《重慶市萬(wàn)州分水中學(xué)高考數(shù)學(xué)一輪復(fù)習(xí) 第十七章 選考內(nèi)容 第2講 極坐標(biāo)與參數(shù)方程指導(dǎo)課件 新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《重慶市萬(wàn)州分水中學(xué)高考數(shù)學(xué)一輪復(fù)習(xí) 第十七章 選考內(nèi)容 第2講 極坐標(biāo)與參數(shù)方程指導(dǎo)課件 新人教A版(23頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、考綱要求考綱研讀1.理解坐標(biāo)系的作用;了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況2能在極坐標(biāo)系中用極坐標(biāo)表示點(diǎn)的位置,理解在極坐標(biāo)系和平面直角坐標(biāo)系中表示點(diǎn)的位置的區(qū)別,能進(jìn)行坐標(biāo)和直角坐標(biāo)的互化;能在極坐標(biāo)系中給出簡(jiǎn)單圖形(如過極點(diǎn)的直線、過極點(diǎn)或圓心在極點(diǎn)的圓)的方程了解參數(shù)方程,了解參數(shù)的意義;能選擇適當(dāng)?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程. 從近幾年的高考來看,本部分重點(diǎn)考查直線和圓的極坐標(biāo)方程,以及極坐標(biāo)與直角坐標(biāo)的互化;參數(shù)方程側(cè)重于直線、圓及橢圓參數(shù)方程與普通方程的互化.第2講極坐標(biāo)與參數(shù)方程1坐標(biāo)系(1)點(diǎn)的極坐標(biāo)與直角坐標(biāo)的相互轉(zhuǎn)化公式,當(dāng)極坐標(biāo)系中的極點(diǎn)與直角坐
2、標(biāo)系中的原點(diǎn)重合,極軸與 x 軸的正半軸重合,兩種坐標(biāo)系中取相同的長(zhǎng)度單位時(shí),點(diǎn)的極坐標(biāo)與直角坐標(biāo)的相互轉(zhuǎn)化公式為:_(2)柱坐標(biāo)、球坐標(biāo)與直角坐標(biāo)的互化公式:柱坐標(biāo)化為直角坐標(biāo)公式:_;球坐標(biāo)化為直角坐標(biāo)公式:_.2參數(shù)方程(1)圓(xa)2(yb)2r2 的參數(shù)方程為_,參數(shù)的幾何意義是圓上的點(diǎn)繞圓心旋轉(zhuǎn)的角度cos ,(sinxarybr為參數(shù))cos ,sinxaybsec ,tanxaybC率為()DD5在極坐標(biāo)系中,點(diǎn)(1,0)到直線(cossin)2的距離為_.考點(diǎn)1極坐標(biāo)與直角坐標(biāo)的相互轉(zhuǎn)化答案:D(2011 年江西)若曲線的極坐標(biāo)方程為2sin4cos,以極點(diǎn)為原點(diǎn),極軸為
3、x 軸正半軸建立直角坐標(biāo)系,則改曲線的直角坐標(biāo)方程為_x2y24x2y0【互動(dòng)探究】 1極坐標(biāo)方程分別為2cos和sin的兩個(gè)圓的圓心距為_.考點(diǎn)2參數(shù)方程與普通方程的相互轉(zhuǎn)化常見的消參數(shù)法有:代入消元(拋物線的參數(shù)方程)、加減消元(直線的參數(shù)方程)、平方后再加減消元(圓、橢圓的參數(shù)方程)等經(jīng)常使用的公式有sin2cos21.在將曲線的參數(shù)方程化為普通方程的過程中一定要注意參數(shù)的范圍,確保普通方程與參數(shù)方程等價(jià)【互動(dòng)探究與 x 軸的交點(diǎn),且圓 C 與直線 xy30 相切,則圓 C 的方程為_. (x1)2y22)的點(diǎn)的個(gè)數(shù)為(A1 個(gè)B2 個(gè)C3 個(gè)D4 個(gè)B考點(diǎn)3極坐標(biāo)與參數(shù)方程的綜合應(yīng)用【
4、互動(dòng)探究】2易錯(cuò)、易混、易漏28參數(shù)方程與普通方程互化時(shí)應(yīng)注意參數(shù)的取值范圍()Ayx2Cyx2(2x3)Byx2Dyx2(0y1)解析:轉(zhuǎn)化為普通方程:yx2,且 x2,3,故選C.C【失誤與防范】在將曲線的參數(shù)方程化為普通方程時(shí),不僅僅是把其中的參數(shù)消去,還要注意x,y 的取值范圍,也即在消去參數(shù)的過程中一定要注意普通方程與參數(shù)方程的等價(jià)性本題很容易忽略參數(shù)方程中0sin21 的限制而錯(cuò)選A.1極坐標(biāo)、柱坐標(biāo)、球坐標(biāo)與直角坐標(biāo)互化的關(guān)鍵是熟練應(yīng)用公式2參數(shù)方程化為普通方程消參數(shù)的方法有代入消去法、加減消去法、恒等式(三角的或代數(shù)的)消去法等普通方程化為參數(shù)方程:關(guān)鍵是如何引入?yún)?shù)若動(dòng)點(diǎn)坐標(biāo) x,y 與旋轉(zhuǎn)角有關(guān)時(shí),通常選擇角為參數(shù);與運(yùn)動(dòng)有關(guān)的問題,通常選擇時(shí)間為參數(shù)1同直角坐標(biāo)一樣,由于建系的不同,曲線的極坐標(biāo)方程和參數(shù)方程也會(huì)不同2極坐標(biāo)與直角坐標(biāo)之間可以進(jìn)行互化,在沒有充分理解極坐標(biāo)的前提下,可以通過直角坐標(biāo)解決問題對(duì)于參數(shù)方程,同樣遵循以上原則3在將曲線的參數(shù)方程化為普通方程時(shí),不僅僅是把其中的參數(shù)消去,還要注意 x,y 的取值范圍,也即在消去參數(shù)的過程中一定要注意普通方程與參數(shù)方程的等價(jià)性最常見的題型是考查半圓