2019-2020年高考數(shù)學分項匯編 專題02 函數(shù)(含解析)理.doc
《2019-2020年高考數(shù)學分項匯編 專題02 函數(shù)(含解析)理.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學分項匯編 專題02 函數(shù)(含解析)理.doc(16頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高考數(shù)學分項匯編 專題02 函數(shù)(含解析)理 一.基礎題組 1. 【xx上海,理4】設若,則的取值范圍為_____________. 【答案】 【考點】分段函數(shù). 2. 【xx上海,理9】若,則滿足的取值范圍是 . 【答案】 【考點】冪函數(shù)的性質. 3. 【xx上海,理6】方程=3x-1的實數(shù)解為______. 【答案】log34 4. 【xx上海,理12】設a為實常數(shù),y=f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=9x++7.若f(x)≥a+1對一切x≥0成立,則a的取值范圍為______. 【答案】(-∞,] 5. 【xx上海,理14】對區(qū)間I上有定義的函數(shù)g(x),記g(I)={y|y=g(x),x∈I}.已知定義域為[0,3]的函數(shù)y=f(x)有反函數(shù)y=f-1(x),且f-1([0,1))=[1,2),f-1((2,4])=[0,1).若方程f(x)-x=0有解x0,則x0=______. 【答案】2 6. 【xx上海,理7】已知函數(shù)f(x)=e|x-a|(a為常數(shù)),若f(x)在區(qū)間[1,+∞)上是增函數(shù),則a的取值范圍是__________. 【答案】(-∞,1] 7. 【xx上海,理9】已知y=f(x)+x2是奇函數(shù),且f(1)=1.若g(x)=f(x)+2,則g(-1)=__________. 【答案】-1 8. 【xx上海,理1】函數(shù)的反函數(shù)為f-1(x)=______. 【答案】 9. 【xx上海,理13】設g(x)是定義在R上,以1為周期的函數(shù).若函數(shù)f(x)=x+g(x)在區(qū)間[3,4]上的值域[-2,5],則f(x)在區(qū)間[-10,10]上的值域為______. 【答案】[-15,11] 10. 【xx上海,理16】下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調遞減的函數(shù)是( ) A. B.y=x3 C.y=2|x| D.y=cosx 【答案】A 11. 【xx上海,理8】對任意不等于1的正數(shù),函數(shù)的反函數(shù)的圖像都過點P,則點P的坐標是 ; 【答案】 【點評】反函數(shù)是高考??嫉闹R點,一般難度都不大.當與反函數(shù)圖像有關時,要注意反函數(shù)與原函數(shù)的圖象關于直線對稱. 12. 【xx上海,理17】若是方程的解,則屬于區(qū)間 [答]( ) (A)(). (B)(). (C)() (D)() 【答案】C 【點評】本題考查了函數(shù)的零點與方程根的關系,隱含著對指數(shù)函數(shù)的性質、分數(shù)指數(shù)冪、連續(xù)函數(shù)的性質等知識的考查,把對方程的根的研究轉化為對函數(shù)零點的考察是解題的關鍵. 13. (xx上海,理20)本題共有2個小題,第1小題滿分6分,第2小題滿分8分. 有時可用函數(shù) 描述學習某學科知識的掌握程度.其中x表示某學科知識的學習次數(shù)(x∈N*),f(x)表示對該學科知識的掌握程度,正實數(shù)a與學科知識有關. (1)證明:當x≥7時,掌握程度的增長量f(x+1)-f(x)總是下降; (2)根據(jù)經驗,學科甲、乙、丙對應的a的取值區(qū)間分別為(115,121],(121,127],(127,133].當學習某學科知識6次時,掌握程度是85%,請確定相應的學科. 【答案】(1) 參考解析;(2) 乙學科 14. 【xx上海,理4】若函數(shù)f(x)的反函數(shù)為f -1(x)=x2(x>0),則f(4)= . 15. 【xx上海,理8】設函數(shù)f(x)是定義在R上的奇函數(shù),若當x∈(0,+∞)時,f(x)=lg x,則滿足f(x)>0的x的取值范圍是 . 16. 【xx上海,理11】方程x2+x-1=0的解可視為函數(shù)y=x+的圖像與函數(shù)y=的圖像交點的橫坐標,若x4+ax-4=0的各個實根x1,x2,…,xk (k≤4)所對應的點(xi ,)(i=1,2,…,k)均在直線y=x的同側,則實數(shù)a的取值范圍是 . 17. 【xx上海,理1】函數(shù)的定義域為 18. 【xx上海,理3】函數(shù)的反函數(shù) 19.【xx上海,理4】方程的解是 20. 【xx上海,理3】若函數(shù)=(>0,且≠1)的反函數(shù)的圖像過點(2,-1),則= . 【答案】 21. 【xx上海,理11】若曲線=||+1與直線=+沒有公共點,則、分別應滿足的條件是 . 【答案】=0、∈(-1,1) 22. 【xx上海,理1】函數(shù)的反函數(shù)=__________. 【答案】 23. 【xx上海,理2】方程的解是__________ 【答案】x=0 24. 【xx上海,理10】函數(shù)的圖象與直線有且僅有兩個不同的交點,則的取值范圍是__________ 【答案】 25. 【xx上海,理13】若函數(shù),則該函數(shù)在上是( ) A.單調遞減無最小值 B.單調遞減有最小值 C.單調遞增無最大值 D.單調遞增有最大值 【答案】A 26. 【xx上海,理16】設定義域為R的函數(shù),則關于的方程有7個不同實數(shù)解的充要條件是( ) A.且B.且C.且D.且 【答案】C 二.能力題組 1. 【xx上海,理12】設常數(shù)a使方程在閉區(qū)間[0,2]上恰有三個解,則 . 【答案】 【考點】解三角方程,方程的解與函數(shù)圖象的交點. 2. 【xx上海,理18】若是的最小值,則的取值范圍為( ). (A)[-1,2] (B)[-1,0] (C)[1,2] (D) 【答案】D 【考點】分段函數(shù)的單調性與最值問題. 3. 【xx上海,理20】甲廠以x千克/小時的速度勻速生產某種產品(生產條件要求1≤x≤10),每一小時可獲得的利潤是元. (1)要使生產該產品2小時獲得的利潤不低于3 000元,求x的取值范圍; (2)要使生產900千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求此最大利潤. 【答案】(1) 3≤x≤10 ;(2) 6千克/小時, 最大利潤為457 500元 4. 【xx上海,理20】已知函數(shù)f(x)=lg(x+1). (1)若0<f(1-2x)-f(x)<1,求x的取值范圍; (2)若g(x)是以2為周期的偶函數(shù),且當0≤x≤1時,有g(x)=f(x),求函數(shù)y=g(x)(x∈[1,2])的反函數(shù). 【答案】(1) ; (2) y=3-10x ,x∈[0,lg 2] 5. 【xx上海,理21】海事救援船對一艘失事船進行定位:以失事船的當前位置為原點,以正北方向為y軸正方向建立平面直角坐標系(以1海里為單位長度),則救援船恰好在失事船正南方向12海里A處,如圖.現(xiàn)假設:①失事船的移動路徑可視為拋物線;②定位后救援船即刻沿直線勻速前往救援;③救援船出發(fā)t小時后,失事船所在位置的橫坐標為7t. (1)當t=0.5時,寫出失事船所在位置P的縱坐標.若此時兩船恰好會合,求救援船速度的大小和方向; (2)問救援船的時速至少是多少海里才能追上失事船? 【答案】(1) 海里,北偏東弧度 (2) 時速至少是25海里才能追上失事船 因此,救援船的時速至少是25海里才能追上失事船. 6. 【xx上海,理20】已知函數(shù)f(x)=a2x+b3x,其中常數(shù)a,b滿足ab≠0. (1)若ab>0,判斷函數(shù)f(x)的單調性; (2)若ab<0,求f(x+1)>f(x)時的x的取值范圍. 【答案】(1) 單調遞減;(2) 7. (xx上海,理22)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分. 已知函數(shù)y=f-1(x)是y=f(x)的反函數(shù).定義:若對給定的實數(shù)a(a≠0),函數(shù)y=f(x+a)與y=f-1(x+a)互為反函數(shù),則稱y=f(x)滿足“a和性質”;若函數(shù)y=f(ax)與y=f-1(ax)互為反函數(shù),則稱y=f(x)滿足“a積性質”. (1)判斷函數(shù)g(x)=x2+1(x>0)是否滿足“1和性質”,并說明理由; (2)求所有滿足“2和性質”的一次函數(shù); (3)設函數(shù)y=f(x)(x>0)對任何a>0,滿足“a積性質”.求y=f(x)的表達式. 【答案】(1)不滿足; (2) k=-1,f(x)=-x+b(b∈R) ;(3) 參考解析 三.拔高題組 1. 【xx上海,理20】(本題滿分14分)本題有2個小題,第一小題滿分6分,第二小題滿分1分. 設常數(shù),函數(shù) (1) 若=4,求函數(shù)的反函數(shù); (2) 根據(jù)的不同取值,討論函數(shù)的奇偶性,并說明理由. 【答案】(1),;(2)時為奇函數(shù),當時為偶函數(shù),當且時為非奇非偶函數(shù). 【考點】反函數(shù),函數(shù)奇偶性. 2. 【xx上海,理19】(8’+8’)已知函數(shù)f(x)=2x- ⑴ 若f(x)=2,求x的值 ⑵ 若2t f(2t)+m f(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍 3. 【xx上海,理18】近年來,太陽能技術運用的步伐日益加快,已知xx年全球太陽能年生產量為670兆瓦,年增長率為34%。在此后的四年里,增長率以每年2%的速度增長(例如xx年的年生產量增長率為36%) (1)求xx年的太陽能年生產量(精確到0.1兆瓦) (2)已知xx年太陽能年安裝量為1420兆瓦,在此后的4年里年生產量保持42%的增長率,若xx年的年安裝量不少于年生產量的95%,求4年內年安裝量的增長率的最小值(精確到0.1%) 4. 【xx上海,理19】已知函數(shù) (1)判斷的奇偶性 (2)若在是增函數(shù),求實數(shù)的范圍 5. 【xx上海,理22】(本題滿分18分)本題共有3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分) 已知函數(shù)=+有如下性質:如果常數(shù)>0,那么該函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù). (1)如果函數(shù)=+(>0)的值域為6,+∞,求的值; (2)研究函數(shù)=+(常數(shù)>0)在定義域內的單調性,并說明理由; (3)對函數(shù)=+和=+(常數(shù)>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調性(只須寫出結論,不必證明),并求函數(shù)=+(是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結論). 【答案】(1)b=log29;(2)參考解析;(3)參考解析- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數(shù)學分項匯編 專題02 函數(shù)含解析理 2019 2020 年高 學分 匯編 專題 02 函數(shù) 解析
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.italysoccerbets.com/p-2835654.html