0,所以,當(dāng)0
14、同的交點.
圖①
圖②
當(dāng)a>1時,由f(x)的圖象(如圖②)知,f(x)在區(qū)間(-∞,a]上遞增,在區(qū)間(a,+∞)上遞增,但a3>a2,所以當(dāng)a21.
8.520 解析設(shè)商品價格為x元,實際付款為y元,
則y=x,0500,
整理,得y=x,0500.
∵0.9×200=180>100,
∴A商品的價格為100元.∵0.9
15、×500=450,
∴B商品的價格為500元.當(dāng)x=100+500=600時,y=100+0.7×600=520,即若丙一次性購買A,B兩件商品,則應(yīng)付款520元.
9.解(1)g(x)=12|x|+2=12|x|+2,
因為|x|≥0,所以0<12|x|≤1,
即20時,由2x-12x-2=0整理,得(2x)2-2·2x-1=0,(2x-1)2=2,
解得2x=1±2.因為2x>0,所以2x=1+2,
即x=log2(1+2).
16、
10.解(1)由題意知,E移動時單位時間內(nèi)的淋雨量為320|v-c|+12,故y=100v320|v-c|+12=5v(3|v-c|+10)(v>0).
(2)由(1)知,當(dāng)0
17、故當(dāng)v=c時,ymin=50c.
思維提升訓(xùn)練
11.A 解析由題中圖象知,f(x)=0有3個根0,a,b,且a∈(-2,-1),b∈(1,2);g(x)=0有3個根0,c,d,且c∈(-1,0),d∈(0,1).由f(g(x))=0,得g(x)=0或a,b,由圖象可知g(x)所對每一個值都能有3個根,因而m=9;由g(f(x))=0,知f(x)=0或c,d,由圖象可以看出f(x)=0時對應(yīng)有3個根,f(x)=d時有4個,f(x)=c時只有2個,加在一起也是9個,即n=9,∴m+n=9+9=18,故選A.
12.A 解析因為f(x)=2+x,x<0,2-x,0≤x≤2,(x-2)2,x>
18、2,所以f(2-x)=2+(2-x),2-x<0,2-(2-x),0≤2-x≤2,(2-x-2)2,2-x>2?f(2-x)=x2,x<0,x,0≤x≤2,4-x,x>2,
f(x)+f(2-x)=x2+x+2,x<0,2,0≤x≤2,x2-5x+8,x>2,
所以函數(shù)y=f(x)-g(x)=f(x)-3+f(2-x)=x2+x-1,x<0,-1,0≤x≤2,x2-5x+5,x>2.
其圖象如圖所示.
顯然函數(shù)圖象與x軸有2個交點,故函數(shù)有2個零點.
13.①-1 ②12,1∪[2,+∞) 解析①當(dāng)a=1時,f(x)=2x-1,x<1,4(x-1)(x-2),x≥1,
當(dāng)x<1
19、時,2x-1∈(-1,1);
當(dāng)x≥1時,4(x-1)(x-2)∈[-1,+∞).
故f(x)的最小值為-1.
②若函數(shù)f(x)=2x-a的圖象在x<1時與x軸有一個交點,則a>0,并且當(dāng)x=1時,f(1)=2-a>0,所以0
20、x≥1上與x軸也無交點,不滿足題意.
當(dāng)21-a≤0,即a≥2時,函數(shù)f(x)=4(x-a)·(x-2a)的圖象與x軸的兩個交點x1=a,x2=2a都滿足題意.
綜上,a的取值范圍為12,1∪[2,+∞).
14.解(1)當(dāng)010時,W=xR(x)-(10+2.7x)=98-10003x-2.7x.
故W=8.1x-x330-10,010.
(2)①當(dāng)00;當(dāng)x∈(9,10]
21、時,W'<0.
所以當(dāng)x=9時,W取得最大值,
即Wmax=8.1×9-130×93-10=38.6.
②當(dāng)x>10時,W=98-10003x+2.7x≤98-210003x×2.7x=38,
當(dāng)且僅當(dāng)10003x=2.7x,即x=1009時,W取得最大值38.
綜合①②知:當(dāng)x=9時,W取得最大值38.6,
故當(dāng)年產(chǎn)量為9千件時,該公司在這一品牌服裝的生產(chǎn)中所獲的年利潤最大.
15.解(1)因為賠付價格為s元/噸,所以乙方的實際年利潤為w=2000q-sq(q≥0).
因為w=2000q-sq=-sq-1000s2+10002s,
所以當(dāng)q=1000s2時,w取得最大值.所以乙方取得最大利潤的年產(chǎn)量q=1000s2t.
(2)設(shè)甲方凈收入為v元,則v=sq-0.002q2,
將q=1000s2代入上式,得到甲方凈收入v與賠付價格s之間的函數(shù)關(guān)系式:
v=10002s-2×10003s4.
又v'=-10002s2+8×10003s5=10002(8000-s3)s5,
令v'=0得s=20.當(dāng)s<20時,v'>0;當(dāng)s>20時,v'<0.所以當(dāng)s=20時,v取得最大值.
因此甲方向乙方要求賠付價格s為20元/噸時,獲最大凈收入.