12、 一元二次不等式的應(yīng)用
【例4】 某商品每件成本價為80元,售價為100元,每天售出100件.若售價降低x成(1成=10%),售出商品數(shù)量就增加x成.要求售價不能低于成本價.
(1)設(shè)該商店一天的營業(yè)額為y,試求y與x之間的函數(shù)關(guān)系式y(tǒng)=f(x),并寫出定義域;
(2)若再要求該商品一天營業(yè)額至少為10 260元,求x的取值范圍.
解 (1)由題意得y=100·100.
因?yàn)槭蹆r不能低于成本價,所以100-80≥0.
即x≤2,
所以y=f(x)=40(10-x)(25+4x),
定義域?yàn)閇0,2].
(2)由題意得40(10-x)(25+4x)≥10 260,
化簡得8x
13、2-30x+13≤0,解得≤x≤.
所以x的取值范圍是.
規(guī)律方法 求解不等式應(yīng)用題的四個步驟
(1)閱讀理解,認(rèn)真審題,把握問題中的關(guān)鍵量,找準(zhǔn)不等關(guān)系.
(2)引進(jìn)數(shù)學(xué)符號,將文字信息轉(zhuǎn)化為符號語言,用不等式表示不等關(guān)系,建立相應(yīng)的數(shù)學(xué)模型.
(3)解不等式,得出數(shù)學(xué)結(jié)論,要注意數(shù)學(xué)模型中自變量的實(shí)際意義.
(4)回歸實(shí)際問題,將數(shù)學(xué)結(jié)論還原為實(shí)際問題的結(jié)果.
【訓(xùn)練2】 甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得的利潤是100(5x+1-)元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3 000元,求x的取值范圍;
(2)要使生
14、產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.
解 (1)根據(jù)題意得
200(5x+1-)≥3 000,
整理得5x-14-≥0,
即5x2-14x-3≥0,
又1≤x≤10,可解得3≤x≤10.
即要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3 000元,x的取值范圍是[3,10].
(2)設(shè)利潤為y元,則
y=·100
=9×104
=9×104,
故當(dāng)x=6時,ymax=457 500元.
即甲廠以6千克/小時的生產(chǎn)速度生產(chǎn)900千克該產(chǎn)品時獲得的利潤最大,最大利潤為457 500元.
一、必做題
1.(教材改編)不等式-3x2+5
15、x-4>0的解集為________.
解析 原不等式變形為3x2-5x+4<0.
因?yàn)棣ぃ?-5)2-4×3×4=-23<0,
所以3x2-5x+4=0無解.
由函數(shù)y=3x2-5x+4的圖象可知3x2-5x+4<0的解集為?.
答案 ?
2.(教材改編)不等式≤0的解集為________.
解析 原不等式等價于
即即-
16、·南京三模)記不等式x2+x-6<0的解集為集合A,函數(shù)y=lg(x-a)的定義域?yàn)榧螧.若“x∈A”是“x∈B”的充分條件,則實(shí)數(shù)a的取值范圍為________.
解析 由題意得A=(-3,2),B=(a,+∞),A?B,
∴a≤-3.
答案 (-∞,-3]
5.若關(guān)于x的不等式x2-2ax-8a2<0(a>0)的解集為(x1,x2),且x2-x1=15,則a=________.
解析 由x2-2ax-8a2<0,
得(x+2a)(x-4a)<0,因?yàn)閍>0,
所以不等式的解集為(-2a,4a),
即x2=4a,x1=-2a,由x2-x1=15,
得4a-(-2a)=15
17、,解得a=.
答案
6.已知不等式ax2-bx-1≥0的解集是,則不等式x2-bx-a<0的解集是________.
解析 由題意知-,-是方程ax2-bx-1=0的根,
所以由根與系數(shù)的關(guān)系得-+=,-×=-.解得a=-6,b=5,不等式x2-bx-a<0即為x2-5x+6<0,解集為(2,3).
答案 (2,3)
7.某商家一月份至五月份累計銷售額達(dá)3 860萬元,預(yù)測六月份銷售額為500萬元,七月份銷售額比六月份遞增x%,八月份銷售額比七月份遞增x%,九、十月份銷售總額與七、八月份銷售總額相等,若一月份至十月份銷售總額至少達(dá)7 000萬元,則x的最小值是________.
18、
解析 由題意得,
3 860+500+[500(1+x%)+500(1+x%)2]×2≥7 000,
化簡得(x%)2+3·x%-0.64≥0,
解得x%≥0.2,若x%≤-3.2(舍去).∴x≥20,即x的最小值為20.
答案 20
8.若不等式-2≤x2-2ax+a≤-1有唯一解,則a的值為________
解析 若不等式-2≤x2-2ax+a≤-1有唯一解,則x2-2ax+a=-1有兩個相等的實(shí)根,所以Δ=4a2-4(a+1)=0,解得a=.
答案
9.已知f(x)=則不等式f(x2-x+1)<12的解集是________.
解析 由題意得當(dāng)x≥0時,f(x)≥0,
19、且f(x)單調(diào)遞增;當(dāng)x<0時,f(x)<0,且f(x)單調(diào)遞增,因?yàn)?2+0=-02+0,所以f(x)在R上單調(diào)遞增,又f(3)=12,所以
f(x2-x+1)<12?f(x2-x+1)1,即0
20、1,即a>2時,解集為;
當(dāng)a=0時,解集為{x|x>1};
當(dāng)a<0時,解集為.
二、選做題
11.解關(guān)于x的不等式ax2-(2a+1)x+2<0(a∈R).
解 原不等式可化為(ax-1)(x-2)<0.
(1)當(dāng)a>0時,原不等式可以化為a(x-2)<0,根據(jù)不等式的性質(zhì),這個不等式等價于(x-2)·<0.因?yàn)榉匠?x-2)=0的兩個根分別是2,,所以當(dāng)0<a<時,2<,則原不等式的解集是;當(dāng)a=時,原不等式的解集是?;
當(dāng)a>時,<2,則原不等式的解集是.
(2)當(dāng)a=0時,原不等式為-(x-2)<0,解得x>2,
即原不等式的解集是{x|x>2}.
(3)當(dāng)a<0
21、時,原不等式可以化為a(x-2)<0,
根據(jù)不等式的性質(zhì),這個不等式等價于(x-2)·>0,
由于<2,故原不等式的解集是.
綜上所述,當(dāng)a<0時,不等式的解集為;
當(dāng)a=0時,不等式的解集為{x|x>2};當(dāng)0<a<時,不等式的解集為;當(dāng)a=時,不等式的解集為?;當(dāng)a>時,不等式的解集為.
12.(揚(yáng)州市2018屆高三上學(xué)期期中)函數(shù)f(x)=log3(x2+2x-8)的定義域?yàn)锳,函數(shù)g(x)=x2+(m+1)x+m.
(1)若m=-4時,g(x)≤0的解集為B,求A∩B;
(2)若存在x∈使得不等式g(x)≤-1成立,求實(shí)數(shù)m的取值范圍.
解 (1)由x2+2x-8>0,解得x<-4或x>2,則A=(-∞,-4)∪(2,+∞),
若m=-4,g(x)=x2-3x-4,由x2-3x-4≤0,解得-1≤x≤4,則B=[-1,4],所以A∩B=(2,4].
(2)存在x∈使得不等式x2+(m+1)x+m≤-1成立,即存在x∈,使得不等式-m≥成立,所以-m≥,
因?yàn)椋絰+=x+1+-1≥1,當(dāng)且僅當(dāng)x+1=1,即x=0時取得等號,所以-m≥1,解得m≤-1.
即實(shí)數(shù)m的取值范圍是(-∞,-1].
11