《湖南省長沙市高二數學 暑假作業(yè)28 幾何證明選講、坐標系與參數方程、不等式選講1理 湘教版》由會員分享,可在線閱讀,更多相關《湖南省長沙市高二數學 暑假作業(yè)28 幾何證明選講、坐標系與參數方程、不等式選講1理 湘教版(5頁珍藏版)》請在裝配圖網上搜索。
1、
作業(yè)28 幾何證明選講、坐標系與參數方程、不等式選講(1)
參考時量:×60分鐘 完成時間: 月 日
一. 選擇題:
1、在極坐標系中,圓的垂直于極軸的兩條切線方程分別為( ?。?
A. B.
C. D.
2、極坐標方程表示的曲線為( )
A.一條射線和一個圓 B.兩條直線
C.一條直線和一個圓 D.一個圓
3、如圖,四邊形ABCD是圓O的內接四邊形,延長AB和DC相交于點P,若,則的值為( )
A. B
2、.
C. D.
4、如圖,AD,AE,BC分別與圓O切于點D,E,F,
延長AF與圓O交于另一點G。給出下列三個結論:
①AD+AE=AB+BC+CA;
②AF·AG=AD·AE
③△AFB ~△ADG
其中正確結論的序號是
A.①② B.②③
C.①③ D.①②③
5、設曲線的參數方程為(為參數),直線的方程為,則曲線上到直線距離為的點的個數為 ( )
A、1 B、2 C、3 D、4
6、在直角坐標系中,橢圓的參數方程為.在極
坐標系(與直角坐標
3、系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,直線與圓的極坐標方程分別為與.若直線經過橢圓的焦點,且與圓相切,則橢圓的離心率為( )
A. B. C. D.
二.填空題:
7、如圖, △ABC為圓的內接三角形, BD為圓的弦, 且BD//AC. 過
點A 做圓的切線與DB的延長線交于點E, AD與BC交于點F. 若
AB = AC, AE = 6, BD = 5, 則線段CF的長為______.
8、在極坐標系(ρ,θ)(0 ≤ θ<2π)中,曲線ρ=
4、;與 的交點的極坐標為__ ____.
9、已知都是正數,,則的最小值為 .
10、若函數的最小值為3,則實數的值為 .
三.解答題:
11、 如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于D.
(Ⅰ)證明:DB=DC;
(Ⅱ)設圓的半徑為1,BC=3 ,延長CE交AB于點F,求△BCF外接圓的半徑.
12、已知曲線的參數方程是,以坐標原點為極點,軸的正半軸
為極軸建立坐標系,曲線的坐標系方程是,正方形的頂點都在上,
且依逆時針次序
5、排列,點的極坐標為
(Ⅰ)求點的直角坐標;
(Ⅱ)設為上任意一點,求的取值范圍.
13、已知函數=,=.
(Ⅰ)當=-2時,求不等式<的解集;
(Ⅱ)設>-1,且當∈[,)時,≤,求的取值范圍.
作業(yè)28 幾何證明選講、坐標系與參數方程、不等式選講(1)參考答案
1——6 BCDABC
7、 8、9、 10、或8
11、(Ⅰ)連結DE,交BC與點G.
由弦切角定理得,∠ABF=∠BCE,∵∠ABE=∠CBE,∴∠CBE=∠BCE,B
6、E=CE,
又∵DB⊥BE,∴DE是直徑,∠DCE=,由勾股定理可得DB=DC.
(Ⅱ)由(Ⅰ)知,∠CDE=∠BDE,BD=DC,故DG是BC的中垂線,∴BG=.
設DE中點為O,連結BO,則∠BOG=,∠ABE=∠BCE=∠CBE=,
∴CF⊥BF, ∴Rt△BCF的外接圓半徑等于.
12 、 (Ⅰ)點的極坐標為
點的直角坐標為
(Ⅱ)設;則
13、當=-2時,不等式<化為,
設函數=,=,
其圖像如圖所示
從圖像可知,當且僅當時,<0,∴原不等式解集是.
(Ⅱ)當∈[,)時,=,不等式≤化為,
∴對∈[,)都成立,故,即≤,
∴的取值范圍為(-1,].
6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375