸承摩擦功率 27
3.5設(shè)計(jì)計(jì)算 27
3.6本章小結(jié) 29
第4章 鋼筋矯直切斷機(jī)的總體方案 30
4.1冷軋帶肋鋼筋矯直切斷機(jī)使用范圍及特點(diǎn) 30
4.2軋帶肋鋼筋切斷機(jī)技術(shù)性能指標(biāo) 30
4.3總體方案及工作原理 30
4.3.1導(dǎo)入裝置和壓緊裝置: 31
4.3.2 矯直裝置 31
4.3.3切斷機(jī)構(gòu) 32
4.3.4承料機(jī)構(gòu) 32
4.3.5傳動(dòng)系統(tǒng) 32
4.4本章小結(jié) 32
第5章 鋼筋矯直切斷機(jī)剪切機(jī)構(gòu)的分析與研究 33
5.1概述 33
5.1.1生產(chǎn)工藝對(duì)切斷定尺的精度和生產(chǎn)能力的要求 33
5.2剪切形式的分類 33
5.3設(shè)計(jì)計(jì)算 34
5.4本章小結(jié) 34
第6章 鋼筋矯直切斷機(jī)的承料機(jī)構(gòu) 35
6.1承料機(jī)構(gòu)分析 35
6.2鋼筋矯直切斷機(jī)承料機(jī)構(gòu)的設(shè)計(jì) 35
6.3本章小結(jié) 35
結(jié)論 36
致謝 37
參考文獻(xiàn) 38
40
第1章 緒 論
1.1 國內(nèi)外鋼筋矯直切斷技術(shù)的發(fā)展?fàn)顩r
鋼筋矯直切斷機(jī)在建筑行業(yè)運(yùn)用廣泛,國內(nèi)外對(duì)鋼筋矯直切斷機(jī)的研究也比較多,國內(nèi)對(duì)于鋼筋矯直切斷機(jī)的需求空間很廣,但國內(nèi)的矯直切斷機(jī)只能滿足一般的需求,對(duì)于一些矯直精度較高,切斷質(zhì)量要求也較高的鋼筋就無法滿足了,需要從國外進(jìn)口有關(guān)設(shè)備,總體來說國內(nèi)的技術(shù)還落后于國外。
由于冷軋帶肋鋼筋需要經(jīng)矯直切斷后才可使用,但目前對(duì)于冷軋帶肋鋼筋矯直的理論研究還不是很完善,冷軋帶肋鋼筋矯直的無劃傷問題一直沒有得到很好的解決,冷軋帶肋鋼筋矯直機(jī)的系統(tǒng)參數(shù)設(shè)計(jì)也主要是依據(jù)普通圓鋼筋矯直機(jī)的有關(guān)參數(shù)。
國內(nèi)的機(jī)器最缺少的技術(shù)就是矯直技術(shù)了,而這一方面國際上有些國家發(fā)展的較好,如前蘇聯(lián),德國和日本在這方面起步較早。國內(nèi)有關(guān)技術(shù)人員也在矯直理論和技術(shù)的研究方面作出了很大的努力,其中有部分成果的水平居領(lǐng)先地位,如列入1998河北省企業(yè)技術(shù)開發(fā)第二批計(jì)劃的GTK6/12數(shù)控冷軋帶肋鋼筋矯直切斷機(jī)已經(jīng)解決了有關(guān)技術(shù)上的難題其水平已達(dá)到國內(nèi)領(lǐng)先地位,它在提高矯直質(zhì)量、保證矯直后鋼筋表面無劃傷的基礎(chǔ)上,采用了數(shù)控技術(shù),提高了自動(dòng)化程度,實(shí)現(xiàn)了自動(dòng)定長(zhǎng)切斷、記數(shù)(鋼筋長(zhǎng)度、單根重量、總重、鋼筋總數(shù))及自動(dòng)停車等功能。
1.2 冷軋帶肋鋼筋的概述
1.2.1 鋼筋的種類
建筑上常用的鋼筋分為熱軋鋼筋,冷拉鋼筋,熱處理鋼筋,鋼絲和鋼絞線等許多類。
在常溫下對(duì)鋼筋進(jìn)行加工稱為“冷加工”。用冷加工方法可以使熱軋鋼筋的強(qiáng)度得以提高,是節(jié)約鋼材行之有效的方法之一。常用的冷加工方法有冷拉和冷拔兩種,近十年來,又發(fā)展了冷軋和冷軋扭等方法。
冷軋帶肋鋼筋是采用強(qiáng)度較低,塑性較好的普通低碳鋼或低合金鋼熱軋圓棚條鋼筋為母材,經(jīng)冷軋或冷拔工藝減徑后在其表面冷軋成具有三面或兩面月牙形的鋼筋。
鑒于目前國內(nèi)生產(chǎn)的冷軋帶肋鋼筋的母材品種較多,冷軋加工工藝也不盡相同,冷軋帶肋鋼筋的強(qiáng)度差異較大,國際《冷軋帶肋鋼筋》將冷軋帶肋鋼筋分為L(zhǎng)L550、LL650、和LL800三個(gè)級(jí)別。在本課題中所設(shè)計(jì)的鋼筋基本性能。
LL550級(jí)鋼筋強(qiáng)度較低,主要用以替代鋼筋混凝土結(jié)構(gòu)中的小直徑熱軋I級(jí)光圓鋼筋,做鋼筋混凝土機(jī)構(gòu)中的受力鋼筋、架立鋼筋、分布鋼筋。LL550級(jí)鋼筋宜用Q215熱軋圓盤防金軋制,鋼筋的公稱直徑有八種規(guī)格。
冷軋帶肋鋼筋是近三十多年國外發(fā)展的一個(gè)新鋼種,具有抗拉強(qiáng)度高和延伸率好的特性,與普通熱軋線材比較,可節(jié)約金屬材料30—40%以上,并使鋼筋混凝土強(qiáng)度和預(yù)應(yīng)力混凝土構(gòu)件強(qiáng)度提高,節(jié)約水泥。
1.2.2 冷軋帶肋鋼筋的表面形式
我國生產(chǎn)的冷軋戴了鋼筋大部分為三面帶有月牙形橫肋,鋼筋的外形如圖1-1示。橫肋沿鋼筋橫截面周圈上分布,且其中必須有一面的方向與另兩面反向。肋中心線與鋼筋縱軸夾角B為40°~60°。肋兩側(cè)面與鋼筋表面斜角a不得小于45°。肋間隙總和應(yīng)不大于公稱周長(zhǎng)的20%。相對(duì)肋面積f按下式計(jì)算:
(1-1)
式中 F——一個(gè)肋的縱向截面積:
B——肋與鋼筋軸線的夾角;
D——鋼筋公稱直徑;
C——肋的間距。
在生產(chǎn)實(shí)際中,除三面冷軋帶肋鋼筋外,還有少數(shù)廠家生產(chǎn)兩面帶肋的冷軋鋼筋,有的生產(chǎn)表面有壓痕的冷軋帶肋鋼筋。個(gè)別廠家還生產(chǎn)表面帶陰螺紋的冷軋鋼筋,以減少肋造成的應(yīng)力集中現(xiàn)象。
由圖1-2可知,冷軋帶肋鋼筋均無物理屈服點(diǎn)的硬鋼,則條件屈服強(qiáng)度采用,圖中所示,其曲線表現(xiàn)一段較長(zhǎng)的非彈性過程,說明彈性和塑性關(guān)系比較優(yōu)化,綜合力學(xué)性能較好。
LL550級(jí)冷軋帶肋鋼筋的曲強(qiáng)比在0.9左右。JGJ95-95編制組根據(jù)LL550,LL650和LL800級(jí)三種強(qiáng)度級(jí)別,測(cè)得冷軋帶肋鋼筋的彈性模量變化范1.888~1.984x,鋼筋的彈性模量E=1.9.
1.3 課題的提出和意義
我們所設(shè)計(jì)的該種鋼筋切斷機(jī)在參考國內(nèi)已有機(jī)型的基礎(chǔ)上加以改進(jìn),減低了成本,在矯直技術(shù)上又加以改進(jìn),增加了行程開關(guān)使其可以自動(dòng)定長(zhǎng)切斷,承料槽也加以改進(jìn),使得鋼筋可以自動(dòng)落下,上面研究重點(diǎn)即課題研究?jī)?nèi)容:
針對(duì)冷軋帶肋鋼筋,提出新的系統(tǒng)參數(shù)設(shè)計(jì),提高矯直質(zhì)量、保證矯直后鋼筋表面
無劃傷。
針對(duì)新的輥系配置方案,確定力學(xué)模型,精確矯直功率計(jì)算。
提高效率,使得矯直速度達(dá)到36m/min,提高了效率,但提高矯直速度的同時(shí)又要保證矯直質(zhì)量。
定尺切斷,在36m/min的條件下進(jìn)行切斷,且達(dá)到切斷誤差小于5mm。
采用行程開關(guān)提高自動(dòng)化程度。實(shí)現(xiàn)自動(dòng)定長(zhǎng)剪切,鋼筋可以自動(dòng)落料。
第2章 鋼筋矯直理論及金屬材料的彈塑性彎曲
2.1 矯直理論與技術(shù)總體概況
冷軋帶肋鋼筋具備十分顯著的社會(huì)效益和經(jīng)濟(jì)效益,因此將得到廣泛應(yīng)用。但是由于冷軋帶肋鋼筋直徑較細(xì)和受加工方法的限制,一般都是成卷供貨。在使用過程中,除采用長(zhǎng)線臺(tái)座先張法生產(chǎn)預(yù)應(yīng)力空心板等構(gòu)件不存在矯直外,采用短線法生產(chǎn)預(yù)應(yīng)力構(gòu)件以及做非預(yù)應(yīng)力鋼筋用時(shí),一般多需要經(jīng)過矯直處理后方可以使用,否則混凝土構(gòu)件中的曲折鋼筋將會(huì)影響構(gòu)件受力性能。因此,鋼筋矯直是鋼筋加工中的一項(xiàng)重要工序。鋼筋矯直切斷機(jī)能自動(dòng)矯直和定尺切斷鋼筋,并可清除鋼筋表面的氧化皮和污跡。同時(shí)要求矯直后鋼筋表面無劃傷、無扭轉(zhuǎn)、強(qiáng)度不受損失、切斷長(zhǎng)度準(zhǔn)確。因此,對(duì)冷軋帶肋鋼筋采用的精整技術(shù)—矯直工藝和技術(shù)的研究,其作用就愈為突出。
對(duì)矯直技術(shù)和理論的研究,目的在于正確的分析和描述矯直過程中呈現(xiàn)的一系列現(xiàn)象,尋求和實(shí)際相吻合的規(guī)律;確定矯直參數(shù)見的相互關(guān)系,用以指導(dǎo)生產(chǎn);研制和開發(fā)新型、高效、高精度的矯直設(shè)備,使鋼材產(chǎn)品的質(zhì)量和精度不斷得到提高。
國外對(duì)矯直理論和技術(shù)的研究起步較早,具有相當(dāng)?shù)膹V泛性,取得了許多研究成果。許多成果已應(yīng)用于實(shí)際生產(chǎn)中,產(chǎn)生了巨大的經(jīng)濟(jì)效益。矯直技術(shù)發(fā)達(dá)的國家,如前蘇聯(lián)、德國、英國和日本等,從四十年代起,生產(chǎn)的矯直設(shè)備就形成了系列產(chǎn)品,在矯直理論、工藝和設(shè)備的研究方面也作了大量的工作,并取得了一批較有影響的成果。
國內(nèi)有關(guān)的技術(shù)人員在矯直理論和技術(shù)的研究方面亦作出了很大的努力,使矯直理論和技術(shù)的研究工作得到了廣泛的重視,并取得了不少令人屬目的研究成果。其中部分成果的水平居領(lǐng)先地位。隨各行業(yè)對(duì)矯直設(shè)備的種類、數(shù)量日益增加的需要,我國目前已形成了自行設(shè)計(jì)和生產(chǎn)板帶線型管材的矯直設(shè)備的能力,設(shè)備的精度和控制水平也不斷提高。在引進(jìn)和吸收國外先進(jìn)的矯直設(shè)備和技術(shù)的基礎(chǔ)上,更加高效,高精度的矯直設(shè)備相續(xù)問世,不斷的推動(dòng)矯直理論和技術(shù)的研究工作向前發(fā)展。
2.1.1 國內(nèi)外對(duì)矯直理論和技術(shù)的研究綜述
新的矯直設(shè)備的出現(xiàn)及矯直技術(shù)的新發(fā)展,必然在很多方面引起對(duì)矯直理論和技術(shù)的深入研究。目前,國內(nèi)外有關(guān)這方面的研究工作抓喲集中在以下幾個(gè)新型矯直設(shè)備的研制、開發(fā)和改進(jìn);產(chǎn)品矯直精度的提高。
2.1.2 矯直基本理論和技術(shù)的研究
在矯直基本理論和技術(shù)的研究方面,國外發(fā)展的較早。二十世紀(jì)六十年代,前蘇聯(lián)的一些研究人員就發(fā)表了全面系統(tǒng)的論述和分析管材的矯直理論、矯直工藝以及介紹管材矯直機(jī)的基本型式和結(jié)構(gòu)的文獻(xiàn)近些年來,國內(nèi)外的科技人員對(duì)矯直參數(shù)問題作了很多研究。Ruppin深入探討了多輥彎曲矯直過程中軸向拉伸載荷和壓下量的關(guān)系,并對(duì)壓下量和矯直效果的關(guān)系做了詳細(xì)的研究,得到了一些有意義的結(jié)論;應(yīng)用旋轉(zhuǎn)矯直機(jī)矯直,深入研究了矯直工藝對(duì)線材性能的影響,給出了詳細(xì)的實(shí)驗(yàn)數(shù)據(jù),指出鋼筋矯直后一般表現(xiàn)為延伸率增大,強(qiáng)度降低,矯直后抗拉強(qiáng)度值平均下降5%。德國分析了輥式矯直提高棒、帶性能的先決條件和可能性;認(rèn)為彎曲后的殘余應(yīng)力是彎曲時(shí)的應(yīng)力和卸載應(yīng)力的集合疊加,最大殘余應(yīng)力發(fā)生在介于線材中心和表面的區(qū)域,彎曲半徑越小,殘余應(yīng)力越大,其研究結(jié)果表明,輥式矯直也可以看成彎曲變形,多輥單方向矯直就可以顯著降低殘余應(yīng)力,矯直過程中大的彎曲半徑對(duì)殘余應(yīng)力的消除是有利的。
同時(shí)許多研究人員對(duì)矯直機(jī)結(jié)構(gòu)參數(shù)也進(jìn)行了較為深入的研究。結(jié)構(gòu)參數(shù)包括矯直輥的傾斜角度、反彎曲率、接觸長(zhǎng)度、輥身長(zhǎng)度及輥型曲線等,而對(duì)矯直輥輥型的設(shè)計(jì)和研究一直是矯直機(jī)結(jié)構(gòu)單數(shù)研究的中心。資料針對(duì)在管棒材矯直機(jī)的輥型研究中均假定矯直過程中管棒材是理想圓柱體,而與實(shí)際情況中管棒材均呈彎曲狀態(tài)的情況不相符合的問題,作者由等距曲面的觀點(diǎn)出發(fā),研究了管棒材呈彎曲狀態(tài)時(shí)與之接觸的輥型曲面,而且討論了矯直輥的角度調(diào)整問題,使得在實(shí)際中得到更好的接觸狀態(tài)。文獻(xiàn)中/則簡(jiǎn)化現(xiàn)有的輥型曲線的理論公式,通過引入無量綱的中間變量,使得用參數(shù)方程表達(dá)的輥型曲線方程式變得便于記憶和求解。文獻(xiàn)中對(duì)有關(guān)問題的簡(jiǎn)單、直觀及實(shí)用的處理方法在設(shè)計(jì)中有較好的借鑒作用。文獻(xiàn)5在國內(nèi)外對(duì)輥型研究成果的基礎(chǔ)上,對(duì)直圓材全接觸雙曲線輥型的研究成果進(jìn)行了系統(tǒng)的總結(jié),并提出了高度概括性的意見,找出了更為簡(jiǎn)明的計(jì)算方法和輥型曲線的作圖方法。在文獻(xiàn)中德國的確定矯直扭矩時(shí),考慮了塑性變形區(qū)的長(zhǎng)度和旋轉(zhuǎn)彎曲的變形能,使得計(jì)算結(jié)果的精度得到提高;文獻(xiàn)對(duì)“313”鋼管矯直機(jī)的矯直力、矯直功率的計(jì)算進(jìn)行了分析,并引入了疊加原理,對(duì)矯直機(jī)的設(shè)計(jì)工作有一定的參考價(jià)值。
2.1.3 對(duì)矯直設(shè)備和矯直質(zhì)量的研究
對(duì)于理論的研究就是為了更好的指導(dǎo)實(shí)踐,所以改進(jìn)現(xiàn)有的矯直設(shè)備,研制和開發(fā)新的設(shè)備以及不斷的提高矯直質(zhì)量,一直是研究工作者的目標(biāo)。文獻(xiàn)均涉及了這個(gè)問題,其中,文獻(xiàn)對(duì)提高管材的矯直精度的途徑進(jìn)行了探討和試驗(yàn)。提出了“綜合矯直”的理論觀點(diǎn),使多種矯直效果疊加和鞏固,進(jìn)而提高了矯直效果。論述了提高矯直質(zhì)量的先覺條件和可能性,即增加被矯軋材的塑性變形區(qū)的長(zhǎng)度。文獻(xiàn)各自發(fā)表了所研制的管材的新型矯直機(jī),從各個(gè)不同的角度使管棒材矯直的精度、生產(chǎn)率和矯直機(jī)的適用范圍等個(gè)方面得到了提高。
在眾多的文獻(xiàn)中,文獻(xiàn)在使矯直理論系統(tǒng)化方面進(jìn)行了總結(jié)。提出了在各種矯直條件下矯直機(jī)的力能參數(shù)、工藝參數(shù)和結(jié)構(gòu)參數(shù)的計(jì)算和確定方法;同時(shí)還介紹了許多現(xiàn)代矯直技術(shù)和工藝。
2.2 對(duì)鋼筋類金屬材料彈塑性彎曲的分析
2.2.1 概述
鋼筋在矯直機(jī)上被矯直,是通過自身的彈塑性彎曲變形來實(shí)現(xiàn)的。因此,探究鋼筋的矯直原理以及制定矯直方案應(yīng)從研究金屬材料的彈塑性彎曲變形著手。
金屬材料的彈塑性彎曲變形過程在外力矩作用下的彎曲階段和外力矩去除后的彈性恢復(fù)階段組成。金屬材料在外力矩的作用下彎曲時(shí),除中性層因應(yīng)力為零不會(huì)變形外,其它各層縱向纖維都要發(fā)生伸長(zhǎng)或縮短的變形。外力矩去除后的變形恢復(fù)是個(gè)內(nèi)力釋放過程,亦稱彈性恢復(fù)。
圖2-1
在彎曲方式上,有受彎矩作用的純彎曲;有受橫向載荷作用的梁彎曲;有繞過圓柱體受拉力作用而產(chǎn)生的拉彎;有圓形材料在旋轉(zhuǎn)中受橫向載荷作用而產(chǎn)生的旋轉(zhuǎn)彎曲如圖2-1所示;有板材在軋制過程中由于變形不均而產(chǎn)生的雙向波浪彎曲。前三種彎曲都屬于單方向的彎曲,稱之為一維彎曲;旋轉(zhuǎn)彎曲與波浪彎曲為二維彎曲;綜合彎曲為三維彎曲。
實(shí)際上,彎曲變形的應(yīng)力應(yīng)變關(guān)系不能簡(jiǎn)化為簡(jiǎn)單彎曲或壓縮的應(yīng)力應(yīng)變關(guān)系。在金屬材料的橫截面上,除表層和中性層以外,各層均處于三向應(yīng)力狀態(tài),圖2-2所示。
圖2-2
材料橫截面上所發(fā)生的應(yīng)力應(yīng)變關(guān)系只與彎曲程度有關(guān)。在材料的縱向,應(yīng)力應(yīng)變的分布與變化情況隨彎曲的類型而異。在純彎曲的情況下,材料縱向各截面的應(yīng)力應(yīng)變都是一樣的。在受橫向集中載荷壓彎的情況下,塑性變形區(qū)按拋物線規(guī)律沿縱向分布在兩個(gè)邊層之間,如圖2-3 所示。塑性變形區(qū)按雙曲線規(guī)律分布在兩個(gè)邊層之間,如圖2-3 所示。
圖2-3
拉彎時(shí),塑性變形區(qū)將按一個(gè)特殊的曲線規(guī)律分布在邊層,如圖2-3 所示。
根據(jù)平截面原理,各層纖維的變形協(xié)調(diào)關(guān)系必然是線形的,而且塑性變形必將由最外層纖維開始。由于鋼筋的彎曲與矯直過程中曲率半徑值比其本身直徑大得多,從塑性變形的最外層到最內(nèi)層,造成的誤差是不大的,也就是不計(jì)三向應(yīng)力的影響來處理鋼筋的彎曲和矯直問題。
2.2.2 彈塑性彎曲的變形過程
軋件在矯直機(jī)上的彈塑性彎曲的變形過程,實(shí)際上是一個(gè)橫向彎曲過程。
彈塑性彎曲 隨著外載荷的增加,軋件各層纖維繼續(xù)產(chǎn)生變形。當(dāng)所受外力矩達(dá)到一定數(shù)值后,軋件表層縱向纖維應(yīng)力超過了材料的屈服極限,靠近表面層一部分區(qū)域的纖維層產(chǎn)生塑性變形。外力矩越大,塑性變形區(qū)由表層向中性層擴(kuò)展的深度越大。去除外載荷后,在彈性內(nèi)力矩作用下,各層縱向纖維的變形可彈性恢復(fù)一部分,但無法全部恢復(fù),軋件中將保留殘余應(yīng)變和殘余應(yīng)力。這種彎曲變形稱為彈塑性彎曲變形。
2.2.3 彈塑性彎曲的彎矩
2.2.3.1 理想金屬材料彈塑性彎曲的彎矩
彎矩是引起軋件彎曲變形的外因,任何彎曲狀態(tài)都是內(nèi)力與外力平衡的結(jié)果。在這里,本文只討論圓形斷面金屬材料的彎矩。
按圖2-6的應(yīng)力應(yīng)變模型,求其彈塑性彎矩為
圖2-6
將σ=Σz/R代入上式,積分后將ζ=R/R代入并整理,得
(2-1)
式中 ζ彈區(qū)比, ζ= (2-2)
其塑彎比為
(2-3)
當(dāng)ζ->0時(shí),得最大塑彎比為1.7,則最大彈塑性彎矩為1.7Mt。
為了在以后矯直理論分析的需要,下面對(duì)原形彎曲塑性區(qū)的分布規(guī)律加以明確。按圖2-7及內(nèi)外彎矩的平衡條件可知
(2-4)
故
(2-5)
這是一條類似立方拋物線的ζ-x曲線,它隨L及F值的改變而改變。如使材料中點(diǎn)受力最大,即達(dá)到極限彈塑性彎矩時(shí),得
(2-6)
將此值代入式(2-2)后,得
(2-7)
式(2-3)表示一條在材料中點(diǎn)產(chǎn)生“塑性鉸”的塑性區(qū)分布規(guī)律的曲線,
圖2-7中的ζ—x曲線。
圖2-7
在最大載荷情況下,極限彈塑性彎矩Mt發(fā)生在
(2-8)
處,即材料中點(diǎn)兩側(cè)0.21L范圍內(nèi)為塑性變形區(qū)S=0.42L.
在這種載荷作用下,塑性區(qū)內(nèi)各截面的塑彎比 的變化規(guī)律可由下式
(2-9)
看出與x的線形關(guān)系,它同圖上M-x曲線的Mt以下部分是一致的。
圓材的關(guān)系,即式(2-1)所代表的曲線,與ζ—-x曲線相似而方向反。
2.2.4 強(qiáng)化金屬材料彈塑性彎曲的彎矩
冷軋帶肋鋼筋為強(qiáng)化金屬材料。由于強(qiáng)化金屬材料的屈服限不大明顯,在塑性區(qū)內(nèi)存在著彈性增強(qiáng)現(xiàn)象;塑性區(qū)的范圍又較窄,容易出現(xiàn)表面裂紋損傷等原因。要使軋件產(chǎn)生足夠的塑性變形,常需適當(dāng)加大其彎曲程度和增加彎曲次數(shù)。這就要求盡量精確的計(jì)算其彎曲力矩和其彎矩的最大許可值,以及與此最大許可值相對(duì)應(yīng)的最大彎曲程度,以此來確定其設(shè)備能力和工藝方案。
由塑彎比強(qiáng)化法則,即強(qiáng)化材料的塑彎比等于理想塑彎比減去強(qiáng)化系數(shù)與理想塑彎比的乘積,再加上強(qiáng)化系數(shù)λ與彈區(qū)比ζ的比值。得圓形斷面塑彎比為
(2-10)
其強(qiáng)化彎矩為
(2-11)
由式(2-5)
(2-12)
式中 ζ——邊層應(yīng)力比;
σ——邊層最大應(yīng)力。
代入(2-4)中,求出
(2-13)
2.2.5 彈塑性彎曲的變形能
2.2.5.1 一次彎曲的變形能
材料彎曲時(shí)外力作功的一部分用于彈性變形;另一部分用于塑性變形;還有一小部分變成熱量而散失。為了計(jì)算矯直功率,需要把它們分開計(jì)算出來,首先討論的是前兩種變形所需之能量。其中 ——彈性變形能。
E——塑性變形能,即
對(duì)于多次彎曲,第二次彎曲的屈服點(diǎn)稍有降低,其余各次彎曲的屈服點(diǎn)基本一致,可以認(rèn)為矯直過程中的反復(fù)彎曲所需之彎矩和變形功基本不受彎曲次數(shù)的影響,而只與彎曲程度有關(guān)。
2.2.5.2 強(qiáng)化金屬材料的彎曲變形能
圖2-5
如前所述,則在考慮強(qiáng)化金屬材料的一維彎曲變形能時(shí),只需求出一次彎曲變形能即可。對(duì)于圓形斷面材料,按圖2-8和圖2-9,先寫出彈性變形能積分式
(2-15)
;; (2-16)
;
圖2-9
可得
(2-17)
塑性變形能的積分式為
(2-18)
積分得
(2-19)
總變形能為彈性變形能和塑性變形能之和,當(dāng)彎曲次數(shù)為n時(shí),式2-10乘以n即可。
2.2.6 旋轉(zhuǎn)彎曲的變形能
2.2.6.1 理想金屬旋轉(zhuǎn)彎曲的變形能
圖2-10
旋轉(zhuǎn)彎曲的彈塑性變形常發(fā)生在軸類零件的超負(fù)荷工作中及圓材旋轉(zhuǎn)矯直過程中。因此,在這里仍采用旋轉(zhuǎn)彎曲這一概念。為了分析上的方便,取單位長(zhǎng)度圓材,求出其在彈塑性彎曲狀態(tài)下,轉(zhuǎn)轂旋轉(zhuǎn)一周時(shí)所需能量。按圖2-10所示的圓形斷面瞬時(shí)應(yīng)力應(yīng)變模型,轉(zhuǎn)轂旋轉(zhuǎn)一周后,在斷面上形成彈塑性變形的環(huán)形區(qū),其寬度在Rt與R兩個(gè)半徑區(qū)。
而塑性變形能可由下面的積分式求出
(2-20)
代入上式,積分整理得
(2-21)
壓彎之后的總的變形能為
(2-22)
2.3 本章小結(jié)
本章運(yùn)用材料力學(xué)和彈塑性力學(xué)的基本原理,應(yīng)用彈區(qū)比系數(shù)ζ,強(qiáng)化系數(shù)λ,推導(dǎo)計(jì)算了強(qiáng)化金屬材料的彈塑性彎曲的彎矩。運(yùn)用變形能概念,詳述了理想金屬材料和強(qiáng)化金屬材料的一次彎曲和多次彎曲過程,及其旋轉(zhuǎn)彎曲過程,并計(jì)算了相應(yīng)的變形能公式,為以后的矯直力功率的計(jì)算打下了理論基礎(chǔ),為闡述矯直原理作了很好的理論鋪墊。
第3章 矯直裝置的選取和分析
3.1 矯直原理
可用于盤條料矯直的方法有反彎矯直、拉伸矯直、拉彎矯直及旋轉(zhuǎn)矯直等。
3.1.1 反彎矯直、拉伸矯直及拉彎矯直
反彎矯直是發(fā)展最早的矯直方法,它是直觀地將彎曲的金屬條料,根據(jù)原始的彎曲程度不同,加以不同程度的反向彎曲,達(dá)到矯直的目的。為適應(yīng)大量生產(chǎn)的要求,常采用一種連續(xù)式多輥遞減壓下的反彎矯直方法。該方法比較適合于板材的一維彎曲矯直。
拉伸矯直法是不管軋材原始彎曲形態(tài)如何,只要拉伸變形超過金屬的屈服極限,并達(dá)到一定程度,使各條縱向纖維的彈復(fù)能力趨于一致。這樣在彈復(fù)后,軋材即被矯直。
拉伸矯直是全斷面同時(shí)被拉伸,容易拉裂或拉斷軋材,如果在拉伸的同時(shí)加上反復(fù)的彎曲,則各斷面將在不同時(shí)間內(nèi),兩側(cè)都受到較大的拉伸變形,從而取得很好的矯直效果,這就是拉伸矯直。
拉伸和拉彎矯直雖然動(dòng)力消耗小,但矯直設(shè)備縱向長(zhǎng)度太長(zhǎng),不宜和剪切機(jī)配合使用。并且比較適合薄板矯直,對(duì)于盤條料,斷面常為圓形,由于在全圓周各個(gè)方向上抗彎能力的一致性,造成了圓材彎曲方向的隨機(jī)不定,所以采用平面性多輥反彎矯直法對(duì)圓材進(jìn)行矯直,很難達(dá)到滿意的矯直下效果。
從以上的分析可看出,反彎矯直、拉伸矯直和拉彎矯直方法都不太適合盤條料的高效矯直。
3.1.2 旋轉(zhuǎn)矯直
鑒于單純的反彎矯直存在上述問題,針對(duì)具有圓斷面或類圓斷面的棒材,如果棒材能一面旋轉(zhuǎn),一面進(jìn)行反彎矯直,正好可以得到全圓周性的矯直效果。圓材軸向纖維在經(jīng)受了較大的彈塑性變形后,彈復(fù)能力逐漸趨于一致,這種變形的反復(fù)次數(shù)越多,彈復(fù)能力越接近一致,矯直質(zhì)量越好。在旋轉(zhuǎn)矯直中最常見的方法是多斜輥矯直,在一般斜輥矯直機(jī)中,被矯直鋼筋一邊旋轉(zhuǎn),一邊進(jìn)行反彎矯直,在螺旋前進(jìn)過程中各斷面受到多次彈塑性彎曲,最終消除各方向的彎曲,得到全周性的矯直效果。
據(jù)圖3-1得出一般斜輥矯直機(jī) 子與鋼筋的轉(zhuǎn)速,分別如下:
(3-1)
式中 v——矯直速度;
D——輥?zhàn)愚D(zhuǎn)動(dòng)直徑;
d——鋼筋公稱直徑;
由式(3-2)可看出,當(dāng)d值減少而其它條件不變時(shí),nd值會(huì)增大。另一方面,為保證一定的生產(chǎn)率(以重量計(jì)),nd值將進(jìn)一步增大,產(chǎn)生很大的離心力,由此在導(dǎo)向裝置上將產(chǎn)生很大的沖擊、振動(dòng)和噪音。另外,鋼筋長(zhǎng)度較長(zhǎng)時(shí)容易產(chǎn)生甩尾現(xiàn)象,有時(shí)可能造成人身事故。當(dāng)超過一定數(shù)值時(shí),鋼筋加劇振動(dòng),撞擊設(shè)備,產(chǎn)生擦傷和扭曲現(xiàn)象。顯然,這種旋轉(zhuǎn)矯直方法,也不適合于盤條料的邊開卷邊矯直的生產(chǎn)要求。所以,當(dāng)矯直直徑小的盤料鋼筋時(shí),采用轉(zhuǎn)轂式矯直機(jī)。
圖3-1 斜輥矯直時(shí)鋼筋與矯直輥的關(guān)系
轉(zhuǎn)轂矯直也是一種旋轉(zhuǎn)矯直方法,但該矯直方法是利用轉(zhuǎn)轂的旋轉(zhuǎn)代替圓材的旋轉(zhuǎn),可達(dá)到同樣的矯直目的。而且由于圓材不旋轉(zhuǎn),因此很適合于邊開卷邊矯直的盤料。
3.1.2.1 孔模式轉(zhuǎn)轂矯直法
如圖3-2所示為轉(zhuǎn)轂矯直法中的一種孔模式轉(zhuǎn)轂矯直裝置的簡(jiǎn)圖。它是發(fā)展最早的一種轉(zhuǎn)轂矯直裝置。由于孔模隨轉(zhuǎn)轂旋轉(zhuǎn),由此圓材的彎曲變成了全圓周性的旋轉(zhuǎn)彎曲,它屬于高頻彎曲。但由于孔模沒有送料作用,故在轉(zhuǎn)轂前后要裝設(shè)送料和拉料輥?zhàn)?,轉(zhuǎn)轂矯直機(jī)所用的孔模按等間距配置在轉(zhuǎn)轂內(nèi),其交錯(cuò)的偏心量可調(diào),孔模的形狀可作成圓孔形或開口形,如圖3-2所示。兩端孔模起定位作用,中間孔模起反彎作用,孔模常采用偶數(shù)個(gè),以減少偏心量。拉料輥與送料輥同時(shí)工作,因此兩者常采用一個(gè)電機(jī)帶動(dòng)。
1-送料輥 2-轉(zhuǎn)轂 3-孔模 4-拉料輥
圖3-2 孔模式轉(zhuǎn)轂矯直機(jī)簡(jiǎn)圖
但孔模式轉(zhuǎn)轂矯直本身有許多缺點(diǎn):摩擦損失大孔模的消耗大圓材表面容易損傷頭部送料困難因轉(zhuǎn)動(dòng)摩擦力很大,盤料尾部常隨轉(zhuǎn)轂轉(zhuǎn)動(dòng),得不到矯直,造成損耗大送料受阻時(shí),孔模將把條材磨細(xì),甚至磨斷。采用斜輥代替孔模,即斜輥式轉(zhuǎn)轂矯直,會(huì)顯著地克服上述缺點(diǎn)。因而又發(fā)展了斜輥式轉(zhuǎn)轂矯直方法。
3.1.2.2 斜輥式轉(zhuǎn)轂矯直法
轉(zhuǎn)轂內(nèi)裝有多個(gè)傾斜布置的矯直輥,與鋼筋保持相適應(yīng)的角度,構(gòu)成多個(gè)彎曲單元。矯直過程中,斜輥隨轉(zhuǎn)轂高速公轉(zhuǎn)的同時(shí),斜輥繞本身軸線自轉(zhuǎn),鋼筋從矯直輥所形成的孔形中通過(鋼筋被拉動(dòng)而不轉(zhuǎn)動(dòng)),在前進(jìn)過程中鋼筋各斷面受到多次彈塑性彎曲,最終消除各方向的彎曲,得到全周性的矯直效果。圓材軸向纖維經(jīng)受較大的彈塑性變形后,彈復(fù)能力逐漸趨于一致。各條軸向纖維在全長(zhǎng)范圍上都經(jīng)過數(shù)次以上的由小到大,再由大到小的拉壓變形。在此過程中,即使由于原始狀態(tài)不同而經(jīng)受的變形量互有差異,但只要變形是足夠的,彈復(fù)能力就必將是接近的。這種變形反復(fù)次數(shù)越多,彈復(fù)能力越接近一致,矯直質(zhì)量越好。
該方法用斜輥代替孔模,以克服上述孔模式矯直的缺點(diǎn)。同時(shí)斜輥還有送料作用,使?fàn)恳佅牡墓β蕼p少很多甚至僅起導(dǎo)向作用,其矯直原理和斜輥矯直機(jī)一樣。圖3-3所示為多輥式轉(zhuǎn)轂矯直機(jī)簡(jiǎn)圖,也可以采用二輥式轉(zhuǎn)轂矯直方法,這種矯直機(jī)的牽引輥只需考慮承受一定的壓緊力,以保證圓材不隨轉(zhuǎn)轂轉(zhuǎn)動(dòng)。
1- 鋼筋 2-轉(zhuǎn)轂 3-矯直輥
圖3-3多輥式轉(zhuǎn)轂矯直機(jī)簡(jiǎn)圖
采用斜輥式轉(zhuǎn)轂矯直機(jī)矯直的優(yōu)點(diǎn)是:鋼筋在矯直過程中不旋轉(zhuǎn),沒有甩尾現(xiàn)象,鋼筋表面不受損傷,特別適合帶肋鋼筋的矯直。由于采用復(fù)合輥系,鋼筋在全長(zhǎng)范圍內(nèi)都獲得了矯直,矯直精度高。同時(shí)也克服了二輥框架矯直機(jī)速度低、側(cè)導(dǎo)板磨損嚴(yán)重和咬入困難的缺點(diǎn)。結(jié)構(gòu)簡(jiǎn)單,既可矯直直定尺料,也可矯直盤卷料。
但若用它矯直粗鋼筋時(shí),由于轉(zhuǎn)轂的離心力與其半徑的立方成正比,則旋轉(zhuǎn)速度將受到限制而不宜采用,故僅適合于矯直直徑較小的鋼筋。冷軋帶肋鋼筋的截面最近似于圓形。因此,在本設(shè)計(jì)中采用斜輥式轉(zhuǎn)轂矯直法。
3.1.2.3 斜輥式轉(zhuǎn)轂矯直矯直原理
轉(zhuǎn)轂式斜輥矯直采用交變彎曲小變形矯直方案,基本原則是,進(jìn)入輥的棒材,經(jīng)過反彎和彈復(fù)后,其最大原始曲率應(yīng)完全消除。其優(yōu)點(diǎn)是在原始曲率值較大時(shí),能較快地消除原始曲率的差值,而在原始曲率值較小時(shí),可以節(jié)省功率。
下面分析轉(zhuǎn)轂式斜輥矯直過程中鋼筋所受的變形情況。參見圖4-5,在其彎矩圖中,M-x的關(guān)系為
(3-3)
在x=lt處, M= Mt=Flt/2 ;S代表彈塑性變形區(qū)長(zhǎng)度。S以外部分為彈性變形區(qū),這一區(qū)間的長(zhǎng)度用表示,兩端對(duì)稱。
圖中c為彈性邊界曲線, 關(guān)系式為:
(3-4)
此式表明,在塑性區(qū)內(nèi)ζ值隨著x的減少而迅速減少,即塑性變形迅速深入,直到鋼筋中心處,鋼筋通過矯直輥的過程恰好是塑性區(qū)由小變大,再由大變小的變化過程,因此周圍每條軸向纖維的變形將是不一致的。但是隨著前進(jìn)中轉(zhuǎn)轂旋轉(zhuǎn)次數(shù)的增加,可以明顯減少這種不一致性。
圖3-4 多斜輥矯直的彎曲矩與塑性變形區(qū)
在S區(qū)內(nèi),當(dāng)高頻轉(zhuǎn)數(shù)達(dá)到4以上時(shí),鋼筋矯直效果有明顯提高,但提高高頻轉(zhuǎn)速受到各方面的限制,如轉(zhuǎn)轂在高頻轉(zhuǎn)速中因偏心而產(chǎn)生很大的離心力,產(chǎn)生振動(dòng)和噪音;鋼筋尾部容易產(chǎn)生甩尾現(xiàn)象,造成事故等。增加矯直輥輥數(shù)相當(dāng)于增加低頻彎曲次數(shù),加長(zhǎng)塑性區(qū),假設(shè)采用5個(gè)矯直輥,等于把S區(qū)擴(kuò)大3倍,若在每個(gè)矯直輥下的S區(qū)內(nèi)的高頻轉(zhuǎn)數(shù)為4,則相當(dāng)于在S區(qū)內(nèi)轉(zhuǎn)轂旋轉(zhuǎn)12次,也等于增加了鋼筋的高頻彎曲次數(shù),而且在各個(gè)矯直輥下鋼筋變形不同步性,進(jìn)一步保證鋼筋的矯直質(zhì)量。
由此可以得出對(duì)斜輥矯直理論的幾點(diǎn)概括:
斜輥矯直不是依靠壓下量的遞減,而是依靠鋼筋在轉(zhuǎn)轂內(nèi)前進(jìn)過程中所受彈塑性彎曲的由小到大,再由大到小的連續(xù)變化,使得鋼筋變直。
斜輥矯直主要依靠足夠的接觸區(qū)長(zhǎng)度及在接觸區(qū)一定的高頻彎曲次數(shù),而不是單單依靠矯直輥數(shù)目的增加。不過增加矯直輥數(shù)目對(duì)提高矯直速度的影響更為重要。
斜輥矯直的壓下量不需采用大變形方案。同時(shí)注意在轉(zhuǎn)瞽式斜輥矯直過程中,后面矯直輥的壓下量應(yīng)比前面矯直輥的壓下量小些。
增設(shè)壓緊輥和正確設(shè)計(jì)輥型對(duì)斜輥矯直矯直質(zhì)量有重要影響。
斜輥矯直中矯直輥的傾斜角度不僅對(duì)于接觸條件及高頻彎曲次數(shù)有直接影響,也對(duì)于保證鋼筋各個(gè)斷面的變形在各矯直輥下不發(fā)生同步性的重復(fù)有決定作用。
3.2 冷軋帶肋鋼筋矯直機(jī)矯直系統(tǒng)參數(shù)設(shè)計(jì)
在本設(shè)計(jì)中,采用1-1-2 (3/3)輥系方案,曲線輥與鋼筋保持相適應(yīng)的角度,六個(gè)斜輥隨轉(zhuǎn)轂高速旋轉(zhuǎn),同時(shí)斜輥繞本身軸線轉(zhuǎn)動(dòng),使得在矯直過程中,輥?zhàn)优c鋼筋之間的摩擦形式由滑動(dòng)變?yōu)闈L動(dòng),大大減少了兩者之間的摩擦損耗。被矯的冷軋帶肋鋼筋在輥間前進(jìn)過程中,鋼筋軸向各條纖維都經(jīng)受一次以上的由小到大,再由大到小的拉壓變形,從而得到圓周性的矯直效果,最終達(dá)到一定的矯直精度。且能塑性變形反復(fù)的次數(shù)越多,矯直精度越好。其結(jié)構(gòu)簡(jiǎn)圖如圖4-6所示:
圖 3-5輥系配置示意圖
3.2.1 矯直輥的研究設(shè)計(jì)
3.2.1.1 輥形的設(shè)計(jì)
鋼筋的矯直質(zhì)量,很大程度上決定于輥形的設(shè)計(jì)。合理的矯直工藝對(duì)輥形的要求是,盡量增加鋼筋與輥?zhàn)咏佑|區(qū)的長(zhǎng)度,增大接觸面積,并且在接觸區(qū)內(nèi)盡量使彎曲率一致。按照這一思想,在直鋼筋的條件下導(dǎo)出理論輥形曲線公式,盡管有不同的表達(dá)形式,但均代表同一條曲線。在實(shí)際矯直過程中,由于斜輥的壓下量,使鋼筋產(chǎn)生一定程度的反向彎曲,形成帶有一定曲率的鋼筋與輥?zhàn)咏佑|。因此實(shí)際輥形與理論輥形曲線相比必然有一定的誤差。理論輥形曲線Rx的表達(dá)式為:
(3-5)
式中 X——從輥腰到所取截面(垂直于輥?zhàn)虞S線)的距離(mm);
Rx——距輥腰 處的輥形半徑(mm);
Ro——矯直輥輥腰半徑(mm);
r——被矯鋼筋的最大半徑(mm);
a——矯直輥傾角(。);
——矯直輥對(duì)鋼筋的包角。
在實(shí)際設(shè)計(jì)中,值與理想假設(shè)有所不同,假定為,則求的近似輥形 :
(3-6)
光圓鋼筋矯直時(shí),輥?zhàn)油摻畹慕佑|點(diǎn)E只能在B和D點(diǎn)之間,且假設(shè)點(diǎn)E為點(diǎn)B和點(diǎn)D的中點(diǎn)。剖面線處為冷軋帶肋鋼筋正截面圖。當(dāng)與光圓鋼筋同一公稱直徑d的冷軋帶肋鋼筋被矯直時(shí),考慮到冷軋帶肋鋼筋的表面形狀,為保證矯直后的鋼筋無劃傷,矯直輥面應(yīng)與鋼筋的最大截面相接觸,在A-A截面中,截面形狀不規(guī)則,以最小橢圓包絡(luò)截面。冷軋帶肋鋼筋外徑r1大于公稱半徑r,輥?zhàn)由宵c(diǎn)B和點(diǎn)D發(fā)生變化。鋼筋外徑接觸點(diǎn)E發(fā)生變化,靠近D點(diǎn),而不是取點(diǎn)B和點(diǎn)D中間,設(shè)定E點(diǎn)所對(duì)應(yīng)的中心角 為:
(3-7)
式中、 分別為B、D兩點(diǎn)所對(duì)應(yīng)的中心角。角度由公式(3-8)確定
(3-8)
而角度由下述方法求出。橢圓方程為:
(3-9)
將B點(diǎn)的橫坐標(biāo)代入式(3-9),求得B點(diǎn)的縱坐標(biāo)為
由此可以求出角度的正切值:
得
設(shè)定取 1.08~1.13即得
(3-11)
將式(3-10)和式(3-11)代入式(3-7),最后取得:
將公式(3-11)代入公式(3-7)即可看出,任一位置X處的矯直輥半徑與r和有關(guān),可以表示為
即矯直輥輥形與基準(zhǔn)鋼筋半徑r、矯直輥輥腰半徑、矯直輥傾角等原始參數(shù)有關(guān)。
3.2.1.2 基準(zhǔn)鋼筋半徑r的選取
本文認(rèn)為,應(yīng)以矯直鋼筋平均直徑的偏大值來設(shè)計(jì)直輥,首先是因?yàn)橐猿C直機(jī)矯直范圍中的之間鋼材為基準(zhǔn)設(shè)計(jì)矯直輥,當(dāng)用于矯直可矯鋼筋范圍中的最大和最小鋼筋時(shí),矯直機(jī)調(diào)整幅度小;矯直輥與被矯鋼筋接觸線上各點(diǎn)的相對(duì)滑動(dòng)速度也就越小,矯直輥的磨損也就灰愈均勻,鋼筋表面產(chǎn)生劃傷的可能性就會(huì)愈小。即
圖3-6 矯直輥輥形比較
3.2.1.3 輥腰直徑與輥距的設(shè)計(jì)
在選定基準(zhǔn)鋼筋半徑r后,就應(yīng)根據(jù)實(shí)際需要選擇矯直速度,而矯直速度與矯直輥輥腰直徑及矯直輥傾角有關(guān),所以 的選擇應(yīng)考慮其對(duì)矯直速度的影響。此外矯直輥輥腰半徑 的選擇還應(yīng)考慮矯直穩(wěn)定性和矯直輥的磨損均勻性。在其它參數(shù)相同的情況下, 越大,矯直輥輥形越平緩見圖(3-8),矯直輥磨損就越均勻,也不易在被矯直鋼筋表面產(chǎn)生劃傷等矯直缺陷,但輥形越平緩,矯直輥對(duì)被矯鋼筋的約束能力就越弱,矯直時(shí)鋼筋易偏離矯直中心線,矯直穩(wěn)定性就越差。此外,在矯直輥旋轉(zhuǎn)角速度一定的情況下,越大,矯直速度也就越大,產(chǎn)量也就越高。反之,則情況相反。同時(shí), 在斜輥矯直中,由于鋼筋與矯直輥的接觸線較長(zhǎng),從而不必按斜輥接觸強(qiáng)度來計(jì)算輥徑。輥腰直徑比輥端直徑細(xì),且輥身較長(zhǎng),因此要求輥?zhàn)佑凶銐虻膹澢鷱?qiáng)度,輥?zhàn)拥膬啥瞬粌H有可能與壓彎的鋼筋相接觸而且是鋼筋在矯直時(shí)必須通過的部分,因此,輥端成圓角。矯直輥輥長(zhǎng)的選擇首先要 保證鋼筋與矯直輥之間的接觸線達(dá)到足夠的長(zhǎng)度,以滿足矯直輥和鋼筋的接觸長(zhǎng)度要求,避免因應(yīng)力過大而造成壓痕、劃傷等矯直缺陷;其次,輥長(zhǎng)的選擇還要與輥距相匹配,以保證機(jī)器結(jié)構(gòu)尺寸要求。在統(tǒng)計(jì)數(shù)據(jù)的基礎(chǔ)上,用類比法進(jìn)行了參數(shù)的確定。
輥腰半徑 R0=(2.5~5)
對(duì)于轉(zhuǎn)轂式多斜輥矯直機(jī)來說,輥距P是矯直機(jī)的一個(gè)基本結(jié)構(gòu)參數(shù),它主要受結(jié)構(gòu)條件、強(qiáng)度條件和矯直可能性的約束,既影響矯直質(zhì)量,又決定著矯直機(jī)的尺寸。首先,須從矯直機(jī)的結(jié)構(gòu)尺寸進(jìn)行考慮,其次,須對(duì)機(jī)器受力進(jìn)行考慮,在矯直彎矩一定的情況下,輥距越大,矩直力越小,機(jī)器受力情況越好,矯直輥和機(jī)架的強(qiáng)度要求也就越易滿足。輥距P越小,矩直力越大,矯直輥受到的扭轉(zhuǎn)應(yīng)力和輥身接觸應(yīng)力增大,使得輥身表面過早磨損和削落,影響矯直輥壽命,同時(shí)也易于擦傷鋼筋表面;同時(shí),對(duì)矯直可能性進(jìn)行考慮,鋼筋直徑d值越小,為實(shí)現(xiàn)塑性變形,鋼筋在斜輥之間的彎曲半徑也應(yīng)越小。輥距越小,對(duì)鋼筋可能產(chǎn)生的反彎曲率越大,矯直質(zhì)量越高,因此,應(yīng)盡量選擇較小的輥距,綜合考慮,確定輥距的原則是:既要保證矯直質(zhì)量又要滿足矯直輥的強(qiáng)度要求。
輥距 P= (1.2~4.4)
由文獻(xiàn)[4]可知,在彈塑性變形區(qū)內(nèi),矯直輥應(yīng)繞基準(zhǔn)鋼筋旋轉(zhuǎn)2周以上。對(duì)于基準(zhǔn)鋼筋,矯直輥旋轉(zhuǎn)一圈前進(jìn)的導(dǎo)程為,于是彈塑性變形區(qū)長(zhǎng)度 應(yīng)滿足:
(3-13)
由文獻(xiàn)[5]可知:
(3-14)
將式(4-13)代入式(4-14),得:
(3-15)
3.2.1.3 矯直輥傾斜角的設(shè)計(jì)
矯直輥傾角的選擇除考慮矯直速度外,還應(yīng)考慮矯直質(zhì)量和矯直穩(wěn)定性。在其它參數(shù)相同的情況下,當(dāng)增大時(shí),輥形變陡(見圖3-9),矯直速度增大,產(chǎn)量增加;轉(zhuǎn)轂旋轉(zhuǎn)一周,鋼筋前進(jìn)的導(dǎo)程也增大,這樣鋼筋在彈塑性彎曲矯直區(qū)中的彎曲矯直次數(shù)為 (注:為彈塑性變形區(qū)長(zhǎng)度)就減少,矯直質(zhì)量就不易保證,同時(shí),傾角越大,鋼筋與矯直輥接觸線越短,接觸應(yīng)力就越大,易出現(xiàn)矯直缺陷,但由于輥形變陡,矯直穩(wěn)定性會(huì)變好。反之,則情況相反。
由接觸區(qū)長(zhǎng)度準(zhǔn)則,傾斜角最大值可由下式得出
(3-16)
式中 d——矯直鋼筋直徑(mm)
L——矯直輥工作部分長(zhǎng)度(mm)
輥?zhàn)庸ぷ鞑糠珠L(zhǎng)度L:
(3-17)
式中 ——輥腰半徑(mm);
r——鋼筋半徑(mm);
——矯直輥傾斜角;
——理論輥形中距輥腰 處矯直輥的包角。
將式(3-17)代入(3-16)中,得:
(3-18)
理論上= ,矯直輥對(duì)鋼筋的包容度為28%,滿足矯直條件。將數(shù)據(jù)代入上式,解得
由文獻(xiàn)[給出,
(3-19)
可以近似地把 代入上式后,傾斜角的最小值可由式(3-20)求出
(3-20)
另外從鋼筋與雙曲線輥形接觸后保持直線狀態(tài)來考慮,鋼筋直徑d越大,輥?zhàn)拥膬A斜角越大。同時(shí)考慮到在實(shí)際操作中,值越大,兩矯直輥在鋼筋軸線方向所形成的有效空間越大,進(jìn)料容易。又因?yàn)殇摻罾碚摮隹谒俣葀=0.6m/s,鋼筋出口速度提高,在冷軋帶肋鋼筋矯直過程中,為避免劃傷,必須保證鋼筋肋頂面與矯直輥面接觸,而且接觸面積盡量大,由GB13788-92,冷軋帶肋鋼筋三面肋沿鋼筋橫截面周圈上均勻分布,其中有一面必須與另兩面反向,肋中心線和鋼筋縱軸線夾角為,則取值為和,取值范圍為。但隨值增大,鋼筋與輥?zhàn)咏佑|區(qū)長(zhǎng)度減少,與輥?zhàn)右淮谓佑|的肋面數(shù)目減小,鋼筋接觸應(yīng)力增大,肋面易被壓傷。綜合考慮上述因素,取宜取偏大值。
3.2.2 矯直輥輥系的配置
斜輥矯直主要依靠足夠的接觸區(qū)長(zhǎng)度及在接觸區(qū)內(nèi)一定的高頻彎曲次數(shù),而不單靠輥數(shù)的增加。增加輥數(shù)等于增加低頻彎曲次數(shù),加長(zhǎng)塑性區(qū),其對(duì)提高矯直速度更為重要。同時(shí)。,也增加了鋼筋的硬化和矯直功率,而且結(jié)構(gòu)更大。為此,在保證矯直質(zhì)量的前提下,輥數(shù)盡量少些。
輥數(shù)的多少直接取決于輥系的配置方式,輥系的配置方式對(duì)于矯直質(zhì)量、被矯直鋼筋的尺寸和形狀精度具有重要的影響。在本設(shè)計(jì)中,綜合1-1和2-2輥系配置的特性,采用了前四個(gè)斜輥1-1,后兩個(gè)斜輥2-2的復(fù)合配置方式。
圖3-10 1-1輥系配置示意圖
圖3-11 2-2輥系配置示意圖
1-1輥系適用于一般棒材及厚管材的矯直,被矯直鋼筋受三次低頻彎曲,形成三個(gè)塑性彎曲區(qū),若在彈塑性變形區(qū)內(nèi),每個(gè)矯直輥繞鋼筋旋轉(zhuǎn)4次,則等于在彈塑性變形區(qū)內(nèi),矯直輥繞鋼筋總共旋轉(zhuǎn)12次,即增加了高頻彎曲次數(shù),得到較好的矯直效果,但是鋼筋頭尾在小于或等于半個(gè)輥距的長(zhǎng)度內(nèi)得不到矯直,有時(shí)會(huì)造成大量的切頭損失。
2-2輥系中,在矯直輥的對(duì)面加上壓緊輥,擴(kuò)大了鋼筋塑性變形區(qū),只要保證圓材壓緊區(qū),圓材的每層圓周上的纖維將受到一致的變形,即使圓材的原始彎曲較大,在受到相同的較大彎曲之后,各條纖維的塑性變形雖有不同,但彈復(fù)能力會(huì)基本一致,故能得到明顯的矯直效果。同時(shí)2-2輥系能消除圓材的甩尾和由此引起的噪音,有利于鋼筋兩端的矯直,且不易產(chǎn)生表面擦傷,能保護(hù)冷軋帶肋鋼筋的表面質(zhì)量。成對(duì)配置的輥系還可以對(duì)管材橢圓度有圓整作用;起到配置的作用,減小轉(zhuǎn)轂的偏心,減輕振動(dòng)。但隨著轉(zhuǎn)轂質(zhì)量增加,動(dòng)載荷增大,矯直功率也隨之增加。在相同功率條件下,矯直速度降低。
為了保證矯直速度本設(shè)計(jì)中v=36m/min,減少轉(zhuǎn)轂的動(dòng)載荷,綜合前兩種輥系的優(yōu)點(diǎn),采用1-1-2(3/3)的輥系配置方式,尾部?jī)蓚€(gè)矯直輥同時(shí)起固端作用,實(shí)現(xiàn)了鋼筋的全長(zhǎng)矯直,能夠取得很好的矯直效果。
1-矯直輥 2-矯直鋼筋 3-轉(zhuǎn)轂
圖3-12 1—1—2(3/3)輥系配置示意圖
3.2.3 矯直速度
鋼筋前進(jìn)的速度,即矯直速度,目前,關(guān)于矯直速度的理論與實(shí)驗(yàn)研究都不多,有的只是按統(tǒng)計(jì)經(jīng)驗(yàn)來確定矯直速度,在本文中把鋼筋看作直材,對(duì)于矯直過程中的打滑現(xiàn)象,用系數(shù)r來表示。
(3-21)從而鋼筋的前進(jìn)速度為
(3-22) 加入修正系數(shù)(取0.92~0.96),得
圖3-13 鋼筋與矯直輥的運(yùn)動(dòng)關(guān)系
3.2.4 對(duì)矯直質(zhì)量影響的幾個(gè)因素
3.2.4.1 壓下量對(duì)矯直質(zhì)量的影響
鋼筋的縱向彎曲是應(yīng)用彈塑性彎曲矯直原理實(shí)現(xiàn)矯直的。對(duì)于1-1-2(3/3)型轉(zhuǎn)轂式斜輥矯直機(jī)來說,由于二、三、四輥的偏移(壓下量);鋼筋呈彈塑性彎曲狀態(tài),經(jīng)過多次彈塑性反復(fù)彎曲而實(shí)現(xiàn)矯直(圖4-15)。關(guān)于壓下量的大小,各國給出的公式各不相同,且差別極大,如文獻(xiàn)[15]建議彈塑性變形高度應(yīng)達(dá)到80%,而文獻(xiàn)[51]則認(rèn)為彈塑性變形高度達(dá)到35%即可實(shí)現(xiàn)矯直目的,文獻(xiàn)[52]對(duì)矯直所需的軸反彎曲線曲率進(jìn)行了數(shù)值分析和計(jì)算,得到的結(jié)果與文獻(xiàn)[51]基本相符。實(shí)際上壓下量的大小應(yīng)視矯直機(jī)的輥距和被矯鋼筋的原始彎曲度、材質(zhì)、規(guī)格和輥?zhàn)幽p情況作相應(yīng)的調(diào)整。在其它參數(shù)相同的情況下,輥距越大,鋼筋原始彎曲度越大,材料屈服強(qiáng)度越大、直徑越小,輥?zhàn)幽p情況越嚴(yán)重,壓下量應(yīng)取的越大,反之,則情況相反。
3.2.4.2 矯直速度對(duì)矯直
收藏
編號(hào):61247023
類型:共享資源
大小:4.30MB
格式:ZIP
上傳時(shí)間:2022-03-10
50
積分
- 關(guān) 鍵 詞:
-
含CAD圖紙
機(jī)械
專業(yè)
鋼筋
矯直
切斷
設(shè)計(jì)
CAD
圖紙
- 資源描述:
-
機(jī)械專業(yè)-鋼筋矯直切斷機(jī)的設(shè)計(jì)【含CAD圖紙】,含CAD圖紙,機(jī)械,專業(yè),鋼筋,矯直,切斷,設(shè)計(jì),CAD,圖紙
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書面授權(quán),請(qǐng)勿作他用。