《湖南省高中數(shù)學(xué)(第2輪)總復(fù)習(xí) 專題3第10講 等差、等比數(shù)列及特殊數(shù)列求和課件 理 新人教版》由會員分享,可在線閱讀,更多相關(guān)《湖南省高中數(shù)學(xué)(第2輪)總復(fù)習(xí) 專題3第10講 等差、等比數(shù)列及特殊數(shù)列求和課件 理 新人教版(30頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題三 不等式、數(shù)列、推理與證明 11211121231.(.1;22)211;nnnnmnnnmnnaandaanm dddnSSnaSAnBn ABaaaannmaa nn aan nd 等差數(shù)列的通項公式為和等差數(shù)列的公差公式為和等差數(shù)列的前 項和公式等差數(shù)列主、 為干識常數(shù)知 *1212232.4mnpqmnpqnnnnnnnnnkkkkkmnpqmnpqaaaaaaaaaaaaanSAnBnaabakbmkkSSSSSkdN等差數(shù)列的性質(zhì): 、 、 、,若,則、 、的關(guān)系為,特別地,數(shù)列的前 項和是成等差數(shù)列的充要條件若數(shù)列和均是等差數(shù)列,則仍為等差數(shù)列, , 為常數(shù)等差數(shù)列中依次
2、項和成等差數(shù)列,即 , 成等差數(shù)列,公差為 11111.12111121nnnnn mnmnna qaa qaaa qaa qnSqqqq 等比數(shù)列的通項公式為和等比數(shù)列的前等比數(shù)列主干式知識項和公 *121232232,.3kkkkmnpqmnpqnnnnnnkkkkkknkmnpqmnpqaaaaa aa aa aa aabma bmkTSSSSSqkTnTTTTN等比數(shù)列的性質(zhì): 、 、 、,若,則、 、的關(guān)系為,特別地,若和均是等比數(shù)列,則仍為等比數(shù)列,其中 為常數(shù)等比數(shù)列中依次 項和成等比數(shù)列,即 , 成等比數(shù)列,其公比為等比數(shù)列中依次 項積成等比數(shù)列,記 為前項積,即 ,2,.kq
3、成等比數(shù)列,其公比為 *3312461537453()A1 B 2 C 5 D 311log1lo1 12g()9log NnnnnnnnnnnnabnAanABnBnbannaaaaaa已知兩個等差數(shù)列和的前 項和分別為和,且,則使得為正偶數(shù)時,的值是 或已知數(shù)列滿足,且一、等差、等比數(shù)列的概念,通,則項公式,前 項和公式的綜合應(yīng)用例79()11A B5 C 5 D.55aa 的值是 1212112121331135579246221438719221311log 3log333D.B2.1nnnnnnnnnnnnnnaaaaAbbbbBannnnbnaaaaaaaaaa,由為正偶數(shù),所以或
4、,易得,選解故故選析:1adq熟記等差和等比數(shù)列主干知識,依題設(shè)情境,運用方程思想和轉(zhuǎn)化化歸思想將已知化為特征量 和 、 的方程并講究運算技巧是問題求解的【點評】切入點 1882810122011201004114237223 65()A.B.C.32233221146()()2A. 2(212 D. B 2 01)C30nnmnaaaaaaaaaaaaaamn已知正項等比數(shù)列例廣東中山二、等差、等比數(shù)列的性質(zhì)及應(yīng)用在等差數(shù)列中,則滿足:,且,則的等于 最小值為 或或中學(xué)模擬4 D 6 14148108108108118108818101088081562332211221388172;222
5、12812C1221.1233 nnaadaaaaaandaaaaaaaaaaaadaaadddd設(shè)等差數(shù)列的通項公式為,則由條件有,而,解得,或,所以或,即或,所以當(dāng)時,當(dāng)時,析,故選解: 22010201020102222111242201()2.41622611116()()2423 m nnmm naqaqaqqqqaaaa qamnnmmnmnmnmnnmmnmn由題意知,化簡得,所以舍 或又由已知條件,可得,所以,故,所以,當(dāng)且僅當(dāng),也就是時取“ ”1adq有關(guān)等差、等比數(shù)列的計算型問題的求解策略是:首先考慮能否用性質(zhì),若不然,則轉(zhuǎn)化為關(guān)【點于 、 、 的評】方程求解 545()A
6、.B.C.4565.16D5N 如果執(zhí)行如下框圖,輸入,則輸三、特殊數(shù)列求和出的數(shù)等于 21111 1471322nnaana求數(shù)列的前 項和:, , 111151 22133 45 66D.S由題意知輸出的 的值析:,故選為解 212111111 1(4)(7)(32)111(1)(1473113131.121212)3131()122() 2 1 nnnnnnnnSnaaaSnaaannnnaSnnaanaSannaa設(shè),將其每一項拆開再重新組合得,分組 當(dāng)時,分組求和當(dāng)時,特殊數(shù)列求和常用方法有:拆項重組法、裂項相消法、錯位相減法等,應(yīng)用時關(guān)鍵是觀察通項的特征后聯(lián)想相應(yīng)【點評】的方法 1
7、*1121.log2 log2().12NnnnnnnnnnnSSnnanSSaanSbbnbnT已知數(shù)列的前 項和是 ,滿足求數(shù)列的前 項四、等差、等比數(shù)列及數(shù)和 ;若數(shù)列滿足,求數(shù)列的前列求項例4應(yīng)用和和綜合 11111111*1 221()11211.2212122212NnnnnnnnnnnnnnnSaanSaaSSaaaaaSn當(dāng)時,當(dāng)時,所以數(shù)列是首項為 ,公比為 的等比數(shù)列,解所以析: 1121211211log2log 2log211.111111 22 33 411.111111112233412 nnnnnnSnSnnSSnnbnnnnTn nnn因為,所以,所以,所以11
8、 1 2 nnnSnaSSn本題是典型的關(guān)于關(guān)系式的運用及根據(jù)通項特點采用裂項相消【點評】法求和 12*121123()11(2.001) Nnnnnnnnnnnnaaqbaaacbbbnaqbcaqqccaqqcaqc數(shù)列是以 為首項, 為公比的等比數(shù)列令,其中試用 、 表示 和 ;若,是否存在實數(shù)對 , ,其中,使成等比數(shù)列若存在,求出實數(shù)對 ,和 的通項且,試比較 與的大公式;若不存在,備選請說小題 ;明理由 1212212122211 ()12()2(1)2.11 ()12()2(1 112221,111111)()2(1)112nnnnnnnnnnnqbaaanacbbbnnqbaa
9、ana naaaqqaacbbbnqqqnaqqaaqqqqaqq 當(dāng)時,當(dāng)時,解析:122(1),11naaqqnq 212211,1111(1)2(1)22.2(1)(1)(1)1(1)nnnnnaqbaqqqaannqcaqaaqnqqqq 所以 111111111222222(1)2(1)1(1)11110,1,11111101110111,1000102nnnnnnnnnnnnnnaqaaqqqqaqaaqqqqaaccnqccqqqqqqqqqqqaqqccqaq 因為所以,當(dāng)時,;當(dāng)時,所以當(dāng),且時,1.nncc即 12222,1112001110101111102(1)22 (
10、 ),3323(3)0., nnnnnaqaaqqqqaqaqqqaaqqaaqqcnccqq因為,所以若為等比數(shù)列,則或所以或舍去 所以 1111100()0110nnnnnnnaandadnaddaadannaydxaddada數(shù)形結(jié)合思想通項的幾何意義:由可變形為若,則是常數(shù)函數(shù);若,則是 的一次函數(shù),是直線上一群孤立的點單調(diào)性:時,為單調(diào)遞增數(shù)列解決與等差數(shù)列有關(guān)問題的常用;時,為單調(diào)遞思想方法減數(shù)列 211222().002222()nnnnnnnanSSnanABaSAnBnAdSnnSyAxBxyAxBxndSddd數(shù)列的前 項和可變形為,令,則當(dāng)即時,是關(guān)于 的二次函數(shù),在二次
11、函數(shù)的圖象上,為拋物線上一些孤立的點利用其幾何意義可解決前 項和 的最值問題 11122“”“”1()nnnnaadnSaaqnSaq方程思想將等差數(shù)列問題化歸為基本量的關(guān)系來解決是通性通法一般地,等差數(shù)列的五個基本量 、 、 、 ,知道任意三個元素,可建立方程組,求出另外兩個元素,即 知三求二 方程思想等比數(shù)列中有五個量 、 、 、 、 ,一般可以知三求二 ,能通過列解決方程 組 求關(guān)鍵量與等比數(shù)列有關(guān)問題的常用思想方法和 ,問題可迎刃而解 111111()()01)2010(nnnnnnnxnaa qaqananayqaqaqaaqqa數(shù)形結(jié)合思想通項可化為,因此是關(guān)于的函數(shù)即中的各項所表示的點 ,在曲線上,是一群孤立的點單調(diào)性:當(dāng)或時,是遞增數(shù)列; 111111011.300011111nnnnnnnnnaqaqaqanaaqqaqqSnaqanSaanqqq 當(dāng)或時,是遞減數(shù)列;當(dāng)時,為常數(shù)列;當(dāng)時,為擺動數(shù)列分類思想當(dāng)時,的前 項和;當(dāng)時,的前 項和等比數(shù)列的前 項和公式涉及對公比的分類討論,此處是常考易錯點