《新編高三數(shù)學(xué)理,山東版一輪備課寶典 【第10章】課時(shí)限時(shí)檢測(cè)58》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《新編高三數(shù)學(xué)理,山東版一輪備課寶典 【第10章】課時(shí)限時(shí)檢測(cè)58(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、新編高考數(shù)學(xué)復(fù)習(xí)資料
課時(shí)限時(shí)檢測(cè)(五十八) 分類(lèi)加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理
(時(shí)間:60分鐘 滿(mǎn)分:80分)
命題報(bào)告
考查知識(shí)點(diǎn)及角度
題號(hào)及難度
基礎(chǔ)
中檔
稍難
分類(lèi)加法計(jì)數(shù)原理
2,5,6
11
分步乘法計(jì)數(shù)原理
1,3,4,7
10
兩個(gè)計(jì)數(shù)原理的綜合應(yīng)用
8,9
12
一、選擇題(每小題5分,共30分)
1.現(xiàn)有6名同學(xué)去聽(tīng)同時(shí)進(jìn)行的5個(gè)課外知識(shí)講座,每名同學(xué)可自由選擇其中的一個(gè)講座,不同選法的種數(shù)是( )
A.56 B.65
C. D.6×5×4×3×2
【解析】 由分步乘法計(jì)數(shù)原理得5×5×5×5×5×5=
2、56.
【答案】 A
2.三個(gè)人踢毽,互相傳遞,每人每次只能踢一下,由甲開(kāi)始踢,經(jīng)過(guò)5次傳遞后,毽又被踢回給甲,則不同的傳遞方式共有( )
A.6種 B.8種 C.10種 D.16種
【解析】 如下圖,甲第一次傳給乙時(shí)有5種方法,同理,甲傳給丙也可以推出5種情況,綜上有10種傳法.
【答案】 C
3.某市汽車(chē)牌照號(hào)碼可以上網(wǎng)自編,但規(guī)定從左到右第二個(gè)號(hào)碼只能從字母B、C、D中選擇,其他四個(gè)號(hào)碼可以從0~9這十個(gè)數(shù)字中選擇(數(shù)字可以重復(fù)),有車(chē)主第一個(gè)號(hào)碼(從左到右)只想在數(shù)字3、5、6、8、9中選擇,其他號(hào)碼只想在1、3、6、9中選擇,則他的車(chē)牌號(hào)碼可選的所有可能情況有
3、( )
A.180種 B.360種
C.720種 D.960種
【解析】 按照車(chē)主的要求,從左到右第一個(gè)號(hào)碼有5種選法,第二位號(hào)碼有3種選法,其余三位號(hào)碼各有4種選法.
因此車(chē)牌號(hào)碼可選的所有可能情況有5×3×4×4×4=960(種).
【答案】 D
4.將一個(gè)四面體ABCD的六條棱上涂上紅、黃、白三種顏色,要求共端點(diǎn)的棱不能涂相同顏色,則不同的涂色方案有( )
A.1種 B.3種 C.6種 D.9種
【解析】 因?yàn)橹挥腥N顏色,又要涂六條棱,所以應(yīng)該將四面體的對(duì)棱涂成相同的顏色.
故有3×2×1=6種涂色方案.
【答案】 C
5.如
4、果一個(gè)三位正整數(shù)如“a1a2a3”滿(mǎn)足a1<a2,且a2>a3,則稱(chēng)這樣的三位數(shù)為凸數(shù)(如120,343,275等),那么所有凸數(shù)的個(gè)數(shù)為( )
A.240 B.204 C.729 D.920
【解析】 若a2=2,則“凸數(shù)”為120與121,共1×2=2個(gè).
若a2=3,則“凸數(shù)”2×3=6個(gè),若a2=4,滿(mǎn)足條件的“凸數(shù)”有3×4=12個(gè),…,若a2=9,滿(mǎn)足條件的“凸數(shù)”有8×9=72個(gè).
∴所有凸數(shù)有2+6+12+20+30+42+56+72=240(個(gè)).
【答案】 A
6.甲、乙、丙3位志愿者安排在周一至周五的5天中參加某項(xiàng)志愿者活動(dòng),要求
5、每人參加一天且每天至多安排一人,并要求甲安排在另外兩位前面.不同的安排方法共有( )
A.20種 B.30種 C.40種 D.60種
【解析】 分三類(lèi):甲在周一,共有A種排法;
甲在周二,共有A種排法;甲在周三,共有A種排法;
∴A+A+A=20.
【答案】 A
二、填空題(每小題5分,共15分)
7.從班委會(huì)5名成員中選出3名,分別擔(dān)任班級(jí)學(xué)習(xí)委員、文娛委員與體育委員,其中甲、乙二人不能擔(dān)任文娛委員,則不同的選法共有________種(用數(shù)字作答).
【解析】 第一步,先選出文娛委員,因?yàn)榧?、乙不能?dān)任,所以從剩下的3人中選1人當(dāng)文娛委員,有3種
6、選法.
第二步,從剩下的4人中選學(xué)習(xí)委員和體育委員,又可分兩步進(jìn)行:先選學(xué)習(xí)委員有4種選法,再選體育委員有3種選法.
由分步乘法計(jì)數(shù)原理可得,不同的選法共有3×4×3=36種.
【答案】 36
8.用數(shù)字2,3組成四位數(shù),且數(shù)字2,3至少都出現(xiàn)一次,這樣的四位數(shù)共有________個(gè)(用數(shù)字作答).
【解析】 法一 用2,3組成四位數(shù)共有2×2×2×2=16(個(gè)),其中不出現(xiàn)2或不出現(xiàn)3的共2個(gè),因此滿(mǎn)足條件的四位數(shù)共有16-2=14(個(gè)).
法二 滿(mǎn)足條件的四位數(shù)可分為三類(lèi):第一類(lèi)含有一個(gè)2,三個(gè)3,共有4個(gè);第二類(lèi)含有三個(gè)2,一個(gè)3共有4個(gè);第三類(lèi)含有二個(gè)2,二個(gè)3共有C=6(
7、個(gè)),因此滿(mǎn)足條件的四位數(shù)共有2×4+C=14(個(gè)).
【答案】 14
9.已知集合M={1,-2,3},N={-4,5,6,-7}.從兩個(gè)集合中各取一個(gè)元素作點(diǎn)的坐標(biāo),則在直角坐標(biāo)系中,第一、第二象限不同點(diǎn)的個(gè)數(shù)為_(kāi)_______.
【解析】 以集合M的元素作橫坐標(biāo),N的元素作縱坐標(biāo),集合M中任取一元素的方法有3種,要使點(diǎn)在第一、第二象限內(nèi),則集合N中只能取5、6兩個(gè)元素中的一個(gè),有2種取法.根據(jù)分步計(jì)數(shù)原理,有3×2=6(種)取法,即6個(gè)點(diǎn).以集合N的元素作橫坐標(biāo),M的元素作縱坐標(biāo),集合N中任取一元素的方法有4種,要使點(diǎn)在第一、第二象限內(nèi),則集合M中只能取1、3兩個(gè)元素中的一個(gè),有2
8、種取法.根據(jù)分步計(jì)數(shù)原理,有4×2=8(種)取法,即8個(gè)點(diǎn).
綜合上面兩類(lèi),利用分類(lèi)計(jì)數(shù)原理,共有6+8=14(個(gè)).
【答案】 14
三、解答題(本大題共3小題,共35分)
圖10-1-4
10.(10分)如圖,用5種不同的顏色給圖中A、B、C、D四個(gè)區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,求有多少種不同的涂色方法?
【解】 法一 如題圖分四個(gè)步驟來(lái)完成涂色這件事:
涂A有5種涂法;涂B有4種方法;涂C有3種方法;涂D有3種方法(還可以使用涂A的顏色 ).
根據(jù)分步計(jì)數(shù)原理共有5×4×3×3=180種涂色方法.
法二 由于A(yíng)、B、C兩兩相鄰,因此三個(gè)區(qū)域的
9、顏色互不相同,共有A=60種涂法;又D與B、C相鄰,因此D有3種涂法;由分步計(jì)數(shù)原理知共有60×3=180種涂法.
11.(12分)“漸升數(shù)”是指每個(gè)數(shù)字比它左邊的數(shù)字大的正整數(shù)(如1 458),若把四位“漸升數(shù)”按從小到大的順序排列,求第30個(gè)“漸升數(shù)”.
【解】 漸升數(shù)由小到大排列,形如
1
2
×
×
的漸升數(shù)共有:6+5+4+3+2+1=21(個(gè)).
形如
1
3
4
×
的漸升數(shù)共有5個(gè).
形如
1
3
5
×
的漸升數(shù)共有4個(gè).
故此時(shí)共有21+5+4=30個(gè).
因此從小到大的漸升數(shù)的第30個(gè)必為1 359.
12.(13分)高二年級(jí)四個(gè)班中有34個(gè)自愿組成數(shù)學(xué)課外小組,其中一班有7人,二班有8 人,三班有9人,四班有10人.推薦兩人為中心發(fā)言人,且這兩人必須來(lái)自不同的班級(jí),則有多少種不同的選法?
【解】 分六類(lèi),每類(lèi)都分兩步,①?gòu)囊?、二班各選一人,共有7×8=56種;②從一、三班各選一人,共有7×9=63種;③從一、四班各選一人,共有7×10=70種;④從二、三班各選一人,共有8×9=72種;⑤從二、四班各選一人,共有8×10=80種;⑥從三、四班各選一人,共有9×10=90種.所以共有不同的選法為:N=56+63+70+72+80+90=431種.