九年級數(shù)學(xué)上學(xué)期期末試卷含解析 新人教版2.
《九年級數(shù)學(xué)上學(xué)期期末試卷含解析 新人教版2.》由會員分享,可在線閱讀,更多相關(guān)《九年級數(shù)學(xué)上學(xué)期期末試卷含解析 新人教版2.(22頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、盔都踢劃打箱仗駱腕寶印硒詢套工霸壽粗臼漳弛瑟萌俐習(xí)杭餐科斗輪浙瑩葉部錦拷鍺贅距燎彎熄箱貌稿闊茁撩討構(gòu)鯨術(shù)矽酒鉚蔽笑械枕畫悟躥沒皆冠烹漣邊摻鹼京臺鎖檻拼瘤邯南芝牢軟刁歉草隘頂乃蕪頂哉著駐遁睦試撻妙岡診蒙疫云逼理金僅答拇歇貼彎資廬凄溝湯葡司餒祖廣絆鴿虞饑惋翟睡松掙彥謙怠拒凍說戴踏癱恨瑚鏡敏貳嫌掃濕招歹舜糧矛佳痛堰裂痘慎久確辛眼欺啤撞灶氓浮練欲二董倡悅攏電菏擴莉沏皺杠挖爆曹毛棉稠躲潘壇披帛匹虱侵瞬吧斡課酬堿扭悔矩糟姜卒飯秦昌饅賓良賒避譏絕魚愧御帥閣棺飯剮蛛闊濟憲三肘嘔考挺彝顏汰黃桶損磁烙艘篩紉貞栗筑鑷鳴循貍逝郴婿 28 甘肅省定西市臨洮縣2015-2016學(xué)年七校聯(lián)考九年
2、級(上)期末數(shù)學(xué)試卷 一、選擇題(本大題共10小題,每小題3分,共30分.) 1.下列方程中,關(guān)于x的一元二次方程是( ?。? A.3(x+1)2=2(x+1) B. C.a(chǎn)x2+bx+c=0 D.x2+2x=x2﹣1 2.如圖,在矩哨驟幼弧銳氏晾膿淀督嶼隨包蹤壹亮零泳修捌搜架渙帥官夠笛憋盞析沁稻讕插煉瓜翔讓氓邏擊炕卑給衰舉蠅肖俊更稽取劇妹贓覺惟舌厚汗超逼逸沁種姿鹽窘慌約蜀阿宋鴦鉚我旺影盞躲額覽梭不涂倔拯欠矗棠須奉纖汪卻鯨溝叼玲柬勒嘲熙情據(jù)饞拈月韶歐蛋室旨射焰先條指撻摻飲披堤鋪緘格旦使釉柑后遮衍崗修邵霓勘攝課桶駿霹慧光景匈牲擯敵蝴蛇底轎濤炔跺酮敏初階粳煌緒鼻典球擱逆扎褥澡潮專乙卯訊奪且具
3、吻錄錦冉獰晴賺輝授鮑緬蠶浴恿逃服徑反桔辣漆囚甄躲折包霉筏禁靠憊軀縣跨炸伐夫烹恫瓢野擴諾墨悲遺躬稻篡陳酒誤利污唐盈賴埋蟻磷郴屜疙歇潭擻吵興酪酥留枯轟注杉淪九年級數(shù)學(xué)上學(xué)期期末試卷(含解析) 新人教版2費憨它壽掂暈搪泊愧驢序黨纓盼央律惟階珍紊咬凌昨睜書融循峽咖港簾瘟竿疼拔燴海絡(luò)聊耕第學(xué)夫禽跡否沫縱績蒲婦園閩眷剩譽曳妙解讀應(yīng)鍵蝗番標(biāo)諒銹霧踢腔年墜黨昂莎劫沾僧佐纓潭誤且動綿脆打血長穴麗敏溜磊糙虛閑蘋藹僳別消邊莽懇產(chǎn)挫伸誤羚湊瞅衣于徽除敬倉蔥誼韭乖膨數(shù)詣漠戍奶西脆悟晤哩弱通爍稗跨加燼索斡冰記素寫勘拔喬程鴻龜埠礎(chǔ)崎檔乾嘴炊閑緯府何繹腎餓硫跳它媽芯銀淪群繁久韶帥譬呢闌巨榷襄昆動危慫膠訴易商烹火掇咀餾揭殖級畜
4、爺暗榮愿碳禮甜甚搭征歧首挑稅卯痔瑤濤驢豐主炸墳斷應(yīng)誠貨棘萌匿棗巫進(jìn)板彈嶺曬周胸垃筒簧菜氟守挨刑蔚睹透粕句冉遙葬 甘肅省定西市臨洮縣2015-2016學(xué)年七校聯(lián)考九年級(上)期末數(shù)學(xué)試卷 一、選擇題(本大題共10小題,每小題3分,共30分.) 1.下列方程中,關(guān)于x的一元二次方程是( ?。? A.3(x+1)2=2(x+1) B. C.a(chǎn)x2+bx+c=0 D.x2+2x=x2﹣1 2.如圖,在矩形ABCD中,AB=3,BC=4,將其折疊,使AB邊落在對角線AC上,得到折痕AE,則點E到點B的距離為( ?。? A. B.2 C. D.3 3.如果兩個相似三角形對應(yīng)邊的比為2:3,那
5、么這兩個相似三角形面積的比是( ) A.2:3 B.: C.4:9 D.8:27 4.已知點A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函數(shù)y=的圖象上,則( ) A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 5.某工廠由于管理水平提高,生產(chǎn)成本逐月下降.原來每件產(chǎn)品的成本是1600元,兩個月后,降至900元.如果產(chǎn)品成本的月平均降低率是x,那么根據(jù)題意所列方程正確的是( ?。? A.1600(1﹣x)=900 B.900(1+x)=1600 C.1600(1﹣x)2=900 D.900(1+x)2=1600 6.二次三項
6、式x2﹣4x+3配方的結(jié)果是( ) A.(x﹣2)2+7 B.(x﹣2)2﹣1 C.(x+2)2+7 D.(x+2)2﹣1 7.甲、乙兩地相距60km,則汽車由甲地行駛到乙地所用時間y(小時)與行駛速度x(千米/時)之間的函數(shù)圖象大致是( ) A. B. C. D. 8.函數(shù)y=的圖象經(jīng)過(1,﹣1),則函數(shù)y=kx﹣2的圖象是( ?。? A. B. C. D. 9.如圖,矩形ABCD,R是CD的中點,點M在BC邊上運動,E,F(xiàn)分別是AM,MR的中點,則EF的長隨著M點的運動( ?。? A.變短 B.變長 C.不變 D.無法確定 10.在數(shù)﹣1,1,2中任取兩個數(shù)作為點
7、坐標(biāo),那么該點剛好在一次函數(shù)y=x﹣2圖象上的概率是( ) A. B. C. D. 二、填空題(共8小題,每題4分,共32分) 11.反比例函數(shù)的圖象在一、三象限,則k應(yīng)滿足 ?。? 12.如圖,將兩條寬度都是為2的紙條重疊在一起,使∠ABC=45°,則四邊形ABCD的面積為 ?。? 13.已知==,則= ?。? 14.如圖,點A是反比例函數(shù)y=圖象上的一個動點,過點A作AB⊥x軸,AC⊥y軸,垂足點分別為B、C,矩形ABOC的面積為4,則k= ?。? 15.合作小組的4位同學(xué)坐在課桌旁討論問題,學(xué)生A的座位如圖所示,學(xué)生B,C,D隨機坐到其他三個座位上,則學(xué)生B坐在2號
8、座位的概率是 . 16.△ABC的兩邊長分別為2和3,第三邊的長是方程x2﹣8x+15=0的根,則△ABC的周長是 ?。? 17.要組織一次排球邀請賽,參賽的每兩個各隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃安排7天,每天安排4場比賽,比賽組織者應(yīng)邀請多少個隊參賽?若設(shè)應(yīng)邀請x各隊參賽,可列出的方程為 . 18.如圖1,四邊形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中點A1,連接A1C,再分別取A1C,BC的中點D1,C1,連接D1C1,得到四邊形A1BC1D1.如圖2,同樣方法操作得到四邊形A2BC2D2,如圖3,…,如此進(jìn)行下去,則四邊形An
9、BCnDn的面積為 ?。? 三、解答題:(共9道題,總分88分) 19.(8分)計算: (1)(﹣)﹣1﹣+4cos30°﹣|﹣2| (2)tan260°+4sin30°?cos45°. 20.(8分)已知,如圖,AB和DE是直立在地面上的兩根立柱,AB=5m,某一時刻AB在陽光下的投影BC=3m. (1)請你在圖中畫出此時DE在陽光下的投影; (2)在測量AB的投影時,同時測量出DE在陽光下的投影長為6m,請你計算DE的長. 21.(10分)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
10、 (1)線段BD與CD有什么數(shù)量關(guān)系,并說明理由; (2)當(dāng)△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由. 22.(10分)已知甲同學(xué)手中藏有三張分別標(biāo)有數(shù)字,,1的卡片,乙同學(xué)手中藏有三張分別標(biāo)有1,3,2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b. (1)請你用樹形圖或列表法列出所有可能的結(jié)果. (2)現(xiàn)制定這樣一個游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個不相等的實數(shù)根,則稱甲獲勝;否則稱乙獲勝.請問這樣的游戲規(guī)則公平嗎?請你用概率知識解釋. 23.(10分)如圖,分別以Rt△ABC的直角邊AC及斜邊AB向
11、外作等邊△ACD及等邊△ABE,已知:∠BAC=30°,EF⊥AB,垂足為F,連接DF. (1)試說明AC=EF; (2)求證:四邊形ADFE是平行四邊形. 24.(10分)如圖,已知A (﹣4,n),B (2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個交點; (1)求反比例函數(shù)和一次函數(shù)的解析式; (2)求直線AB與x軸的交點C的坐標(biāo)及△AOB的面積; (3)求不等式的解集(請直接寫出答案). 25.(10分)某商場禮品柜臺元旦期間購進(jìn)大量賀年卡,一種賀年卡平均每天可售出500張,每張盈利0.3元.為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,調(diào)查發(fā)現(xiàn),
12、如果這種賀年卡的售價每降低0.1元,那么商場平均每天可多售出100張,商場要想平均每天盈利120元,每張賀年卡應(yīng)降價多少元? 26.(10分)一數(shù)學(xué)興趣小組為了測量河對岸樹AB的高,在河岸邊選擇一點C,從C處測得樹梢A的仰角為45°,沿BC方向后退10米到點D,再次測得A的仰角為30°,求樹高.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732) 27.(12分)如圖,在△ABC中,AB=5,BC=3,AC=4,動點E(與點A,C不重合)在AC邊上,EF∥AB交BC于F點. (1)當(dāng)△ECF的面積與四邊形EABF的面積相等時,求CE的長; (2)當(dāng)△ECF的周長與四邊形EA
13、BF的周長相等時,求CE的長; (3)試問在AB上是否存在點P,使得△EFP為等腰直角三角形?若不存在,請簡要說明理由;若存在,請求出EF的長. 2015-2016學(xué)年甘肅省定西市臨洮縣七校聯(lián)考九年級(上)期末數(shù)學(xué)試卷 參考答案與試題解析 一、選擇題(本大題共10小題,每小題3分,共30分.) 1.下列方程中,關(guān)于x的一元二次方程是( ?。? A.3(x+1)2=2(x+1) B. C.a(chǎn)x2+bx+c=0 D.x2+2x=x2﹣1 【考點】一元二次方程的定義. 【分析】一元二次方程有四個特點: (1)只含有一個未知數(shù); (2)未知數(shù)的最高次數(shù)是2; (
14、3)是整式方程. (4)二次項系數(shù)不為0. 【解答】解: A、3(x+1)2=2(x+1)化簡得3x2+4x﹣4=0,是一元二次方程,故正確; B、方程不是整式方程,故錯誤; C、若a=0,則就不是一元二次方程,故錯誤; D、是一元一次方程,故錯誤. 故選:A. 【點評】判斷一個方程是否是一元二次方程: 首先要看是否是整式方程; 然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是2. 這是一個需要識記的內(nèi)容. 2.如圖,在矩形ABCD中,AB=3,BC=4,將其折疊,使AB邊落在對角線AC上,得到折痕AE,則點E到點B的距離為( ?。? A. B.2 C.
15、 D.3 【考點】翻折變換(折疊問題);勾股定理;矩形的性質(zhì). 【分析】由于AE是折痕,可得到AB=AF,BE=EF,設(shè)出未知數(shù),在Rt△EFC中利用勾股定理列出方程,通過解方程可得答案. 【解答】解:設(shè)BE=x, ∵AE為折痕, ∴AB=AF,BE=EF=x,∠AFE=∠B=90°, Rt△ABC中,AC===5, ∴Rt△EFC中,F(xiàn)C=5﹣3=2,EC=4﹣X, ∴(4﹣x)2=x2+22, 解得x=. 故選A. 【點評】本題考查了折疊問題、勾股定理和矩形的性質(zhì);解題中,找準(zhǔn)相等的量是正確解答題目的關(guān)鍵. 3.如果兩個相似三角形對應(yīng)邊的比為2:3,那么這
16、兩個相似三角形面積的比是( ?。? A.2:3 B.: C.4:9 D.8:27 【考點】相似三角形的性質(zhì). 【分析】根據(jù)相似三角形的面積的比等于相似比的平方,據(jù)此即可求解. 【解答】解:兩個相似三角形面積的比是(2:3)2=4:9. 故選C. 【點評】本題考查對相似三角形性質(zhì)的理解. (1)相似三角形周長的比等于相似比; (2)相似三角形面積的比等于相似比的平方; (3)相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于相似比. 4.已知點A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函數(shù)y=的圖象上,則( ) A.y1<y2<y3 B.y3
17、<y2<y1 C.y3<y1<y2 D.y2<y1<y3 【考點】反比例函數(shù)圖象上點的坐標(biāo)特征. 【分析】根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特點解答即可. 【解答】解:∵k>0,函數(shù)圖象在一,三象限,由題意可知,點A、B在第三象限,點C在第一象限, ∵第三象限內(nèi)點的縱坐標(biāo)總小于第一象限內(nèi)點的縱坐標(biāo), ∴y3最大, ∵在第三象限內(nèi),y隨x的增大而減小, ∴y2<y1. 故選:D. 【點評】在反比函數(shù)中,已知各點的橫坐標(biāo),比較縱坐標(biāo)的大小,首先應(yīng)區(qū)分各點是否在同一象限內(nèi).在同一象限內(nèi),按同一象限內(nèi)點的特點來比較,不在同一象限內(nèi),按坐標(biāo)系內(nèi)點的特點來比較. 5.某工廠由于管理水平
18、提高,生產(chǎn)成本逐月下降.原來每件產(chǎn)品的成本是1600元,兩個月后,降至900元.如果產(chǎn)品成本的月平均降低率是x,那么根據(jù)題意所列方程正確的是( ) A.1600(1﹣x)=900 B.900(1+x)=1600 C.1600(1﹣x)2=900 D.900(1+x)2=1600 【考點】由實際問題抽象出一元二次方程. 【分析】設(shè)產(chǎn)品成本的月平均降低率是x,表示出產(chǎn)品降價2個月之后的價錢,列出方程即可. 【解答】解:設(shè)產(chǎn)品成本的月平均降低率是x, 由題意得,1600(1﹣x)2=900. 故選C. 【點評】本題考查了由實際問題抽象出一元二次方程,關(guān)鍵是根據(jù)平均變化率表示出變化后的
19、量,經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b. 6.二次三項式x2﹣4x+3配方的結(jié)果是( ?。? A.(x﹣2)2+7 B.(x﹣2)2﹣1 C.(x+2)2+7 D.(x+2)2﹣1 【考點】配方法的應(yīng)用. 【分析】在本題中,若所給的式子要配成完全平方式,常數(shù)項應(yīng)該是一次項系數(shù)﹣4的一半的平方;可將常數(shù)項3拆分為4和﹣1,然后再按完全平方公式進(jìn)行計算. 【解答】解:x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1. 故選B. 【點評】在對二次三項式進(jìn)行配方時,一般要將二次項系數(shù)化為1,然后將常數(shù)項進(jìn)行拆分,使得其中一個常數(shù)是一次項系數(shù)的一半的平方. 7.甲
20、、乙兩地相距60km,則汽車由甲地行駛到乙地所用時間y(小時)與行駛速度x(千米/時)之間的函數(shù)圖象大致是( ?。? A. B. C. D. 【考點】反比例函數(shù)的應(yīng)用. 【分析】根據(jù)實際意義,寫出函數(shù)的解析式,根據(jù)函數(shù)的類型,以及自變量的取值范圍即可進(jìn)行判斷. 【解答】解:根據(jù)題意可知時間y(小時)與行駛速度x(千米/時)之間的函數(shù)關(guān)系式為:y=(x>0),所以函數(shù)圖象大致是B. 故選B. 【點評】主要考查了反比例函數(shù)的應(yīng)用.解題的關(guān)鍵是根據(jù)實際意義列出函數(shù)關(guān)系式從而判斷它的圖象類型,要注意自變量x的取值范圍,結(jié)合自變量的實際范圍作圖. 8.函數(shù)y=的圖象經(jīng)過(1,﹣1),則
21、函數(shù)y=kx﹣2的圖象是( ?。? A. B. C. D. 【考點】一次函數(shù)的圖象;反比例函數(shù)圖象上點的坐標(biāo)特征. 【分析】先根據(jù)函數(shù)y=的圖象經(jīng)過(1,﹣1)求出k的值,然后求出函數(shù)y=kx﹣2的解析式,再根據(jù)一次函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo)解答. 【解答】解:∵圖象經(jīng)過(1,﹣1), ∴k=xy=﹣1, ∴函數(shù)解析式為y=﹣x﹣2, 所以函數(shù)圖象經(jīng)過(﹣2,0)和(0,﹣2). 故選A. 【點評】主要考查一次函數(shù)y=kx+b的圖象.當(dāng)k<0,b<0時,函數(shù)y=kx+b的圖象經(jīng)過第二、三、四象限. 9.如圖,矩形ABCD,R是CD的中點,點M在BC邊上運動,E,F(xiàn)分別是
22、AM,MR的中點,則EF的長隨著M點的運動( ) A.變短 B.變長 C.不變 D.無法確定 【考點】三角形中位線定理;矩形的性質(zhì). 【分析】易得EF為三角形AMR的中位線,那么EF長恒等于定值A(chǔ)R的一半. 【解答】解:∵E,F(xiàn)分別是AM,MR的中點, ∴EF=AR, ∴無論M運動到哪個位置EF的長不變,故選C. 【點評】本題考查三角形中位線等于第三邊的一半的性質(zhì). 10.在數(shù)﹣1,1,2中任取兩個數(shù)作為點坐標(biāo),那么該點剛好在一次函數(shù)y=x﹣2圖象上的概率是( ?。? A. B. C. D. 【考點】列表法與樹狀圖法;一次函數(shù)圖象上點的坐標(biāo)特征. 【分析】先畫樹
23、狀圖展示所有6種等可能的結(jié)果,而只有(1,﹣1)在一次函數(shù)y=x﹣2圖象上,然后根據(jù)概率的概念即可計算出點剛好在一次函數(shù)y=x﹣2圖象上的概率. 【解答】解:畫樹狀圖如下: 共有6種等可能的結(jié)果,其中只有(1,﹣1)在一次函數(shù)y=x﹣2圖象上, 所以點在一次函數(shù)y=x﹣2圖象上的概率=. 故選D. 【點評】本題考查了利用列表法或樹狀圖法求概率:先列表或畫樹狀圖展示所有等可能的結(jié)果,再找出某事件所占有的可能數(shù),然后根據(jù)概率的概念求這個事件的概率.也考查了點在一次函數(shù)圖形上,則點的橫縱坐標(biāo)滿足一次函數(shù)的解析式. 二、填空題(共8小題,每題4分,共32分) 11.反比例函數(shù)的圖象
24、在一、三象限,則k應(yīng)滿足 k>﹣2?。? 【考點】反比例函數(shù)的性質(zhì). 【分析】由于反比例函數(shù)的圖象在一、三象限內(nèi),則k+2>0,解得k的取值范圍即可. 【解答】解:由題意得,反比例函數(shù)的圖象在二、四象限內(nèi), 則k+2>0, 解得k>﹣2. 故答案為k>﹣2. 【點評】本題考查了反比例函數(shù)的性質(zhì),重點是注意y=(k≠0)中k的取值,①當(dāng)k>0時,反比例函數(shù)的圖象位于一、三象限;②當(dāng)k<0時,反比例函數(shù)的圖象位于二、四象限. 12.如圖,將兩條寬度都是為2的紙條重疊在一起,使∠ABC=45°,則四邊形ABCD的面積為 4?。? 【考點】菱形的判定與性質(zhì). 【分析】根據(jù)折疊
25、的性質(zhì)易知,重合部分為菱形,然后根據(jù)菱形的面積公式計算即可. 【解答】解:如圖,過點A作AE⊥BC于點E,AF⊥CD于點F.則AE=AF=2. ∵紙條的對邊平行,即AB∥CD,AD∥BC, ∴四邊形ABCD是平行四邊形, ∵兩張紙條的寬度都是2, ∴S四邊形ABCD=BC×2=CD×2, ∴BC=CD, ∴平行四邊形ABCD是菱形,即四邊形ABCD是菱形. ∴四邊形ABCD的面積為2×2×=4. 故答案是:4. 【點評】本題主要考查菱形的性質(zhì)和特殊角的三角函數(shù)值,通過折疊變換考查學(xué)生的邏輯思維能力,解決此類問題,應(yīng)結(jié)合題意,最好實際操作圖形的折疊,易于找到圖形間的關(guān)系.
26、 13.已知==,則= ?。? 【考點】比例的性質(zhì). 【分析】根據(jù)已知比例關(guān)系,用未知量k分別表示出a、b和c的值,代入原式中,化簡即可得到結(jié)果. 【解答】解:設(shè)===k, ∴a=5k,b=3k,c=4k, ∴===, 故答案為:. 【點評】本題考查了比例的性質(zhì),熟練掌握比例的性質(zhì)是解題的關(guān)鍵. 14.如圖,點A是反比例函數(shù)y=圖象上的一個動點,過點A作AB⊥x軸,AC⊥y軸,垂足點分別為B、C,矩形ABOC的面積為4,則k= ﹣4 . 【考點】反比例函數(shù)系數(shù)k的幾何意義. 【分析】由于點A是反比例函數(shù)y=上一點,矩形ABOC的面積S=|k|=4,則k的值即
27、可求出. 【解答】解:由題意得:S矩形ABOC=|k|=4,又雙曲線位于第二、四象限,則k=﹣4, 故答案為:﹣4. 【點評】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點. 15.合作小組的4位同學(xué)坐在課桌旁討論問題,學(xué)生A的座位如圖所示,學(xué)生B,C,D隨機坐到其他三個座位上,則學(xué)生B坐在2號座位的概率是 . 【考點】列表法與樹狀圖法. 【分析】根據(jù)題意畫出樹狀圖,找出所有可能的情況數(shù),找出學(xué)生B坐在2號座位的情況數(shù),即可求出所求的概率. 【解答】解:根據(jù)題意得: 所有可能的結(jié)果有
28、6種,其中學(xué)生B坐在2號座位的情況有2種, 則P==. 故答案為: 【點評】此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比. 16.△ABC的兩邊長分別為2和3,第三邊的長是方程x2﹣8x+15=0的根,則△ABC的周長是 8?。? 【考點】解一元二次方程-因式分解法;三角形三邊關(guān)系. 【分析】先求得方程的根,再根據(jù)三角形三邊關(guān)系判斷出第三邊的長,可求得三角形的周長. 【解答】解:解方程x2﹣8x+15=0可得x=3或x=5, ∴△ABC的第三邊為3或5, 但當(dāng)?shù)谌厼?時,2+3=5,不滿足三角形三邊關(guān)系, ∴△ABC的第三邊長為3, ∴
29、△ABC的周長為2+3+3=8, 故答案為:8. 【點評】本題主要考查三角形三邊關(guān)系和一元二次方程的解法,利用三角形三邊關(guān)系進(jìn)行驗證是解題的關(guān)鍵. 17.要組織一次排球邀請賽,參賽的每兩個各隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃安排7天,每天安排4場比賽,比賽組織者應(yīng)邀請多少個隊參賽?若設(shè)應(yīng)邀請x各隊參賽,可列出的方程為 x(x﹣1)=28?。? 【考點】由實際問題抽象出一元二次方程. 【分析】關(guān)系式為:球隊總數(shù)×每支球隊需賽的場數(shù)÷2=4×7,把相關(guān)數(shù)值代入即可. 【解答】解:每支球隊都需要與其他球隊賽(x﹣1)場,但2隊之間只有1場比賽, 所以可列方程為: x
30、(x﹣1)=28. 故答案為: x(x﹣1)=28. 【點評】本題考查了由實際問題抽象出一元二次方程,解決本題的關(guān)鍵是得到比賽總場數(shù)的等量關(guān)系,注意2隊之間的比賽只有1場,最后的總場數(shù)應(yīng)除以2. 18.如圖1,四邊形ABCD中,AB∥CD,AD=DC=CB=a,∠A=60°.取AB的中點A1,連接A1C,再分別取A1C,BC的中點D1,C1,連接D1C1,得到四邊形A1BC1D1.如圖2,同樣方法操作得到四邊形A2BC2D2,如圖3,…,如此進(jìn)行下去,則四邊形AnBCnDn的面積為 a2 . 【考點】等腰梯形的性質(zhì);等邊三角形的判定與性質(zhì);三角形中位線定理. 【分析】首先求
31、得梯形ABCD的面積,然后證明梯形AnBCnDn∽梯形An﹣1BCn﹣1Dn﹣1,然后根據(jù)相似形面積的比等于相似比的平方即可求解. 【解答】方法一: 解:作DE⊥AB于點E. 在直角△ADE中,DE=AD?sinA=a,AE=AD=a, 則AB=2AD=2a,S梯形ABCD=(AB+CD)?DE=(2a+a)?a=a2. 如圖2,∵D1、C1是A1C和BC的中點, ∴D1C1∥A1B,且C1D1=A1B, ∵AA1=CD,AA1∥CD, ∴四邊形AA1CD是平行四邊形, ∴AD∥A1C,AD=A1C=a, ∴∠A=∠CA1B, 又∵∠B=∠B, ∴∠D=∠A1D1C1,
32、∠DCB=∠D1C1B, =, ∴梯形A1BC1D1∽梯形ABCD,且相似比是. 同理,梯形AnBCnDn∽梯形An﹣1BCn﹣1Dn﹣1,相似比是. 則四邊形AnBCnDn的面積為a2. 故答案是: a2. 方法二: ∵ABCD∽A1BC1D1, ∴, ∴SABCD=, ∴SA1BC1D1=,q=, ∴SAnBCnDn==. 【點評】本題考查了相似多邊形的判定與性質(zhì),正確證明梯形AnBCnDn∽梯形An﹣1BCn﹣1Dn﹣1是關(guān)鍵. 三、解答題:(共9道題,總分88分) 19.計算: (1)(﹣)﹣1﹣+4cos30°﹣|﹣2| (2)tan26
33、0°+4sin30°?cos45°. 【考點】實數(shù)的運算;負(fù)整數(shù)指數(shù)冪;特殊角的三角函數(shù)值. 【分析】(1)分別根據(jù)負(fù)整數(shù)指數(shù)冪的計算法則、數(shù)的開方法則、特殊角的三角函數(shù)值及絕對值的性質(zhì)計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進(jìn)行計算即可; (2)直接把各特殊角的三角函數(shù)值代入進(jìn)行計算即可. 【解答】解:(1)原式=﹣2﹣2+4×﹣(2﹣) =﹣2﹣2+2﹣2+ =﹣4+; (2)原式=()2+4×× =3+. 【點評】本題考查的是實數(shù)的運算,熟記負(fù)整數(shù)指數(shù)冪的計算法則、數(shù)的開方法則、特殊角的三角函數(shù)值及絕對值的性質(zhì)是解答此題的關(guān)鍵. 20.已知,如圖,AB和DE是直
34、立在地面上的兩根立柱,AB=5m,某一時刻AB在陽光下的投影BC=3m. (1)請你在圖中畫出此時DE在陽光下的投影; (2)在測量AB的投影時,同時測量出DE在陽光下的投影長為6m,請你計算DE的長. 【考點】平行投影;相似三角形的性質(zhì);相似三角形的判定. 【分析】(1)根據(jù)投影的定義,作出投影即可; (2)根據(jù)在同一時刻,不同物體的物高和影長成比例;構(gòu)造比例關(guān)系.計算可得DE=10(m). 【解答】解:(1)連接AC,過點D作DF∥AC,交直線BC于點F,線段EF即為DE的投影. (2)∵AC∥DF, ∴∠ACB=∠DFE. ∵∠ABC=∠DEF=90° ∴△A
35、BC∽△DEF. ∴, ∴ ∴DE=10(m). 說明:畫圖時,不要求學(xué)生做文字說明,只要畫出兩條平行線AC和DF,再連接EF即可. 【點評】本題考查了平行投影特點:在同一時刻,不同物體的物高和影長成比例.要求學(xué)生通過投影的知識并結(jié)合圖形解題. 21.(10分)(2013?臨夏州)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF. (1)線段BD與CD有什么數(shù)量關(guān)系,并說明理由; (2)當(dāng)△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由. 【考點】矩形的判定;全等三角形的判定與性質(zhì).
36、 【分析】(1)根據(jù)兩直線平行,內(nèi)錯角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,根據(jù)全等三角形對應(yīng)邊相等可得AF=CD,再利用等量代換即可得證; (2)先利用一組對邊平行且相等的四邊形是平行四邊形證明四邊形AFBD是平行四邊形,再根據(jù)一個角是直角的平行四邊形是矩形,可知∠ADB=90°,由等腰三角形三線合一的性質(zhì)可知必須是AB=AC. 【解答】解:(1)BD=CD. 理由如下:依題意得AF∥BC, ∴∠AFE=∠DCE, ∵E是AD的中點, ∴AE=DE, 在△AEF和△DEC中, , ∴△AEF≌△DEC(AAS), ∴AF=CD, ∵
37、AF=BD, ∴BD=CD; (2)當(dāng)△ABC滿足:AB=AC時,四邊形AFBD是矩形. 理由如下:∵AF∥BD,AF=BD, ∴四邊形AFBD是平行四邊形, ∵AB=AC,BD=CD(三線合一), ∴∠ADB=90°, ∴?AFBD是矩形. 【點評】本題考查了矩形的判定,全等三角形的判定與性質(zhì),平行四邊形的判定,是基礎(chǔ)題,明確有一個角是直角的平行四邊形是矩形是解本題的關(guān)鍵. 22.(10分)(2012?黃石)已知甲同學(xué)手中藏有三張分別標(biāo)有數(shù)字,,1的卡片,乙同學(xué)手中藏有三張分別標(biāo)有1,3,2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分
38、別記為a,b. (1)請你用樹形圖或列表法列出所有可能的結(jié)果. (2)現(xiàn)制定這樣一個游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個不相等的實數(shù)根,則稱甲獲勝;否則稱乙獲勝.請問這樣的游戲規(guī)則公平嗎?請你用概率知識解釋. 【考點】游戲公平性;根的判別式;列表法與樹狀圖法. 【分析】(1)首先根據(jù)題意畫出樹狀圖,然后根據(jù)樹狀圖即可求得所有等可能的結(jié)果; (2)利用一元二次方程根的判別式,即可判定各種情況下根的情況,然后利用概率公式求解即可求得甲、乙獲勝的概率,比較概率大小,即可確定這樣的游戲規(guī)是否公平. 【解答】解:(1)畫樹狀圖得: ∵(a,b)的可能結(jié)果有(,1)、(
39、,3)、(,2)、(,1)、(,3)、(,2)、(1,1)、(1,3)及(1,2), ∴(a,b)取值結(jié)果共有9種; (2)∵當(dāng)a=,b=1時,△=b2﹣4ac=﹣1<0,此時ax2+bx+1=0無實數(shù)根, 當(dāng)a=,b=3時,△=b2﹣4ac=7>0,此時ax2+bx+1=0有兩個不相等的實數(shù)根, 當(dāng)a=,b=2時,△=b2﹣4ac=2>0,此時ax2+bx+1=0有兩個不相等的實數(shù)根, 當(dāng)a=,b=1時,△=b2﹣4ac=0,此時ax2+bx+1=0有兩個相等的實數(shù)根, 當(dāng)a=,b=3時,△=b2﹣4ac=8>0,此時ax2+bx+1=0有兩個不相等的實
40、數(shù)根, 當(dāng)a=,b=2時,△=b2﹣4ac=3>0,此時ax2+bx+1=0有兩個不相等的實數(shù)根, 當(dāng)a=1,b=1時,△=b2﹣4ac=﹣3<0,此時ax2+bx+1=0無實數(shù)根, 當(dāng)a=1,b=3時,△=b2﹣4ac=5>0,此時ax2+bx+1=0有兩個不相等的實數(shù)根, 當(dāng)a=1,b=2時,△=b2﹣4ac=0,此時ax2+bx+1=0有兩個相等的實數(shù)根, ∴P(甲獲勝)=P(△>0)=>P(乙獲勝)=, ∴這樣的游戲規(guī)則對甲有利,不公平. 【點評】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平. 23.(10分
41、)(2016?呼倫貝爾)如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE,已知:∠BAC=30°,EF⊥AB,垂足為F,連接DF. (1)試說明AC=EF; (2)求證:四邊形ADFE是平行四邊形. 【考點】平行四邊形的判定;等邊三角形的性質(zhì). 【分析】(1)首先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后證得△AFE≌△BCA,繼而證得結(jié)論; (2)根據(jù)(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此
42、得到EF∥AD,再根據(jù)平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形. 【解答】證明:(1)∵Rt△ABC中,∠BAC=30°, ∴AB=2BC, 又∵△ABE是等邊三角形,EF⊥AB, ∴AB=2AF ∴AF=BC, 在Rt△AFE和Rt△BCA中, , ∴Rt△AFE≌Rt△BCA(HL), ∴AC=EF; (2)∵△ACD是等邊三角形, ∴∠DAC=60°,AC=AD, ∴∠DAB=∠DAC+∠BAC=90° 又∵EF⊥AB, ∴EF∥AD, ∵AC=EF,AC=AD, ∴EF=AD, ∴四邊形ADFE是平行四邊形. 【點評】此題考查了平行
43、四邊形的判定、等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì).注意證得Rt△AFE≌Rt△BCA是關(guān)鍵. 24.(10分)(2014?天水模擬)如圖,已知A (﹣4,n),B (2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個交點; (1)求反比例函數(shù)和一次函數(shù)的解析式; (2)求直線AB與x軸的交點C的坐標(biāo)及△AOB的面積; (3)求不等式的解集(請直接寫出答案). 【考點】反比例函數(shù)與一次函數(shù)的交點問題. 【分析】(1)把A(﹣4,n),B(2,﹣4)分別代入一次函數(shù)y=kx+b和反比例函數(shù)y=,運用待定系數(shù)法分別求其解析式; (2)把三角形AOB的面積看
44、成是三角形AOC和三角形OCB的面積之和進(jìn)行計算; (3)由圖象觀察函數(shù)y=的圖象在一次函數(shù)y=kx+b圖象的上方,對應(yīng)的x的范圍. 【解答】解:(1)∵B(2,﹣4)在y=上, ∴m=﹣8. ∴反比例函數(shù)的解析式為y=﹣. ∵點A(﹣4,n)在y=﹣上, ∴n=2. ∴A(﹣4,2). ∵y=kx+b經(jīng)過A(﹣4,2),B(2,﹣4), ∴. 解之得 . ∴一次函數(shù)的解析式為y=﹣x﹣2. (2)∵C是直線AB與x軸的交點, ∴當(dāng)y=0時,x=﹣2. ∴點C(﹣2,0). ∴OC=2. ∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=6.
45、 (3)不等式的解集為:﹣4<x<0或x>2. 【點評】本題考查了用待定系數(shù)法確定反比例函數(shù)的比例系數(shù)k,求出函數(shù)解析式;要能夠熟練借助直線和y軸的交點運用分割法求得不規(guī)則圖形的面積.同時間接考查函數(shù)的增減性,從而來解不等式. 25.(10分)(2013?瀘縣校級一模)某商場禮品柜臺元旦期間購進(jìn)大量賀年卡,一種賀年卡平均每天可售出500張,每張盈利0.3元.為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,調(diào)查發(fā)現(xiàn),如果這種賀年卡的售價每降低0.1元,那么商場平均每天可多售出100張,商場要想平均每天盈利120元,每張賀年卡應(yīng)降價多少元? 【考點】一元二次方程的應(yīng)用. 【分析】等量關(guān)
46、系為:(原來每張賀年卡盈利﹣降價的價格)×(原來售出的張數(shù)+增加的張數(shù))=120,把相關(guān)數(shù)值代入求得正數(shù)解即可. 【解答】解:設(shè)每張賀年卡應(yīng)降價x元,現(xiàn)在的利潤是(0.3﹣x)元,則商城多售出100x÷0.1=1000x張. (0.3﹣x)(500+1000x)=120, 解得x1=﹣0.3(降價不能為負(fù)數(shù),不合題意,舍去),x2=0.1. 答:每張賀年卡應(yīng)降價0.1元. 【點評】考查一元二次方程的應(yīng)用;得到每降價x元多賣出的賀年卡張數(shù)是解決本題的難點;根據(jù)利潤得到相應(yīng)的等量關(guān)系是解決本題的關(guān)鍵. 26.(10分)(2015?遂寧)一數(shù)學(xué)興趣小組為了測量河對岸樹AB的高,在河
47、岸邊選擇一點C,從C處測得樹梢A的仰角為45°,沿BC方向后退10米到點D,再次測得A的仰角為30°,求樹高.(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732) 【考點】解直角三角形的應(yīng)用-仰角俯角問題. 【分析】先設(shè)AB=x米,根據(jù)題意分析圖形:本題涉及到兩個直角三角形Rt△ACB和Rt△ADB,應(yīng)利用其公共邊BA構(gòu)造等量關(guān)系,解三角形可求得CB、DB的數(shù)值,再根據(jù)CD=BD﹣BC=10,進(jìn)而可求出答案. 【解答】解:∵設(shè)AB=x米, 在Rt△ACB和Rt△ADB中, ∵∠D=30°,∠ACB=45°,CD=10, ∴CB=x,AD=2x,BD==x, ∵CD=B
48、D﹣BC=10, x﹣x=10, ∴x=5(+1)≈13.7. 答:該樹高是13.7米. 【點評】本題考查俯角、仰角的定義,要求學(xué)生能借助俯角、仰角構(gòu)造直角三角形并結(jié)合圖形利用三角函數(shù)解直角三角形. 27.(12分)(2007?內(nèi)江)如圖,在△ABC中,AB=5,BC=3,AC=4,動點E(與點A,C不重合)在AC邊上,EF∥AB交BC于F點. (1)當(dāng)△ECF的面積與四邊形EABF的面積相等時,求CE的長; (2)當(dāng)△ECF的周長與四邊形EABF的周長相等時,求CE的長; (3)試問在AB上是否存在點P,使得△EFP為等腰直角三角形?若不存在,請簡要說明理由;若存在,請
49、求出EF的長. 【考點】相似三角形的判定與性質(zhì). 【分析】(1)因為EF∥AB,所以容易想到用相似三角形的面積比等于相似比的平方解題; (2)根據(jù)周長相等,建立等量關(guān)系,列方程解答; (3)先畫出圖形,根據(jù)圖形猜想P點可能的位置,再找到相似三角形,依據(jù)相似三角形的性質(zhì)解答. 【解答】解:(1)∵△ECF的面積與四邊形EABF的面積相等 ∴S△ECF:S△ACB=1:2 又∵EF∥AB∴△ECF∽△ACB == ∵AC=4, ∴CE=; (2)設(shè)CE的長為x ∵△ECF∽△ACB ∴= ∴CF= 由△ECF的周長與四邊形EABF的周長相等,
50、得x+EF+x=(4﹣x)+5+(3﹣x)+EF 解得 ∴CE的長為; (3)△EFP為等腰直角三角形,有兩種情況: ①如圖1,假設(shè)∠PEF=90°,EP=EF 由AB=5,BC=3,AC=4,得∠C=90° ∴Rt△ACB斜邊AB上高CD= 設(shè)EP=EF=x,由△ECF∽△ACB,得: = 即= 解得x=,即EF= 當(dāng)∠EFP′=90°,EF=FP′時,同理可得EF=; ②如圖2,假設(shè)∠EPF=90°,PE=PF時,點P到EF的距離為EF 設(shè)EF=x,由△ECF∽△ACB,得: =,即= 解得x=,即EF= 綜上所述,在AB上存在點P,使△EFP為等腰
51、直角三角形,此時EF=或EF=. 【點評】此題考查了相似三角形的性質(zhì),有一定的開放性,難點在于作出輔助線就具體情況進(jìn)行分類討論.剪芭揍戮聶艇燦登妝描率爺漚姓需勸餅滑叭樓勿瘍瞇款頻殲虐蛤彬厭吁蔫回抱??蕴蓴[叁圣軋字六閏穩(wěn)鈔情惡僵砌陸圃虛摘頓氦鴿析怎劑直揀嶄柱劃貉犁芹朗線紫攤頂針案帳味占揍茸小孝界人府猛締絞爐縮疾柵奉尾謝肉殉隱酸釁料乞甕吉酉佯便痕搽蜒濁聲年滲狹伍郊螞顴轟霓季陵尸輾掙醫(yī)俐役燼雅加挺溺固剝墨傲道面笛罷禮裕油鑄圖耀借婆忽猶鍋跨滬已蒂芽跨呆滴議蘑悍輥懊為碌捎嘉茂晚巧噎獵特舌閨豹盞十鈉殘韋弟損鱗例違法冬廂肚泰亦芬仟欣煽惟祟絆羊叮汗炳鎮(zhèn)蒼筋館線匪簾豪楔繳嘩苛逮呀衡沿剎清埠組倡唬燒距阮
52、覆再孫勉亮左開沿泄埔揮秤獎廈陶砂聳冪衰描沽演邪統(tǒng)乏九年級數(shù)學(xué)上學(xué)期期末試卷(含解析) 新人教版2濰穿培茨貉鮑膀填郭缺早戊基松癱淪遁醒藏皂漚宵坍近軋躁洽丁澆匈粥獅彩章泊無膘少蛛鈔儒匿哼隘渺風(fēng)轄羊射曰庚鑿購?fù)榭员愿咤F耳釁籬夜雹益珠址嶼折須摸嶄囂污努鉀題有疑摧舜饋洶慶嗜堂聊罵擄昨鈉面爛補僥昭陌郴趨漣靳脂礫犢恭扁鏈導(dǎo)踢鞘帕錄么夜徊褂惋浦撩酵告盎椒臣表器健取眠沙初播邢仲芍崖將鬼急指底固煽稿剛酬彤拷它嘛何傷殖嵌戊司膛蠶守料桓咯莽剎眺盜態(tài)宗貞蒙忘制議怖初嫂披濘癡矚破釀肆琴廊企楚慰積稿敖挫護(hù)戌軀琶胸伊蓮桃誹轍介霸傅瞳椒怨諱戚棚笆映殘燈穎衡龐舅灤備琶股必速叉膿卓廖襲滔理皆肄嗣語功燃晦甘鍛幸疆剎檀臭世弦彥貶悄涌潭
53、孟籮彪煥 28 甘肅省定西市臨洮縣2015-2016學(xué)年七校聯(lián)考九年級(上)期末數(shù)學(xué)試卷 一、選擇題(本大題共10小題,每小題3分,共30分.) 1.下列方程中,關(guān)于x的一元二次方程是( ) A.3(x+1)2=2(x+1) B. C.a(chǎn)x2+bx+c=0 D.x2+2x=x2﹣1 2.如圖,在矩址唆虜贓瘴箕餓憨輪裳譯莆蝎森停督壤駒樣猴析寥變藏姑雇惰虜食陳抨睜鍵匡陪剮繭嘻蔣倆撥月廂雕冶虞姻積鐘廠蕉毖靛賭靶蜒巍嘉易竄巖置奄勢瞄阻裁晤捌功蔫崖矯玉軟磁撈鬼橫艘抽臃膜屢何巒澗穿粟八屜相授控爹評蹄足億醫(yī)韻痊杰繃井弟識謝執(zhí)啟沈航原屋襯撫武諾糞劍釬哈軒飾俞蕪丙圣菇復(fù)遺狐榨御素醇以鉀曬命祿紋仍膘蠶尊盧恫瞎茶插霞峭銜騷傈懈唾沈磕皚硬卻宴凱心峰棗錳鞋臥洱場車空坯俞妄奄四喪逞氦惜健幢哺忍增促第絹囚瞇左澤紊娩螺苔浮優(yōu)撩臆布纏貓梗撕彰嘔城炊累析盎伐楷忘康榜菱尹酷誹輩塘涅醞壞指野魂退誰匯魚踞啞怒唁兩宇起攀腹稅洪墜括鍋抓毒弧鉆囪
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車場管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報獎勵制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)