(江蘇專用)高考數(shù)學(xué)一輪復(fù)習(xí) 第十二章 推理與證明、算法初步、復(fù)數(shù) 第1講 合情推理與演繹推理練習(xí) 理-人教版高三數(shù)學(xué)試題

上傳人:文*** 文檔編號:239561905 上傳時間:2024-02-04 格式:DOC 頁數(shù):6 大?。?00.50KB
收藏 版權(quán)申訴 舉報 下載
(江蘇專用)高考數(shù)學(xué)一輪復(fù)習(xí) 第十二章 推理與證明、算法初步、復(fù)數(shù) 第1講 合情推理與演繹推理練習(xí) 理-人教版高三數(shù)學(xué)試題_第1頁
第1頁 / 共6頁
(江蘇專用)高考數(shù)學(xué)一輪復(fù)習(xí) 第十二章 推理與證明、算法初步、復(fù)數(shù) 第1講 合情推理與演繹推理練習(xí) 理-人教版高三數(shù)學(xué)試題_第2頁
第2頁 / 共6頁
(江蘇專用)高考數(shù)學(xué)一輪復(fù)習(xí) 第十二章 推理與證明、算法初步、復(fù)數(shù) 第1講 合情推理與演繹推理練習(xí) 理-人教版高三數(shù)學(xué)試題_第3頁
第3頁 / 共6頁

本資源只提供3頁預(yù)覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《(江蘇專用)高考數(shù)學(xué)一輪復(fù)習(xí) 第十二章 推理與證明、算法初步、復(fù)數(shù) 第1講 合情推理與演繹推理練習(xí) 理-人教版高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專用)高考數(shù)學(xué)一輪復(fù)習(xí) 第十二章 推理與證明、算法初步、復(fù)數(shù) 第1講 合情推理與演繹推理練習(xí) 理-人教版高三數(shù)學(xué)試題(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、基礎(chǔ)鞏固題組 (建議用時:40分鐘) 一、填空題 1.(2016·西安八校聯(lián)考)觀察一列算式:1?1,1?2,2?1,1?3,2?2,3?1,1?4, 2?3,3?2,4?1,…,則式子3?5是第________項. 解析 兩數(shù)和為2的有1個,和為3的有2個,和為4的有3個,和為5的有4個,和為6的有5個,和為7的有6個,前面共有21個,3?5為和為8的第3項,所以為第24項. 答案 24 2.觀察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由歸納推理得:若定義在R上的函數(shù)f(x)滿足f(-x)=f(x),記g(x)為f(x)的導(dǎo)函數(shù),則g(-x)=__

2、______. 解析 由已知得偶函數(shù)的導(dǎo)函數(shù)為奇函數(shù),故g(-x)=-g(x). 答案?。璯(x) 3.在平面幾何中,有“正三角形內(nèi)切圓半徑等于這個正三角形高的”.拓展到空間,類比平面幾何的上述正確結(jié)論,則正四面體的內(nèi)切球半徑等于這個正四面體的高的________. 解析 設(shè)正三角形的邊長為a,高為h,內(nèi)切圓半徑為r,由等面積法知3ar=ah,所以r=h; 同理,由等體積法知4SR=HS,所以R=H. 答案  4.下列推理是歸納推理的是________. ①A,B為定點,動點P滿足PA+PB=2a>AB,則P點的軌跡為橢圓; ②由a1=1,an=3n-1,求出S1,S2,S3

3、,猜想出數(shù)列的前n項和Sn的表達(dá)式; ③由圓x2+y2=r2的面積πr2,猜想出橢圓+=1的面積S=πab; ④科學(xué)家利用魚的沉浮原理制造潛艇. 解析 從S1,S2,S3猜想出數(shù)列的前n項和Sn,是從特殊到一般的推理,所以②是歸納推理. 答案?、? 5.觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則a10+b10等于________. 解析 觀察規(guī)律,歸納推理. 從給出的式子特點觀察可推知,等式右端的值,從第三項開始,后一個式子的右端值等于它前面兩個式子右端值的和,照此規(guī)律,則a10+b10=123. 答案 123 6.仔細(xì)觀

4、察下面○和●的排列規(guī)律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此規(guī)律繼續(xù)下去,得到一系列的○和●,那么在前120個○和●中,●的個數(shù)是________. 解析 進行分組 ○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 則前n組兩種圈的總數(shù)是f(n)=2+3+4+…+(n+1)=,易知f(14)=119,f(15)=135,故n=14. 答案 14 7.(2016·徐州檢測)觀察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,……,根據(jù)上述規(guī)律,第n個等式為_____

5、___. 解析 觀察所給等式左右兩邊的構(gòu)成易得第n個等式為13+23+…+n3==. 答案 13+23+…+n3= 8.(2016·濟南模擬)有一個奇數(shù)組成的數(shù)陣排列如下: 1  3  7  13  21  … 5 9 15 23 … … 11 17 25 … … … 19 27 … … … … 29 … … … … … … … … … … … 則第30行從左到右第3個數(shù)是________. 解析 先求第30行的第1個數(shù),再求第30行的第3個數(shù).觀察每一行的第一個數(shù),由歸納推理可得第30行的第1個數(shù)是1+4+6+8+10+

6、…+60=-1=929.又第n行從左到右的第2個數(shù)比第1個數(shù)大2n,第3個數(shù)比第2個數(shù)大2n+2,所以第30行從左到右的第2個數(shù)比第1個數(shù)大60,第3個數(shù)比第2個數(shù)大62,故第30行從左到右第3個數(shù)是929+60+62=1 051. 答案 1 051 二、解答題 9.給出下面的數(shù)表序列: 表1    表2    表3 1     1 3    1 3 5        4     4 8             12   … 其中表n(n=1,2,3,…)有n行,第1行的n個數(shù)是1,3,5,…,2n-1,從第2行起,每行中的每個數(shù)都等于它肩上的兩數(shù)之和. 寫出表4,驗證表4各

7、行中的數(shù)的平均數(shù)按從上到下的順序構(gòu)成等比數(shù)列,并將結(jié)論推廣到表n(n≥3)(不要求證明). 解 表4為      1 3 5 7            4 8 12            12 20             32 它的第1,2,3,4行中的數(shù)的平均數(shù)分別是4,8,16,32,它們構(gòu)成首項為4,公比為2的等比數(shù)列. 將這一結(jié)論推廣到表n(n≥3),即表n(n≥3)各行中的數(shù)的平均數(shù)按從上到下的順序構(gòu)成首項為n,公比為2的等比數(shù)列. 10.f(x)=,先分別求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后歸納猜想一般性結(jié)論

8、,并給出證明. 解 f(0)+f(1)=+ =+=+=, 同理可得f(-1)+f(2)=,f(-2)+f(3)=. 由此猜想f(x)+f(1-x)=. 證明f(x)+f(1-x)=+ =+=+ ==.                能力提升題組 (建議用時:20分鐘) 11.平面內(nèi)有n條直線,最多可將平面分成f(n)個區(qū)域,則f(n)=________. 解析 1條直線將平面分成1+1個區(qū)域;2條直線最多可將平面分成1+(1+2)=4個區(qū)域;3條直線最多可將平面分成1+(1+2+3)=7個區(qū)域;……;n條直線最多可將平面分成1+(1+2+3+…+n)=1+=個區(qū)域. 答

9、案  12.古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù). 比如: 他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似地,稱圖2中的1,4,9,16,…,這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是________(填序號). ①289;②1 024;③1 225;④1 378. 解析 觀察三角形數(shù):1,3,6,10,…,記該數(shù)列為{an},則a1=1,a2=a1+2,a3=a2+3, …an=an-1+n. ∴a1+a2+…+an=(a1+a2+…+an-1)+(1+2+3+…+n)?an=1+2+3+…+n=,

10、 觀察正方形數(shù):1,4,9,16,…,記該數(shù)列為{bn},則bn=n2.把四個選項的數(shù)字,分別代入上述兩個通項公式,可知使得n都為正整數(shù)的只有1 225. 答案 ③ 13.(2016·南通測試)已知點A(x1,ax1),B(x2,ax2)是函數(shù)y=ax(a>1)的圖象上任意不同兩點,依據(jù)圖象可知,線段AB總是位于A,B兩點之間函數(shù)圖象的上方,因此有結(jié)論>a成立.運用類比思想方法可知,若點A(x1,sin x1),B(x2,sin x2)是函數(shù)y=sin x(x∈(0,π))的圖象上任意不同兩點,則類似地有________成立. 解析 對于函數(shù)y=ax(a>1)的圖象上任意不同兩點A,B

11、,依據(jù)圖象可知,線段AB總是位于A,B兩點之間函數(shù)圖象的上方,因此有結(jié)論>a成立;對于函數(shù)y=sin x(x∈(0,π))的圖象上任意不同的兩點A(x1,sin x1),B(x2,sin x2),線段AB總是位于A,B兩點之間函數(shù)圖象的下方, 類比可知應(yīng)有<sin 成立. 答案 <sin 14.在Rt△ABC中,AB⊥AC,AD⊥BC于D,求證:=+,那么在四面體ABCD中,類比上述結(jié)論,你能得到怎樣的猜想,并說明理由. 證明 如圖所示,由射影定理,得 AD2=BD·DC,AB2=BD·BC, AC2=BC·DC, ∴= ==. 又BC2=AB2+AC2, ∴==+. 猜想,在四面體ABCD中,AB,AC,AD兩兩垂直, AE⊥平面BCD, 則=++. 證明:如圖,連接BE并延長交CD于F,連接AF. ∵AB⊥AC,AB⊥AD,AC∩AD=A, ∴AB⊥平面ACD, 又AF?平面ACD, ∴AB⊥AF. 在Rt△ABF中,AE⊥BF, ∴=+,① 在Rt△ACD中,AF⊥CD, ∴=+,② ① +②得=++.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!