注塑機尾板機械加工工藝規(guī)程及夾具設計【含CAD圖紙、PROE三維】
資源目錄里展示的全都有,所見即所得。下載后全都有,請放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問可加】
外 文 翻 譯故障的分析、尺寸的決定以及凸輪的分析和應用系 部: 機械工程系 學生姓名:指導教師:職 稱:專 業(yè):班 級:學 號:Failure Analysis,Dimensional Determination And Analysis,Applications Of CamsAbstract:It is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designed;Cams are among the most versatile mechanisms availableA cam is a simple two-member deviceThe input member is the cam itself,while the output member is called the followerThrough the use of cams,a simple input motion can be modified into almost any conceivable output motion that is desiredKey words: failure high-speed cams design propertiesINTRODUCTIONIt is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designedSometimes a failure can be serious,such as when a tire blows out on an automobile traveling at high speedOn the other hand,a failure may be no more than a nuisanceAn example is the loosening of the radiator hose in an automobile cooling systemThe consequence of this latter failure is usually the loss of some radiator coolant,a condition that is readily detected and correctedThe type of load a part absorbs is just as significant as the magnitudeGenerally speaking,dynamic loads with direction reversals cause greater difficulty than static loads,and therefore,fatigue strength must be consideredAnother concern is whether the material is ductile or brittleFor example,brittle materials are considered to be unacceptable where fatigue is involvedMany people mistakingly interpret the word failure to mean the actual breakage of a partHowever,a design engineer must consider a broader understanding of what appreciable deformation occursA ductile material,however will deform a large amount prior to ruptureExcessive deformation,without fracture,may cause a machine to fail because the deformed part interferes with a moving second partTherefore,a part fails(even if it has not physically broken)whenever it no longer fulfills its required functionSometimes failure may be due to abnormal friction or vibration between two mating partsFailure also may be due to a phenomenon called creep,which is the plastic flow of a material under load at elevated temperaturesIn addition,the actual shape of a part may be responsible for failureFor example,stress concentrations due to sudden changes in contour must be taken into accountEvaluation of stress considerations is especially important when there are dynamic loads with direction reversals and the material is not very ductileIn general,the design engineer must consider all possible modes of failure,which include the followingStressDeformationWearCorrosionVibrationEnvironmental damageLoosening of fastening devicesThe part sizes and shapes selected also must take into account many dimensional factors that produce external load effects,such as geometric discontinuities,residual stresses due to forming of desired contours,and the application of interference fit jointsCams are among the most versatile mechanisms availableA cam is a simple two-member deviceThe input member is the cam itself,while the output member is called the followerThrough the use of cams,a simple input motion can be modified into almost any conceivable output motion that is desiredSome of the common applications of cams areCamshaft and distributor shaft of automotive engine Production machine toolsAutomatic record playersPrinting machinesAutomatic washing machinesAutomatic dishwashersThe contour of high-speed cams (cam speed in excess of 1000 rpm) must be determined mathematicallyHowever,the vast majority of cams operate at low speeds(less than 500 rpm) or medium-speed cams can be determined graphically using a large-scale layoutIn general,the greater the cam speed and output load,the greater must be the precision with which the cam contour is machinedDESIGN PROPERTIES OF MATERIALSThe following design properties of materials are defined as they relate to the tensile testStatic Strength The strength of a part is the maximum stress that the part can sustain without losing its ability to perform its required functionThus the static strength may be considered to be approximately equal to the proportional limit,since no plastic deformation takes place and no damage theoretically is done to the materialStiffness Stiffness is the deformation-resisting property of a materialThe slope of the modulus line and,hence,the modulus of elasticity are measures of the stiffness of a materialResilience Resilience is the property of a material that permits it to absorb energy without permanent deformationThe amount of energy absorbed is represented by the area underneath the stress-strain diagram within the elastic regionToughness Resilience and toughness are similar propertiesHowever,toughness is the ability to absorb energy without ruptureThus toughness is represented by the total area underneath the stress-strain diagram, as depicted in Figure 28bObviously,the toughness and resilience of brittle materials are very low and are approximately equalBrittleness A brittle material is one that ruptures before any appreciable plastic deformation takes placeBrittle materials are generally considered undesirable for machine components because they are unable to yield locally at locations of high stress because of geometric stress raisers such as shoulders,holes,notches,or keywaysDuctility A ductility material exhibits a large amount of plastic deformation prior to ruptureDuctility is measured by the percent of area and percent elongation of a part loaded to ruptureA 5%elongation at rupture is considered to be the dividing line between ductile and brittle materialsMalleability Malleability is essentially a measure of the compressive ductility of a material and,as such,is an important characteristic of metals that are to be rolled into sheetsHardness The hardness of a material is its ability to resist indentation or scratchingGenerally speaking,the harder a material,the more brittle it is and,hence,the less resilientAlso,the ultimate strength of a material is roughly proportional to its hardnessMachinability Machinability is a measure of the relative ease with which a material can be machinedIn general,the harder the material,the more difficult it is to machine COMPRESSION AND SHEAR STATIC STRENGTHIn addition to the tensile tests,there are other types of static load testing that provide valuable informationCompression Testing Most ductile materials have approximately the same properties in compression as in tensionThe ultimate strength,however,can not be evaluated for compressionAs a ductile specimen flows plastically in compression,the material bulges out,but there is no physical rupture as is the case in tensionTherefore,a ductile material fails in compression as a result of deformation,not stressShear Testing Shafts,bolts,rivets,and welds are located in such a way that shear stresses are producedA plot of the tensile testThe ultimate shearing strength is defined as the stress at which failure occursThe ultimate strength in shear,however,does not equal the ultimate strength in tensionFor example,in the case of steel,the ultimate shear strength is approximately 75% of the ultimate strength in tensionThis difference must be taken into account when shear stresses are encountered in machine componentsDYNAMIC LOADSAn applied force that does not vary in any manner is called a static or steady loadIt is also common practice to consider applied forces that seldom vary to be static loadsThe force that is gradually applied during a tensile test is therefore a static loadOn the other hand,forces that vary frequently in magnitude and direction are called dynamic loadsDynamic loads can be subdivided to the following three categoriesVarying Load With varying loads,the magnitude changes,but the direction does notFor example,the load may produce high and low tensile stresses but no compressive stressesReversing Load In this case,both the magnitude and direction changeThese load reversals produce alternately varying tensile and compressive stresses that are commonly referred to as stress reversalsShock Load This type of load is due to impactOne example is an elevator dropping on a nest of springs at the bottom of a chuteThe resulting maximum spring force can be many times greater than the weight of the elevator,The same type of shock load occurs in automobile springs when a tire hits a bump or hole in the roadFATIGUE FAILURE-THE ENDURANCE LIMIT DIAGRAMThe test specimen in Figure 2.10a,after a given number of stress reversals will experience a crack at the outer surface where the stress is greatestThe initial crack starts where the stress exceeds the strength of the grain on which it actsThis is usually where there is a small surface defect,such as a material flaw or a tiny scratchAs the number of cycles increases,the initial crack begins to propagate into a continuous series of cracks all around the periphery of the shaftThe conception of the initial crack is itself a stress concentration that accelerates the crack propagation phenomenonOnce the entire periphery becomes cracked,the cracks start to move toward the center of the shaftFinally,when the remaining solid inner area becomes small enough,the stress exceeds the ultimate strength and the shaft suddenly breaksInspection of the break reveals a very interesting pattern,as shown in Figure 2.13The outer annular area is relatively smooth because mating cracked surfaces had rubbed against each otherHowever,the center portion is rough,indicating a sudden rupture similar to that experienced with the fracture of brittle materials This brings out an interesting factWhen actual machine parts fail as a result of static loads,they normally deform appreciably because of the ductility of the material.Thus many static failures can be avoided by making frequent visual observations and replacing all deformed partsHowever,fatigue failures give to warningFatigue fail mated that over 90% of broken automobile parts have failed through fatigueThe fatigue strength of a material is its ability to resist the propagation of cracks under stress reversalsEndurance limit is a parameter used to measure the fatigue strength of a materialBy definition,the endurance limit is the stress value below which an infinite number of cycles will not cause failureLet us return our attention to the fatigue testing machine in Figure 2.9The test is run as follows:A small weight is inserted and the motor is turned onAt failure of the test specimen,the counter registers the number of cycles N,and the corresponding maximum bending stress is calculated from Equation 2.5The broken specimen is then replaced by an identical one,and an additional weight is inserted to increase the loadA new value of stress is calculated,and the procedure is repeated until failure requires only one complete cycleA plot is then made of stress versus number of cycles to failureFigure 2.14a shows the plot,which is called the endurance limit or S-N curveSince it would take forever to achieve an infinite number of cycles,1 million cycles is used as a referenceHence the endurance limit can be found from Figure 2.14a by noting that it is the stress level below which the material can sustain 1 million cycles without failureThe relationship depicted in Figure 2.14 is typical for steel,because the curve becomes horizontal as Napproaches a very large numberThus the endurance limit equals the stress level where the curve approaches a horizontal tangentOwing to the large number of cycles involved,N is usually plotted on a logarithmic scale,as shown in Figure 2.14bWhen this is done,the endurance limit value can be readily detected by the horizontal straight lineFor steel,the endurance limit equals approximately 50% of the ultimate strengthHowever,if the surface finish is not of polished equality,the value of the endurance limit will be lowerFor example,for steel parts with a machined surface finish of 63 microinches ,the percentage drops to about 40%For rough surfaces,the percentage may be as low as 25% The most common type of fatigue is that due to bendingThe next most frequent is torsion failure,whereas fatigue due to axial loads occurs very seldomSpring materials are usually tested by applying variable shear stresses that alternate from zero to a maximum value,simulating the actual stress patternsIn the case of some nonferrous metals,the fatigue curve does not level off as the number of cycles becomes very largeThis continuing toward zero stress means that a large number of stress reversals will cause failure regardless of how small the value of stress isSuch a material is said to have no endurance limitFor most nonferrous metals having an endurance limit,the value is about 25% of the ultimate strengthEFFECTS OF TEMPERATURE ON YIELD STRENGTH AND MODULUS OF ELASTICITYGenerally speaking,when stating that a material possesses specified values of properties such as modulus of elasticity and yield strength,it is implied that these values exist at room temperatureAt low or elevated temperatures,the properties of materials may be drastically differentFor example,many metals are more brittle at low temperaturesIn addition,the modulus of elasticity and yield strength deteriorate as the temperature increasesFigure 2.23 shows that the yield strength for mild steel is reduced by about 70% in going from room temperature to 1000oFFigure 2.24 shows the reduction in the modulus of elasticity E for mild steel as the temperature increasesAs can be seen from the graph,a 30% reduction in modulus of elasticity occurs in going from room temperature to 1000oFIn this figure,we also can see that a part loaded below the proportional limit at room temperature can be permanently deformed under the same load at elevated temperaturesCREEP: A PLASTIC PHENOMENONTemperature effects bring us to a phenomenon called creep,which is the increasing plastic deformation of a part under constant load as a function of timeCreep also occurs at room temperature,but the process is so slow that it rarely becomes significant during the expected life of the temperature is raised to 300oC or more,the increasing plastic deformation can become significant within a relatively short period of timeThe creep strength of a material is its ability to resist creep,and creep strength data can be obtained by conducting long-time creep tests simulating actual part operating conditionsDuring the test,the plastic strain is monitored for given material at specified temperaturesSince creep is a plastic deformation phenomenon,the dimensions of a part experiencing creep are permanently alteredThus,if a part operates with tight clearances,the design engineer must accurately predict the amount of creep that will occur during the life of the machineOtherwise,problems such binding or interference can occur Creep also can be a problem in the case where bolts are used to clamp tow parts together at elevated temperaturesThe bolts,under tension,will creep as a function of timeSince the deformation is plastic,loss of clamping force will result in an undesirable loosening of the bolted jointThe extent of this particular phenomenon,called relaxation,can be determined by running appropriate creep strength testsFigure 2.25 shows typical creep curves for three samples of a mild steel part under a constant tensile loadNotice that for the high-temperature case the creep tends to accelerate until the part failsThe time line in the graph (the x-axis) may represent a period of 10 years,the anticipated life of the productSUMMARYThe machine designer must understand the purpose of the static tensile strength testThis test determines a number of mechanical properties of metals that are used in design equationsSuch terms as modulus of elasticity,proportional limit,yield strength,ultimate strength,resilience,and ductility define properties that can be determined from the tensile testDynamic loads are those which vary in magnitude and direction and may require an investigation of the machine parts resistance to failureStress reversals may require that the allowable design stress be based on the endurance limit of the material rather than on the yield strength or ultimate strengthStress concentration occurs at locations where a machine part changes size,such as a hole in a flat plate or a sudden change in width of a flat plate or a groove or fillet on a circular shaftNote that for the case of a hole in a flat or bar,the value of the maximum stress becomes much larger in relation to the average stress as the size of the hole decreasesMethods of reducing the effect of stress concentration usually involve making the shape change more gradualMachine parts are designed to operate at some allowable stress below the yield strength or ultimate strengthThis approach is used to take care of such unknown factors as material property variations and residual stresses produced during manufacture and the fact that the equations used may be approximate rather that exactThe factor of safety is applied to the yield strength or the ultimate strength to determine the allowable stressTemperature can affect the mechanical properties of metalsIncreases in temperature may cause a metal to expand and creep and may reduce its yield strength and its modulus of elasticityIf most metals are not allowed to expand or contract with a change in temperature,then stresses are set up that may be added to the stresses from the loadThis phenomenon is useful in assembling parts by means of interference fitsA hub or ring has an inside diameter slightly smaller than the mating shaft or postThe hub is then heated so that it expands enough to slip over the shaftWhen it cools,it exerts a pressure on the shaft resulting in a strong frictional force that prevents loosening 故障的分析、尺寸的決定以及凸輪的分析和應用摘要:作為一名設計工程師有必要知道零件如何發(fā)生和為什么會發(fā)生故障,以便通過進行最低限度的維修以保證機器的可靠性;凸輪是被應用的最廣泛的機械結構之一,是一種僅僅有兩個組件構成的設備。主動件本身就是凸輪,而輸出件被稱為從動件。通過使用凸輪,一個簡單的輸入動作可以被修改成幾乎可以想像得到的任何輸出運動。關鍵詞:故障 高速凸輪 設計屬性前言介紹:作為一名設計工程師有必要知道零件如何發(fā)生和為什么會發(fā)生故障,以便通過進行最低限度的維修以保證機器的可靠性。有時一次零件的故障或者失效可能是很嚴重的一件事情,比如,當一輛汽車正在高速行駛的時候,突然汽車的輪胎發(fā)生爆炸等。另一方面,一個零件發(fā)生故障也可能只是一件微不足道的小事,只是給你造成了一點小麻煩。一個例子是在一個汽車冷卻系統(tǒng)里的暖氣裝置軟管的松動。后者發(fā)生的這次故障造成的結果通常只不過是一些暖氣裝置里冷卻劑的損失,是一種很容易被發(fā)現(xiàn)并且被改正的情況。能夠被零件進行吸收的載荷是相當重要的。一般說來,與靜載重相比較,有兩個相反方向的動載荷將會引起更大的問題,因此,疲勞強度必須被考慮。另一個關鍵是材料是可延展性的還是脆性的。例如,脆的材料被認為在存在疲勞的地方是不能夠被使用的。很多人錯誤的把一個零件發(fā)生故障或者失效理解成這樣就意味著一個零件遭到了實際的物理破損。無論如何,一名設計工程師必須從一個更廣泛的范圍來考慮和理解變形是究竟如何發(fā)生的。一種具有延展性的材料,在破裂之前必將發(fā)生很大程度的變形。發(fā)生了過度的變形,但并沒有產(chǎn)生裂縫,也可能會引起一臺機器出毛病,因為發(fā)生畸變的零件會干擾下一個零件的移動。因此,每當它不能夠再履行它要求達到的性能的時候,一個零件就都算是被毀壞了(即使它的表面沒有被損毀)。有時故障可能是由于兩個兩個相互搭配的零件之間的不正常的磨擦或者異常的振動引起的。故障也可能是由一種叫蠕變的現(xiàn)象引起的,這種現(xiàn)象是指金屬在高溫下時一種材料的塑性流動。此外,一個零件的實際形狀可能會引起故障的發(fā)生。例如,應力的集中可能就是由于輪廓的突然變化引起的,這一點也需要被考慮到。當有用兩個相反方向的動載荷,材料不具有很好的可延展性時,對應力考慮的評估就特別重要。 一般說來,設計工程師必須考慮故障可能發(fā)生的全部方式,包括如下一些方面:壓力變形磨損腐蝕振動環(huán)境破壞固定設備松動在選擇零件的大小與形狀的時候,也必須考慮到一些可能會產(chǎn)生外部負載影響的空間因素,例如幾何學間斷性,為了達到要求的外形輪廓及使用相關的連接件,也會產(chǎn)生相應的殘余應力。凸輪是被應用的最廣泛的機械結構之一,是一種僅僅有兩個組件構成的設備。主動件本身就是凸輪,而輸出件被稱為從動件。通過使用凸輪,一個簡單的輸入動作可以被修改成幾乎可以想象得到的任何輸出運動。常見的一些關于凸輪應用的例子有:凸輪軸和汽車發(fā)動機工程的裝配專用機床自動電唱機印刷機自動的洗衣機自動的洗碗機高速凸輪(凸輪超過1000 rpm的速度)的輪廓必須從數(shù)學意義上來定義。無論如何,大多數(shù)凸輪以低速(少于500 rpm)運行而中速的凸輪可以通過一個大比例的圖形表示出來。一般說來,凸輪的速度和輸出負載越大,凸輪的輪廓在被床上被加工時就一定要更加精密。材料的設計屬性當他們與抗拉的試驗有關時,材料的下列設計特性被定義如下。靜強度:一個零件的強度是指零件在不會失去它被要求的能力的前提下能夠承受的最大應力。因此靜強度可以被認為是大約等于比例極限,從理論上來說,我們可以認為在這種情況下,材料沒有發(fā)生塑性變形和物理破壞。剛度:剛度是指材料抵抗變形的一種屬性。這條斜的模數(shù)線以及彈性模數(shù)是一種衡量材料的剛度的一種方法。彈性:彈性是指零件能夠吸收能量但并沒有發(fā)生永久變形的一種材料的屬性。吸收的能量的多少可以通過下面彈性區(qū)域內(nèi)的
收藏
編號:82888882
類型:共享資源
大小:13.09MB
格式:ZIP
上傳時間:2022-04-30
50
積分
- 關 鍵 詞:
-
含CAD圖紙、PROE三維
注塑
機尾
板機
加工
工藝
規(guī)程
夾具
設計
CAD
圖紙
PROE
三維
- 資源描述:
-
資源目錄里展示的全都有,所見即所得。下載后全都有,請放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問可加】
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。