《高中數(shù)學(xué) 第3講 柯西不等式與排序不等式 1 二維形式的柯西不等式課件 新人教A版選修45》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第3講 柯西不等式與排序不等式 1 二維形式的柯西不等式課件 新人教A版選修45(32頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第 三 講 柯西不等式與排序不等式一二維形式的柯西不等式 1.認(rèn)識(shí)二維形式的柯西不等式 2.理解二維形式的柯西不等式的幾何意義 3.會(huì)利用二維形式的柯西不等式進(jìn)行簡(jiǎn)單證明. 1.二維柯西不等式的應(yīng)用(重點(diǎn)) 2.常與不等式的性質(zhì)結(jié)合命題(難點(diǎn)) 3.牢記二維柯西不等式的結(jié)構(gòu)特點(diǎn)、注意其變形(易混點(diǎn)) 預(yù)習(xí)學(xué)案 1.如右圖,已知在正方形ABCD中,有四個(gè)全等的直角三角形,設(shè)直角三角形的兩條直角邊的長(zhǎng)為a,b,則正方形ABCD的面積為S1_,4個(gè)直角三角形面積的和為S2_,則S1_S2(填“”“”或“”)據(jù)此,我們就可得到一個(gè)不等式_(用a,b的式子表示),并且當(dāng)a_b時(shí),直角三角形變?yōu)開(kāi)時(shí),S1
2、S2.a2b22aba2b22ab等腰直角三角形 二維形式的柯西不等式(acbd)2 adbc | 0 存在實(shí)數(shù)k, 使k P1(x1,y1),P2(x2,y2),O(0,0)三點(diǎn)共線,且P1,P2在原點(diǎn)兩旁 1二維形式的柯西不等式可用_表示() Aa2b22ab(a,bR) B(a2b2)(c2d2)(abcd)2(a,b,c,dR) C(a2b2)(c2d2)(acbd)2(a,b,c,dR) D(a2b2)(c2d2)(acbd)2(a,b,c,dR) 答案:C課堂學(xué)案二維柯西不等式代數(shù)形式的應(yīng)用柯西不等式向量形式的應(yīng)用 2已知a,bR,且ab1.求證:(axby)2ax2by2. 思路點(diǎn)撥解答本題可采用向量形式的柯西不等式二維柯西不等式的綜合應(yīng)用 簡(jiǎn)單柯西不等式 (acbd)2(a2b2)(c2d2) 與中學(xué)數(shù)學(xué)中的代數(shù)、幾何、三角等各方面都有聯(lián)系,熟悉這些聯(lián)系能更本質(zhì)地把握不等式,并能更自覺(jué)地應(yīng)用它 (1)全量不小于部分由恒等式 (a2b2)(c2d2)(acbd)2(adbc)2. 即得(a2b2)(c2d2)(acbd)2.簡(jiǎn)單柯西不等式的認(rèn)識(shí) 柯西不等式的向量形式:設(shè),為平面上的兩個(gè)向量,則 |. 當(dāng)及為非零向量時(shí),上式中等號(hào)成立向量和共線存在實(shí)數(shù)0,使得.柯西不等式的向量表示