自動控制系統(tǒng)原理 課后習題問題詳解
《自動控制系統(tǒng)原理 課后習題問題詳解》由會員分享,可在線閱讀,更多相關《自動控制系統(tǒng)原理 課后習題問題詳解(108頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、word 第1章 控制系統(tǒng)概述 【課后自測】 1-1 試列舉幾個日常生活中的開環(huán)控制和閉環(huán)控制系統(tǒng),說明它們的工作原理并比擬開環(huán)控制和閉環(huán)控制的優(yōu)缺點。 解:開環(huán)控制——半自動、全自動洗衣機的洗衣過程。 工作原理:被控制量為衣服的干凈度。洗衣人先觀察衣服的臟污程度,根據(jù)自己的經(jīng)驗,設定洗滌、漂洗時間,洗衣機按照設定程序完成洗滌漂洗任務。系統(tǒng)輸出量〔即衣服的干凈度〕的信息沒有通過任何裝置反響到輸入端,對系統(tǒng)的控制不起作用,因此為開環(huán)控制。 閉環(huán)控制——衛(wèi)生間蓄水箱的蓄水量控制系統(tǒng)和空調、冰箱的溫度控制系統(tǒng)。 工作原理:以衛(wèi)生間蓄水箱蓄水量控制為例,系統(tǒng)的被控制量〔輸出量〕為蓄水箱水
2、位〔反響蓄水量〕。水位由浮子測量,并通過杠桿作用于供水閥門〔即反響至輸入端〕,控制供水量,形成閉環(huán)控制。當水位達到蓄水量上限高度時,閥門全關〔按要求事先設計好杠桿比例〕,系統(tǒng)處于平衡狀態(tài)。一旦用水,水位降低,浮子隨之下沉,通過杠桿打開供水閥門,下沉越深,閥門開度越大,供水量越大,直到水位升至蓄水量上限高度,閥門全關,系統(tǒng)再次處于平衡狀態(tài)。 開環(huán)控制和閉環(huán)控制的優(yōu)缺點如下表 控制系統(tǒng) 優(yōu)點 缺點 開環(huán)控制 簡單、造價低、調節(jié)速度快 調節(jié)精度差、無抗多因素干擾能力 閉環(huán)控制 抗多因素干擾能力強、調節(jié)精度高 結構較復雜、造價較高 1-2 自動控制系統(tǒng)通常有哪些環(huán)節(jié)組成?各個環(huán)節(jié)
3、分別的作用是什么? 解:自動控制系統(tǒng)包括被控對象、給定元件、檢測反響元件、比擬元件、放大元件和執(zhí)行元件。各個根本單元的功能如下: 〔1〕被控對象—又稱受控對象或對象,指在控制過程中受到操縱控制的機器設備或過程。 〔2〕給定元件—可以設置系統(tǒng)控制指令的裝置,可用于給出與期望輸出量相對應的系統(tǒng)輸入量。 〔3〕檢測反響元件—測量被控量的實際值并將其轉換為與輸入信號同類的物理量,再反響到系統(tǒng)輸入端作比擬,一般為各類傳感器。 〔4〕比擬元件—把測量元件檢測的被控量實際值與給定元件給出的給定值進展比擬,分析計算并產(chǎn)生反響兩者差值的偏差信號。常用的比擬元件有差動放大器、機械差動裝置和電橋等。
4、〔5〕放大元件—當比擬元件產(chǎn)生的偏差信號比擬微弱不足以驅動執(zhí)行元件動作時,可通過放大元件將微弱信號作線性放大。如電壓偏差信號,可用電子管、晶體管、集成電路、晶閘管等組成的電壓放大器和功率放大級加以放大。 〔6〕執(zhí)行元件—用于驅動被控對象,達到改變被控量的目的。用來作為執(zhí)行元件的有閥、電動機、液壓馬達等。 〔7〕校正元件:又稱補償元件,它是結構或參數(shù)便于調整的元件,用串聯(lián)或反響的方式連接在系統(tǒng)中,以改善控制系統(tǒng)的動態(tài)性能和穩(wěn)態(tài)性能。 1-3 試闡述對自動控制系統(tǒng)的根本要求。 解:自動控制系統(tǒng)的根本要求概括來講,就是要求系統(tǒng)具有穩(wěn)定性、準確性和快速性。 穩(wěn)定性是對系統(tǒng)最根本的要求
5、,不穩(wěn)定的系統(tǒng)是無常工作的,不能實現(xiàn)預定控制任務。系統(tǒng)的穩(wěn)定性,取決于系統(tǒng)的結構和參數(shù),與外界因素無關。所謂穩(wěn)定性是指:當受到外作用后〔系統(tǒng)給定值發(fā)生變化或受到干擾因素影響〕,系統(tǒng)重新恢復平衡的能力以與輸出響應動態(tài)過程振蕩的振幅和頻率。簡單來講,假設一個系統(tǒng)穩(wěn)定,如此當其在外部作用下偏離原來的平衡狀態(tài),一旦外部作用消失,經(jīng)過一定時間,該系統(tǒng)仍能回到原來的平衡狀態(tài)。反之,系統(tǒng)不穩(wěn)定。 準確性是衡量系統(tǒng)控制精度的指標,用穩(wěn)態(tài)誤差來表示。當系統(tǒng)達到穩(wěn)態(tài)后,穩(wěn)態(tài)誤差可由給定值與被控量穩(wěn)態(tài)值之間的偏差來表示,誤差越小,表示系統(tǒng)的輸出跟隨給定輸入信號的精度越高。 快速性反響系統(tǒng)輸出響應動態(tài)過程時間的長
6、短,明確系統(tǒng)輸出信號跟蹤輸入信號的快慢程度。系統(tǒng)響應越快,說明系統(tǒng)的輸出復現(xiàn)輸入信號的能力越強,明確性快速性越好。 在同一個系統(tǒng)中,上述三方面的性能要求通常是相互制約的。 1-4 直流發(fā)電機電壓控制系統(tǒng)如如下圖,圖1-17〔a〕為開環(huán)控制,圖1-17〔b〕為閉環(huán)控制。發(fā)電機電動勢與原動機轉速成正比,同時與勵磁電流成正比。當負載變化時,由于發(fā)電機電樞阻上電壓降的變化,會引起輸出電壓的波動。 〔1〕試說明開環(huán)控制的工作原理,并分析原動機轉速的波動和負載的變化對發(fā)電機輸出電壓的影響。 〔2〕試分析閉環(huán)控制的控制過程,并與開環(huán)控制進展比擬,說明負載的作用。 〔a〕
7、 〔b〕 圖1-17 直流發(fā)電機電壓控制系統(tǒng) 解:〔1〕這是一個通過調節(jié)原動機勵磁,控制輸出電壓的直流發(fā)電機系統(tǒng)。 控制作用的實現(xiàn)是輸入信號電壓控制原動機勵磁的電壓輸出,再有原動機勵磁的輸出電壓控制直流發(fā)電機的輸出電壓,進一步帶動負載工作。 由于發(fā)電機電動勢與原動機轉速成正比,同時與勵磁電流成正比,所以當原動機轉速降低時,發(fā)電機輸出電壓同時降低。當負載增加時,輸出電壓同樣降低。 〔2〕該閉環(huán)控制系統(tǒng)反響信號從輸出電壓得到直接送入電源輸入端,形成負反響控制。當發(fā)電機輸出電壓減小時,原動機勵磁增加,進而使發(fā)電機輸出電壓上升。 1-5 圖1-18所示為水位
8、控制系統(tǒng),分析系統(tǒng)工作原理,指出系統(tǒng)被控對象、被控量、控制器、檢測反響元件、執(zhí)行元件、給定輸入量、干擾量、輸出量,并畫出系統(tǒng)原理方框圖。 圖1-18 水位控制系統(tǒng) 解:被控對象:水池;被控量:水位;控制器:放大器;檢測反響元件:浮子、電位器;執(zhí)行元件:電動機,減速器,閥門;給定輸入量:給定水位;干擾量:輸出流量與輸入流量的變化;輸出量:實際水位。 系統(tǒng)工作原理:當輸入流量與輸出流量相等時,水位的實際測量值和給定值相等,系統(tǒng)處于相對平衡狀態(tài),電動機無輸出,閥門位置不變。當輸出流量增加時,系統(tǒng)水位下降,通過浮子檢測后帶動電位器抽頭移動,電動機獲得一個正電壓,通過齒輪減速器傳遞,使閥門打開
9、,從而增參加水流量使水位上升,當水位回到給定值時,電動機的輸入電壓又會回到零,系統(tǒng)重新達到平衡狀態(tài)。反之易然。 系統(tǒng)原理方框圖: 1-6 圖1-19所示為倉庫大門控制系統(tǒng),試說明大門開啟和關閉的工作原理。當大門不能全開或全關時,應該如何調整。 圖1-19 倉庫大門控制系統(tǒng) 解:當給定電位器和測量電位器輸出相等時,放大器無輸出,門的位置不變。假設門的原始平衡位置在關狀態(tài),門要打開時,“關門〞開關打開,“開門〞開關閉合。給定電位器與測量電位器輸出不相等,其電信號經(jīng)放大器比擬放大,再經(jīng)伺服電機和絞盤帶動門改變位置,直到門完全打開,其測量電位器輸出與給定電位器輸出相等,放大器無輸出,門
10、的位置停止改變,系統(tǒng)處于新的平衡狀態(tài)。系統(tǒng)方框圖如解圖所示。 元件功能 電位器組——將給定“開〞、“關〞信號和門的位置信號變成電信號。為給定、測量元件。 放大器、伺服電機——將給定信號和測量信號進展比擬、放大。為比擬、放大元件。 絞盤——改變門的位置。為執(zhí)行元件。 門——被控對象。 系統(tǒng)的輸入量為“開〞、“關〞信號;輸出量為門的位置。 當大門不能全開或全關時,應該調整電位器組。 108 / 108 第2章 自動控制系統(tǒng)的數(shù)學模型 【課后自測
11、】 2-1 式中,是輸入量,是輸出量;,,為中間變量;,,,為常數(shù)。畫出系統(tǒng)的動態(tài)結構圖,并求傳遞函數(shù)。 解:對取拉氏變換可得進一步變換可得 上式分別作出動態(tài)結構圖可得 將上面四局部組合可得系統(tǒng)的動態(tài)結構圖為 求出系統(tǒng)傳遞函數(shù)為 2-2 試用復阻抗法求題2-2所示電路的傳遞函數(shù)。 〔a〕 〔b〕 〔c〕 〔d〕 圖2-60 題2-2有源網(wǎng)絡和無源網(wǎng)絡圖 解:題目中要求利用復阻
12、抗法求電路傳遞函數(shù),分別計算如下: 〔a〕 〔b〕 〔c〕根據(jù)理想運算放大器虛短和虛短可得 〔d〕根據(jù)理想運算放大器虛短和虛短可得 2-3假設某系統(tǒng)的單位階躍響應為,試求系統(tǒng)的傳遞函數(shù)和脈沖傳遞函數(shù)。 解:根據(jù)題意可得 系統(tǒng)輸入信號為,對應, 輸出信號為,對應, 如此系統(tǒng)傳遞函數(shù)為 系統(tǒng)脈沖傳遞函數(shù)為 2-4結構圖如題2-4圖所示,求傳遞函數(shù)。 圖2-61 題2-4控制系統(tǒng)結構圖 解:欲求傳遞函數(shù),對原系統(tǒng)結構圖等效可得 根據(jù)等效的系統(tǒng)結構圖可得 欲求傳遞函數(shù),對原系統(tǒng)結構圖等效可得 根據(jù)等效的系統(tǒng)結構圖可得 欲求傳遞函數(shù),對原系統(tǒng)
13、結構圖等效可得 根據(jù)等效的系統(tǒng)結構圖可得 欲求傳遞函數(shù),對原系統(tǒng)結構圖等效可得 根據(jù)等效的系統(tǒng)結構圖可得 2-5 控制系統(tǒng)結構圖如題2-5圖所示,試求〔1〕系統(tǒng)閉環(huán)傳遞函數(shù); 〔2〕當,,,,和滿足什么樣的關系時,輸出不受干擾信號的影響。 圖2-62 題2-6控制系統(tǒng)結構圖 解:〔1〕欲求系統(tǒng)閉環(huán)傳遞函數(shù),令,對原系統(tǒng)結構圖等效可得 繪制相應的信號流圖為 系統(tǒng)有兩條回路和,回路增益分別為 、 如此該系統(tǒng)的特征式為 系統(tǒng)有兩條前向通路,其增益為 通道的增益為,余子式 的增益為,余子式 用梅遜公式求得系統(tǒng)的傳遞函數(shù)為 (2)輸出不受干
14、擾信號的影響,即,令,對原系統(tǒng)結構圖等效可得 2-6某系統(tǒng)動態(tài)結構圖如題2-6圖所示,其中為輸入量,為擾動量,為輸出量,求系統(tǒng)總的輸出的表達式。 圖2-63 題2-6某控制系統(tǒng)結構圖 解:系統(tǒng)總輸出由求得,需要分別求出和 欲求系統(tǒng)閉環(huán)傳遞函數(shù),令,對原系統(tǒng)結構圖等效可得 系統(tǒng)有四條回路,回路增益分別為 、、、 其中和不相接觸,如此這一對兩兩不想接觸回路的回路增益乘積為 如此該系統(tǒng)的特征式為 系統(tǒng)有一條前向通路,其增益與其余子式分別為 ,余子式 用梅遜公式求得系統(tǒng)的傳遞函數(shù)為 欲求系統(tǒng)閉環(huán)傳遞函數(shù),令,對原系統(tǒng)結構圖等效可得
15、 系統(tǒng)有四條回路,回路增益分別為 、、、 其中和不相接觸,如此這一對兩兩不想接觸回路的回路增益乘積為 如此該系統(tǒng)的特征式為 系統(tǒng)有一條前向通路,其增益與其余子式分別為 ,余子式 用梅遜公式求得系統(tǒng)的傳遞函數(shù)為 2-7 如題2-7圖所示為一系統(tǒng)結構圖,試通過結構圖簡化求取系統(tǒng)傳遞函數(shù),,,。 圖2-64 題2-7某控制系統(tǒng)結構圖 解:欲求系統(tǒng)閉環(huán)傳遞函數(shù),對原系統(tǒng)結構圖等效可得 欲求系統(tǒng)閉環(huán)傳遞函數(shù),對原系統(tǒng)結構圖等效可得 欲求系統(tǒng)閉環(huán)傳遞函數(shù),對原系統(tǒng)結構圖等效可得 欲求系統(tǒng)閉環(huán)傳遞函數(shù),對原系統(tǒng)結構圖等效可得 2-8
16、系統(tǒng)的信號流圖題如2-8圖所示,試求系統(tǒng)的傳遞函數(shù)。 〔a〕 〔b〕 〔c〕 圖2-65 題2-8系統(tǒng)的信號流圖 解: 〔a〕系統(tǒng)有三條回路,回路增益分別為 、、 其中和不相接觸,如此這一對兩兩不想接觸回路的回路增益乘積為 如此該系統(tǒng)的特征式為 系統(tǒng)有兩條前向通路,其增益與其余子式分別為 ,余子式 ,余子式 用梅遜公式求得系統(tǒng)的傳遞函數(shù)為 (b) 系統(tǒng)有五條回路,回路增益分別為 、、、、
17、如此該系統(tǒng)的特征式為 系統(tǒng)只有一條前向通路,其增益為,余子式 用梅遜公式求得系統(tǒng)的傳遞函數(shù)為 〔c〕系統(tǒng)有三條回路,回路增益分別為 、、 其中和不相接觸,如此這一對兩兩不想接觸回路的回路增益乘積為 如此該系統(tǒng)的特征式為 系統(tǒng)只有一條前向通路,其增益為,余子式 用梅遜公式求得系統(tǒng)的傳遞函數(shù)為 2-9系統(tǒng)的信號流圖如題2-9圖所示,試求系統(tǒng)的傳遞函數(shù)。假設,為使上述傳遞函數(shù)保持不變,應如何修改? 圖2-66 題2-9某系統(tǒng)的信號流圖 解:〔1〕系統(tǒng)有三條回路,回路增益分別為 、、 無兩兩不想接觸回路,如此該系統(tǒng)的特征式為 系統(tǒng)只有一條前向通路,其
18、增益為,余子式 用梅遜公式求得系統(tǒng)的傳遞函數(shù)為 〔2〕假設,如此系統(tǒng)三條回路增益分別為 、、 系統(tǒng)前向通路增益為,余子式 求得系統(tǒng)的傳遞函數(shù)為 題目要求系統(tǒng)傳遞函數(shù)保持不變,如此有 計算可得 2-10控制系統(tǒng)結構圖如題2-10圖所示,試求出它們的傳遞函數(shù)。 〔a〕 〔b〕 〔c〕 〔d〕
19、 〔e〕 〔f〕 〔g〕 圖2-67 題2-10 控制系統(tǒng)結構圖 解:〔a〕系統(tǒng)動態(tài)結構圖中發(fā)生交叉連接,為消除交叉,可將前向通道中兩相鄰比擬點互換位置,等效動態(tài)結構圖如如下圖 計算可得系統(tǒng)傳遞函數(shù)為 〔b〕系統(tǒng)動態(tài)結構圖中未發(fā)生交叉連接,利用并聯(lián)和反響即可求出系統(tǒng)傳遞函數(shù)為 (c) 根據(jù)系統(tǒng)動態(tài)結構圖畫出等效信號流圖如如下圖 系統(tǒng)只有一條回路,回路增益為 如此該系統(tǒng)的特征式為 系統(tǒng)有兩條前向通路,其通道增益分別為 ,余子式
20、 ,余子式 用梅遜公式求得系統(tǒng)的傳遞函數(shù)為 〔d〕系統(tǒng)動態(tài)結構圖可等效為 計算可得系統(tǒng)傳遞函數(shù)為 (e)根據(jù)系統(tǒng)動態(tài)結構圖畫出等效信號流圖如如下圖 系統(tǒng)有兩條回路,回路增益分別為 、 無兩兩不想接觸回路,如此該系統(tǒng)的特征式為 系統(tǒng)只有一條前向通路,其增益為,余子式 用梅遜公式求得系統(tǒng)的傳遞函數(shù)為 〔f〕根據(jù)系統(tǒng)動態(tài)結構圖畫出等效信號流圖如如下圖 系統(tǒng)有兩條回路,回路增益分別為 、、、 無兩兩不想接觸回路,如此該系統(tǒng)的特征式為 系統(tǒng)有四條前向通路,其通道增益分別為 ,余子式 ,余子式 ,余子式 ,余子式 用梅遜公式求得系統(tǒng)的傳遞函數(shù)為
21、 〔g〕根據(jù)系統(tǒng)動態(tài)結構圖畫出等效信號流圖如如下圖 系統(tǒng)有三條回路,回路增益分別為 、、 無兩兩不想接觸回路,如此該系統(tǒng)的特征式為 系統(tǒng)有兩條前向通路,其通道增益分別為 ,余子式 ,余子式 用梅遜公式求得系統(tǒng)的傳遞函數(shù)為 第3章 自動控制系統(tǒng)的是域分析法 【課后自測】 3-1 一階系統(tǒng)的結構如如下圖,其中為開環(huán)放大系數(shù),為反響系數(shù)。設,,試求系統(tǒng)單位階躍作用下的調節(jié)時間〔〕。如果要求調節(jié)時間為0.1秒,設開環(huán)放大系數(shù)不變試求反響系數(shù) 圖3-35題3-1圖 解:由結構圖得系統(tǒng)的閉環(huán)傳遞函數(shù)為 系統(tǒng)誤差要求為,如此調節(jié)時間 將,
22、帶入可得秒 假設要求調節(jié)時間為0.1秒,計算值。此時,解得 3-2 單位負反響控制系統(tǒng)的開環(huán)傳遞函數(shù)為,求系統(tǒng)在單位階躍信號作用下的響應。 解:系統(tǒng)閉環(huán)傳遞函數(shù)為 對照二階系統(tǒng)的標準形式,得, 因而可求得, 因此有, 代入欠阻尼狀態(tài)二階系統(tǒng)單位階躍響應可得 3-3 單位負反響控制系統(tǒng)的開環(huán)傳遞函數(shù)為,求系統(tǒng)在單位階躍信號作用下的響應。 解:系統(tǒng)閉環(huán)傳遞函數(shù)為 對照二階系統(tǒng)的標準形式,得, 因而可求得, 又有,如此系統(tǒng)的單位階躍響應為 經(jīng)拉氏反變換可得 3-4 單位負反響控制系統(tǒng)的開環(huán)傳遞函數(shù)為 〔1〕試確定系統(tǒng)特征參數(shù)與實際參數(shù)的關系。
23、〔2〕當時,求系統(tǒng)的峰值時間、調節(jié)時間和超調量。 〔3〕欲使超調量為16%,當不變時,應該如何取值。 解:〔1〕系統(tǒng)閉環(huán)傳遞函數(shù)為 對照二階系統(tǒng)的標準形式,得, 因而可求得, 〔2〕當時,代入可得 , 秒 秒 〔3〕由題意可得解得 3-5 單位負反響二階系統(tǒng)的單位階躍響應曲線如如下圖,試確定該系統(tǒng)的開環(huán)傳遞函數(shù) 圖3-36 題3-5圖 解:由系統(tǒng)單位階躍響應曲線可知 可解得 可解得 代入二階系統(tǒng)開環(huán)傳遞函數(shù)標準形式可得 3-6 系統(tǒng)結構如如下圖,試求取值多少是,系統(tǒng)才能穩(wěn)定。 圖3-39 題3-6圖 解:由系統(tǒng)結構圖可得系
24、統(tǒng)閉環(huán)傳遞函數(shù)為 可得系統(tǒng)的閉環(huán)特征方程為 假設要求系統(tǒng)穩(wěn)定,閉環(huán)特征方程系數(shù)需大于零,可得 列寫勞斯表為 根據(jù)勞斯穩(wěn)定判據(jù),系統(tǒng)穩(wěn)定的充要條件為 綜合得 3-7 系統(tǒng)結構如如下圖,欲使系統(tǒng)具有以上的穩(wěn)定裕度,試確定的取值圍。 圖3-38題3-7圖 解:根據(jù)題意可得,系統(tǒng)閉環(huán)特征方程為 閉環(huán)特征方程為 整理形式可得 欲使系統(tǒng)具有以上的穩(wěn)定裕度,將代入原閉環(huán)特征方程,得 整理上可得 根據(jù)勞斯穩(wěn)定判據(jù),系統(tǒng)穩(wěn)定的充要條件為 所以的取值圍是 3-8 設單位負反響控制系統(tǒng)的開環(huán)傳遞函數(shù)分別為: 〔1〕 〔2〕 試確定系統(tǒng)穩(wěn)定時
25、的取值圍。 解:(1)根據(jù)題意可得,系統(tǒng)閉環(huán)特征方程為 閉環(huán)特征方程為 整理形式可得 根據(jù)勞斯穩(wěn)定判據(jù),系統(tǒng)穩(wěn)定的充要條件為 (2)根據(jù)題意可得,系統(tǒng)閉環(huán)特征方程為 閉環(huán)特征方程為 整理形式可得 根據(jù)勞斯穩(wěn)定判據(jù),計算可得系統(tǒng)穩(wěn)定的充要條件為 3-9 系統(tǒng)閉環(huán)特征方程如下: 〔1〕 〔2〕 〔3〕 〔4〕 試用勞斯穩(wěn)定判據(jù)判斷系統(tǒng)的穩(wěn)定性,如不穩(wěn)定指出s有半平面上根的個數(shù)。并用MATLAB軟件求其特征根進展驗證。 解:〔1〕列出勞斯表 由勞斯表可見,第一列元素的符號改變了兩次,表示有兩個正實部根〔右根〕,相應的系統(tǒng)為不穩(wěn)定。
26、 MATLAB軟件求其特征根為: >> p=[1 3 10 40]; >> roots(p) ans = -3.4557 〔2〕列出勞斯表 由勞斯表可見,第一列元素的符號改變了兩次,表示有兩個正實部根〔右根〕,相應的系統(tǒng)為不穩(wěn)定。 MATLAB軟件求其特征根為: >> p=[1 3 1 3 1]; >> roots(p) ans = -2.9656 -0.3372 〔3〕列出勞斯表 由勞斯表可見,第一列元素的符號改變了兩次,表示有兩個正實部根〔右根〕,相應的系統(tǒng)為不穩(wěn)定
27、。 MATLAB軟件求其特征根為: >> p=[1 6 3 2 1 1]; >> roots(p) ans = -5.5171 〔4〕列出勞斯表 由于這一行的元素全為零,使得勞斯表無法往下排列??捎缮弦恍械脑刈鳛橄禂?shù)組成輔助多項式 對求導,得 用系數(shù)8和16代替全零行中的零元素,并將勞斯表排完。 由上表可知,第一列元素的符號沒有變化,明確該特征方程在s右半平面上沒有特征根。但這一行的元素全為零,明確有大小相等、符號相反的實根和〔或〕共軛根。 MATLAB軟件求其特征根為: >> p=[1 2 6 8
28、 10 4 4]; >> roots(p) ans = 3-10單位負反響控制系統(tǒng)的開環(huán)傳遞函數(shù)如下,試求系統(tǒng)的穩(wěn)態(tài)位置誤差系數(shù)、穩(wěn)態(tài)速度誤差系數(shù)和穩(wěn)態(tài)速度誤差系數(shù),并確定當輸入信號為和時系統(tǒng)的穩(wěn)態(tài)誤差。 〔1〕 〔2〕 〔3〕 〔4〕 解:〔1〕勞斯判據(jù)判斷可得該系統(tǒng)穩(wěn)定,根據(jù)系統(tǒng)開環(huán)傳遞函數(shù)分別求出系統(tǒng) 時,靜態(tài)位置誤差系數(shù)為 ,此時 時,靜態(tài)速度誤差系數(shù) ,此時 時,靜態(tài)加速度誤差系數(shù) ,此時 時, 〔2〕勞斯判據(jù)判斷可得該系統(tǒng)穩(wěn)定,根據(jù)系統(tǒng)開環(huán)傳遞函數(shù)分別求出系統(tǒng) 時,靜態(tài)位置誤差系數(shù)為 ,此時 時,靜態(tài)速度誤差系數(shù)
29、 ,此時 時,靜態(tài)加速度誤差系數(shù) ,此時 時, 〔3〕勞斯判據(jù)判斷可得該系統(tǒng)穩(wěn)定,根據(jù)系統(tǒng)開環(huán)傳遞函數(shù)分別求出系統(tǒng) 時,靜態(tài)位置誤差系數(shù)為 ,此時 時,靜態(tài)速度誤差系數(shù) ,此時 時,靜態(tài)加速度誤差系數(shù) ,此時 時, 〔4〕勞斯判據(jù)判斷可得該系統(tǒng)不穩(wěn)定 3-11 一單位負反響控制系統(tǒng),假設要求 〔1〕跟蹤單位斜坡輸入時系統(tǒng)的穩(wěn)態(tài)誤差為2 〔2〕設該系統(tǒng)為三階系統(tǒng),其中一對復數(shù)閉環(huán)極點為 求滿足上述要求的開環(huán)傳遞函數(shù)。 解:根據(jù)條件,可知系統(tǒng)是I型三階系統(tǒng),因而令其開環(huán)傳遞函數(shù) 因為 按照定義 相應閉環(huán)傳遞函數(shù)為: 可得 所求開環(huán)傳遞函數(shù)為
30、3-12 系統(tǒng)結構如如下圖,其中試求 〔1〕在作用下系統(tǒng)的穩(wěn)態(tài)誤差 〔2〕在和同時作用下系統(tǒng)的穩(wěn)態(tài)誤差 圖3-39 題3-12圖 解:〔1〕當系統(tǒng)輸入信號為時,系統(tǒng)結構圖等效為 根據(jù)系統(tǒng)等效結構圖可以得出,此時系統(tǒng)開環(huán)傳遞函數(shù),閉環(huán)特征方程為,勞斯穩(wěn)定判據(jù)可得系統(tǒng)穩(wěn)定。 靜態(tài)位置誤差系數(shù)為 ,此時 〔2〕當系統(tǒng)輸入信號為時,系統(tǒng)結構圖等效為 由動態(tài)結構圖可得 由動態(tài)結構圖可得 3-13 系統(tǒng)結構如如下圖,其中 〔1〕當和,求系統(tǒng)的穩(wěn)態(tài)誤差,并進展比擬。 〔2〕在擾動作用點之前的前向通道中引入積分環(huán)節(jié)對結果有什么影響,在擾動作用點之后引入
31、積分環(huán)節(jié)對結果又有什么影響。 圖3-40 題3-13圖 解:〔1〕當系統(tǒng)輸入信號為時,系統(tǒng)結構圖等效為 根據(jù)系統(tǒng)等效結構圖可以得出,此時系統(tǒng)開環(huán)傳遞函數(shù),閉環(huán)特征方程為。 當和時,可分別判斷系統(tǒng)均能達到穩(wěn)定。 靜態(tài)位置誤差系數(shù)為 ,此時 當和 當系統(tǒng)輸入信號為時,系統(tǒng)結構圖等效為 由動態(tài)結構圖可得 當和 綜上可得當,系統(tǒng)穩(wěn)態(tài)誤差為 當,系統(tǒng)穩(wěn)態(tài)誤差為 〔2〕擾動作用點之前的前向通道積分環(huán)節(jié)數(shù)與主反響通道積分環(huán)節(jié)之和決定系統(tǒng)響應擾動作用的型別,與擾動作用點之后的前向通道積分環(huán)節(jié)數(shù)無關。如果在擾動作用點之前的前向通道或主反響通道中設置個積分環(huán)節(jié),必可消
32、除系統(tǒng)在擾動信號作用下的穩(wěn)態(tài)誤差。 第4章 線性系統(tǒng)的根軌跡分析法 【課后自測】 4-1 系統(tǒng)開環(huán)傳遞函數(shù)的零極點分布如如下圖,試繪制系統(tǒng)概略根軌跡圖 圖4-17 題4-1圖 解: 4-2 系統(tǒng)的開環(huán)傳遞函數(shù)為 (1)試用相角條件證明該系統(tǒng)的根軌跡通過點 〔2〕求在閉環(huán)極點時系統(tǒng)的根軌跡增益 解:〔1〕假設點在根軌跡上,如此點應滿足相角條件如如下圖, 對于,由相角條件 ∠" 滿足相角條件,因此=-1在根軌跡上。 將代入幅值條件: 解出 4-3 單位負反響控制系統(tǒng)的開環(huán)傳遞函數(shù)如下,試繪制系統(tǒng)的根軌跡 〔1〕 〔2〕 解: 〔
33、1〕①,總共3條根軌跡,其中極點分別為 ② 確定實軸上軌跡, ③ 漸近線 ④ 確定根軌跡別離點 ,令, ⑤確定根軌跡與虛軸交點,令代入特征方程, 畫出根軌跡圖如下 〔2〕 ①,總共3條根軌跡,一條趨于零點,兩條趨于無窮遠,其中零極點分別為 ② 確定實軸上軌跡, ③ 漸近線 ④ 確定根軌跡別離點 得出 畫出根軌跡圖如下 4-4單位負反響控制系統(tǒng)的開環(huán)傳遞函數(shù)如下,試繪制系統(tǒng)的根軌跡 〔1〕 〔2〕 解〔1〕 ①,總共4條根軌跡,兩條趨于零點,兩條趨于無窮遠,其中零極點分別為 ②實軸上無軌跡 ③ 漸近線 ④出
34、射角和入射角 =223 畫出根軌跡圖如下: 〔2〕 ①,總共3條根軌跡,一條趨于零點,兩條趨于無窮遠,其中零極點分別為 ② 確定實軸上軌跡, ③ 漸近線 ④ 確定根軌跡別離點 得出 ⑤確定根軌跡與虛軸交點,令代入特征方程, 畫出根軌跡圖如下 4-5單位負反響控制系統(tǒng)的開環(huán)傳遞函數(shù)為,假設一對復數(shù)主導極點的阻尼比,求對應的根軌跡增益,相對應的主導極點和另一極點 解:,,因而設一對主極點 根據(jù)三角和公式得: 得 一對主極點分別為〔-0.764,j0.764〕,〔-0.764,-j0.764〕
35、 4-6 單位負反響控制系統(tǒng)的開環(huán)傳遞函數(shù)為 〔1〕試用MATLAB繪制該系統(tǒng)的根軌跡圖,并確定系統(tǒng)穩(wěn)定的值圍 〔2〕假設增加一個開環(huán)零點,如此根軌跡有什么變化?系統(tǒng)的穩(wěn)定性有什么變化? 〔1〕num=[1];den=[1,3,0,0]; >> rlocus(num,den); 系統(tǒng)不穩(wěn)定 〔2〕> num=[1,2];den=[1,3,0,0]; >> rlocus(num,den); 根軌跡全部在左半平面,變?yōu)橥耆€(wěn)定系統(tǒng) 4-7單位負反響控制系統(tǒng)的開環(huán)傳遞函數(shù)為 〔1〕試用MATLAB繪制該系統(tǒng)的根軌跡圖,并確定系統(tǒng)穩(wěn)定的值圍 〔2〕假設增加一個開環(huán)極點,
36、如此根軌跡有什么變化?系統(tǒng)的穩(wěn)定性有什么變化? num=[1];den=[1,3,0]; >> rlocus(num,den); 系統(tǒng)穩(wěn)定,k圍〔0-〕 num=[1];den=[1,4,3,0]; >> rlocus(num,den); 穩(wěn)定性變差,是系統(tǒng)穩(wěn)定的K值圍縮小,〔0-11.8〕 4-8 設系統(tǒng)閉環(huán)特征方程為,試畫出以a為參量的系統(tǒng)根軌跡,并判斷系統(tǒng)的穩(wěn)定性。 解: 等效開環(huán)傳遞函數(shù) ①,總共3條根軌跡,其中極點分別為 ② 確定實軸上軌跡, ③ 漸近線 ④ 確定根軌跡別離點 ,令, ⑤確定根軌跡與虛軸交點,令代入特征方
37、程, 畫出根軌跡圖如下 a從0連續(xù)變到16時,系統(tǒng)是穩(wěn)定的,之后系統(tǒng)不穩(wěn)定。 第5章 線性系統(tǒng)的頻域分析法 【課后自測】 5-1頻率特性有哪幾種分類方法? 解:幅頻特性,相頻特性,實頻特性和虛頻特性。 5-2采用半對數(shù)坐標紙有哪些優(yōu)點? 解:可以簡化頻率特性的繪制過程,利用對數(shù)運算可以將幅值的乘除運算化為加減運算,并可以用簡單的方法繪制近似的對數(shù)幅頻特性曲線。 5-3從伯德圖上看,一個比例加微分的環(huán)節(jié)與一個比例加積分的環(huán)節(jié)串聯(lián),兩者是否有可能相抵消。假設系統(tǒng)中有一個慣性環(huán)節(jié)使系統(tǒng)性能變差,那再添加一個怎樣的環(huán)節(jié)〔串聯(lián)〕可以完全消除這種影響,它的條件是什么? 解:
38、一個比例加微分的環(huán)節(jié)與一個比例加積分的環(huán)節(jié)串聯(lián),兩者是有可能相抵消;。假設系統(tǒng)中有一個慣性環(huán)節(jié)使系統(tǒng)性能變差,那再添加一個一階微分環(huán)節(jié)〔串聯(lián)〕可以完全消除這種影響,兩個環(huán)節(jié)的時間常數(shù)一樣即可。 5-5為什么要求在ωc附近L(ω)的斜率為-20dB/dec? 解:目的是保證系統(tǒng)穩(wěn)定性,假設為-40 dB/dec,如此所占頻率區(qū)間不能過寬,否如此系統(tǒng)平穩(wěn)性將難以滿足;假設該頻率更負,閉環(huán)系統(tǒng)將難以穩(wěn)定,因而通常取-20dB/dec。 5-6放大器的傳遞函數(shù)為 并測得ω=1 rad/s、幅頻、相頻φ=-π/4。試問放大系數(shù)K與時間常數(shù)T各為多少? 解:頻率特性為: 幅頻和相頻分別
39、為: 得到: 5-7當頻率ω1=2 rad/s、ω2=20 rad/s時,試確定如下傳遞函數(shù)的幅值和相角: 解:〔1〕 =2 rad/s時, =20 rad/s時, 〔2〕 rad/s時, rad/s時, 5-8 設單位反響系統(tǒng)的傳遞函數(shù)為 當把如下信號作用在系統(tǒng)輸入端時,求系統(tǒng)的穩(wěn)態(tài)輸出。 (1) r(t)=sin(t+30°) (2) r(t)=2 cos(2t-45°) (3) r(t)=sin(t+30°)-2 cos(2t-45°) 【解】:求系統(tǒng)閉環(huán)傳遞函數(shù) 根據(jù)頻率特性的定義,以與線性系統(tǒng)的
40、迭加性求解如下: 〔1〕 〔2〕 〔3〕 5-9假設某系統(tǒng)在輸入信號r(t)=1(t)的作用下,其輸出量c(t)為 t≥0 試求系統(tǒng)的傳遞函數(shù)G(s)和頻率特性G(jω)的表達式。 解: 單位階躍輸入信號的拉氏變換為 系統(tǒng)單位階躍響應的拉氏變換為 系統(tǒng)的閉環(huán)傳遞函數(shù)為 將代入傳遞函數(shù)可得 5-10 試求如下各系統(tǒng)的實頻特性、虛頻特性、幅頻特性和相頻特性。 解: 〔3〕 5-11各系統(tǒng)的開環(huán)傳遞函數(shù)為 試繪制各系統(tǒng)的開環(huán)對數(shù)幅相特性曲線。 解:〔1〕 ① 把各典型環(huán)節(jié)對應的交接頻率標在軸上,交
41、接頻率分別為0.2,0.5,1; ② 畫出低頻段直線。斜率為,其延長線過點〔1,40〕; ③ 由低頻段向高頻段延續(xù),每經(jīng)過一個交接頻率,根據(jù)不同環(huán)節(jié)特點,斜率作適當改變,這樣畫出對數(shù)幅頻特性曲線; ④ 根據(jù)典型環(huán)節(jié)特性,得相頻圍為,對數(shù)相頻特性曲線如如下圖。 根據(jù)以上分析,畫出的對數(shù)福相特性曲線如下: 〔2〕 ①把各典型環(huán)節(jié)對應的交接頻率標在軸上,交接頻率分別為0.1, 1; ②畫出低頻段直線。斜率為,其延長線過點〔1,46〕; ③由低頻段向高頻段延續(xù),每經(jīng)過一個交接頻率,根據(jù)不同環(huán)節(jié)特點,斜率作適當改變,這樣畫出對數(shù)幅頻特性曲線; ④根據(jù)典型環(huán)節(jié)特性,得相頻圍為
42、,對數(shù)相頻特性曲線如如下圖。 根據(jù)以上分析,畫出的對數(shù)福相特性曲線如下: 〔3〕 ①把各典型環(huán)節(jié)對應的交接頻率標在軸上,交接頻率分別為0.1,0.2,1, 5; ②畫出低頻段直線。斜率為,其延長線過點〔1,-16〕; ③由低頻段向高頻段延續(xù),每經(jīng)過一個交接頻率,根據(jù)不同環(huán)節(jié)特點,斜率作適當改變,這樣畫出對數(shù)幅頻特性曲線; ④根據(jù)典型環(huán)節(jié)特性,得相頻圍為,對數(shù)相頻特性曲線如如下圖。 根據(jù)以上分析,畫出的對數(shù)福相特性曲線如下: 5-12 系統(tǒng)對數(shù)幅頻特性曲線如圖5-58所示,試寫出它們的傳遞函數(shù)。 -20dB/dec -20dB/dec
43、 解: (a);(b) ;(c) (d) (e) (f) 5-13三個最小相位系統(tǒng)的開環(huán)對數(shù)幅頻特性漸近線如圖5-59所示。試寫出它們的傳遞函數(shù)并粗略地畫出各傳遞函數(shù)所對應的對數(shù)相頻特性曲線和奈氏曲線。 圖5-59 習題5-13圖 解:(a) (b) (c) 5-14 設系統(tǒng)開環(huán)幅相特性曲線如習題5-60圖所示,試判別系統(tǒng)穩(wěn)定性。其中p為開環(huán)傳遞函數(shù)的右極點數(shù),ν為開環(huán)的積分環(huán)節(jié)數(shù)。 圖5-60 習題5-14圖 解 〔a〕開環(huán)幅相曲線在,故閉環(huán)系統(tǒng)穩(wěn)定。 〔b〕開環(huán)幅相曲線在,故閉環(huán)系統(tǒng)不穩(wěn)定。 〔c〕
44、開環(huán)幅相曲線在,故閉環(huán)系統(tǒng)不穩(wěn)定。 〔d〕起點逆時針增補一條180曲線后,開環(huán)幅相曲線在,故閉環(huán)系統(tǒng)不穩(wěn)定。 〔e〕起點逆時針增補一條90曲線后,開環(huán)幅相曲線在,故閉環(huán)系統(tǒng)穩(wěn)定。 〔f〕起點逆時針增補一條180曲線后,開環(huán)幅相曲線在,故閉環(huán)系統(tǒng)不穩(wěn)定。 〔g〕開環(huán)幅相曲線在,故閉環(huán)系統(tǒng)穩(wěn)定。 〔h〕開環(huán)幅相曲線在,故閉環(huán)系統(tǒng)穩(wěn)定。 〔i〕起點逆時針增補一條270曲線后,開環(huán)幅相曲線在,故閉環(huán)系統(tǒng)不穩(wěn)定。 5-15系統(tǒng)開環(huán)傳遞函數(shù),試繪制系統(tǒng)開環(huán)極坐標圖,并判斷其穩(wěn)定性。 解〔1〕的最小相位系統(tǒng)奈氏圖起點終點刻畫出, 根據(jù)奈氏穩(wěn)定判據(jù),,系統(tǒng)穩(wěn)定。 〔
45、2〕的最小相位系統(tǒng)奈氏圖起點終點刻畫出, 根據(jù)奈氏穩(wěn)定判據(jù),從起始時刻逆時針增補90 令虛部等于零,得 與實軸交點 ,系統(tǒng)穩(wěn)定。 〔3〕的最小相位系統(tǒng)奈氏圖起點終點刻畫出,根據(jù)奈氏穩(wěn)定判據(jù),從起始時刻逆時針增補90,系統(tǒng)穩(wěn)定。 〔4〕 幅頻特性 相頻特性 按作圖法作出奈奎斯特曲線,然后從起點逆時針修正90,修正后的圖如如下圖。 由于系統(tǒng)有一個不穩(wěn)定極點,故。根據(jù)穩(wěn)定判據(jù),如此系統(tǒng)穩(wěn)定,但實際上,曲線是順時針方向繞〔-1,j0〕點的,所以系統(tǒng)不穩(wěn)定。 5-16系統(tǒng)開環(huán)傳遞函數(shù),試繪制系統(tǒng)開環(huán)對數(shù)幅相圖,并判斷其穩(wěn)定性。 解:〔1〕
46、 由伯德圖得到,系統(tǒng)穩(wěn)定 〔2〕 由伯德圖得到,系統(tǒng)不穩(wěn)定 系統(tǒng)不穩(wěn)定 〔3〕 由伯德圖得到,系統(tǒng)穩(wěn)定 〔4〕 由伯德圖得到,系統(tǒng)不穩(wěn)定 : 5-17系統(tǒng)的開環(huán)傳遞函數(shù)為 試采用奈氏穩(wěn)定判據(jù)確定系統(tǒng)穩(wěn)定的K值圍。 解:〔1〕由系統(tǒng)開環(huán)傳遞函數(shù) (2)繪制開環(huán)系統(tǒng)極坐標圖 ①起點: ②終點: ③與坐標軸交點 令虛部等于零 得到 當時, 當時, 〔3〕奈奎斯特判據(jù)判穩(wěn) ︱型系統(tǒng),需作增補線,從開始,逆時針旋轉到實軸,作半徑為無窮大的圓弧,如如如下圖所示。 ① 時, 系統(tǒng)不穩(wěn)定 ② 時, 當時,系統(tǒng)才會穩(wěn)
47、定。 5-18系統(tǒng)的結構如圖5-61所示,試繪制系統(tǒng)的開環(huán)對數(shù)頻率特性曲線,并求此系統(tǒng)的相位穩(wěn)定裕量γ。 圖5-61 習題5-18圖 解: 系統(tǒng)開環(huán)傳遞函數(shù)為 對數(shù)頻率特性曲線如下: 由對數(shù)幅頻漸近線近似計算穿越頻率 相角裕量 ∴ 系統(tǒng)閉環(huán)穩(wěn)定。 5-19系統(tǒng)的開環(huán)傳遞函數(shù)為 (1) K=1時,求系統(tǒng)的相角裕度; (2) K=10時,求系統(tǒng)的相角裕度; (3)討論開環(huán)增益的大小對系統(tǒng)相對穩(wěn)定性的影響。 解: (1) K=1 (2) ) K=10 (3)開環(huán)增益越大,系統(tǒng)的穩(wěn)定性越差。 5-20略
48、 5-21 設單位反響控制系統(tǒng)的開環(huán)傳遞函數(shù)分別為 試確定使系統(tǒng)相角裕度γ等于45°的τ值與K值。 解〔1〕 令 由 〔2〕 令 由 5-22典型Ⅱ型系統(tǒng)的開環(huán)對數(shù)幅頻特性如圖5-63所示,該系統(tǒng)的相位裕量γ為多少?假設要求該系統(tǒng)的相位裕量γ為最大,其開環(huán)增益應為多大?問此時γmax為多少〔ω1=6rad/s,ω2=150rad/s〕。 圖5-63 習題5-22圖 解: 5-23設單位反響控制系統(tǒng)的開環(huán)傳遞函數(shù)為 試確定使系統(tǒng)幅值裕度等于20dB的K值。 解: 令 5-24閉環(huán)控制
49、系統(tǒng)如習題5-64圖所示,試判別其穩(wěn)定性。 圖5-64 習題5-24圖 解: 方法一:時域分析法得特征方程為 系統(tǒng)不穩(wěn)定。 方法二:采用頻域分析法計算。開環(huán)傳遞函數(shù)為 計算幅值穿越頻率 計算相角裕量 結論:系統(tǒng)不穩(wěn)定。 5-25系統(tǒng)的結構如圖5-65所示。試用奈氏穩(wěn)定判據(jù)確定系統(tǒng)的穩(wěn)定性,并求γ,其中K1,G(s)=2/(s+1)。 圖5-65 習題5-25圖 解:=15, 第6章 線性系統(tǒng)校正與設計 【課后自測】 6-1什么叫系統(tǒng)校正?系統(tǒng)校正有哪些類型?進展校正的目的是什么?為什么不能用改變系統(tǒng)開環(huán)增益的方法來實現(xiàn)? 解
50、:所謂系統(tǒng)校正是指在不改變系統(tǒng)根本部件的前提下,選擇適宜的校正裝置,確定參數(shù),滿足系統(tǒng)所要求的各項性能要求。系統(tǒng)校正可分為串聯(lián)校正、反響校正和前饋校正三種。進展校正的實質就是在系統(tǒng)中參加一定的機構或裝置,使整個系統(tǒng)的結構和參數(shù)發(fā)生變化,即改變系統(tǒng)的零、極點分布,從而改變系統(tǒng)的運行特性,使校正后系統(tǒng)的各項性能指標滿足實際要求。增大系統(tǒng)的開環(huán)增益在某些情況下可以改善系統(tǒng)的穩(wěn)態(tài)性能, 但是系統(tǒng)的動態(tài)性能將破壞,甚至有可能不穩(wěn)定。 6-2 比例串聯(lián)校正調整的是什么參數(shù)?它對系統(tǒng)的性能產(chǎn)生什么影響? 解:比例串聯(lián)校正調整的是系統(tǒng)的開環(huán)增益,它可以改善系統(tǒng)的穩(wěn)態(tài)性能,但是系統(tǒng)的動態(tài)性能將破壞,甚至有可
51、能不穩(wěn)定。 6-3比例-微分串聯(lián)校正調整系統(tǒng)的什么參數(shù)?它對系統(tǒng)的性能產(chǎn)生什么影響? 解:比例-微分串聯(lián)校正調整系統(tǒng)的比例系數(shù)和微分系數(shù),它可以提高系統(tǒng)的穩(wěn)定性,減小穩(wěn)態(tài)誤差。 6-4比例-積分串聯(lián)校正調整系統(tǒng)的什么參數(shù)?它使系統(tǒng)在結構方面發(fā)生怎樣的變化?它對系統(tǒng)的性能產(chǎn)生什么影響? 解:比例-積分串聯(lián)校正調整系統(tǒng)的比例系數(shù)和積分系數(shù),它可以改善系統(tǒng)的快速性和穩(wěn)定性。 6-5比例-積分-微分串聯(lián)校正調整系統(tǒng)的什么參數(shù)?它使系統(tǒng)在結構方面發(fā)生怎樣的變化?它對系統(tǒng)的性能產(chǎn)生什么影響? 解:比例-積分-微分串聯(lián)校正同時調整系統(tǒng)的比例、積分和微分系數(shù),增大比例系數(shù)將加快系統(tǒng)的響應,但過大的
52、比例系數(shù)會使系統(tǒng)出現(xiàn)較大的超調并產(chǎn)生振蕩,使穩(wěn)定性變差;積分可以消除穩(wěn)態(tài)誤差,它能對穩(wěn)定后有累積誤差的系數(shù)進展誤差修整,減小穩(wěn)態(tài)誤差;微分具有超前作用,對于具有滯后的控制系統(tǒng),引入微分控制,在微分項設置得當?shù)那闆r下,對于提高系統(tǒng)的動態(tài)性能指標有顯著效果,它可以使系統(tǒng)超調量減小,穩(wěn)定性增加,動態(tài)誤差減小。 6-6如果Ⅰ型系統(tǒng)在校正后希望成為Ⅱ型系統(tǒng),應該采用哪種校正規(guī)律才能保證系統(tǒng)穩(wěn)定?為了抑制噪聲對系統(tǒng)的影響,應該采用哪種校正裝置? 解:如果Ⅰ型系統(tǒng)在校正后希望成為Ⅱ型系統(tǒng),應該采用積分環(huán)節(jié)可以保證系統(tǒng)穩(wěn)定,因為參加積分環(huán)節(jié)后,特征方程不出現(xiàn)漏項,一般選擇校正裝置的形式為 為了抑制噪
53、聲對系統(tǒng)的影響,應該采用滯后校正裝置,可以減小系統(tǒng)高頻段的幅值,從而削弱高頻干擾信號對系統(tǒng)的影響。 6-7為什么PID校正稱為相角滯后-超前校正,而不稱為相角超前-滯后校正?相角既滯后又超前,能否相互抵消?能不能將這種校正更改為相角超前-滯后校正?假設作這樣的變化,系統(tǒng)又會產(chǎn)生怎樣的影響? 解:PID串聯(lián)校正是在低頻段使系統(tǒng)的相位滯后,可以改善系統(tǒng)的穩(wěn)態(tài)性能;而在中頻段,它使系統(tǒng)的相位超前,可增加系統(tǒng)的相位裕度和穿越頻率,使系統(tǒng)的穩(wěn)定性和快速性得到改善,由于人們分析頻率特性時,通常由低頻段中頻段高頻段的順序去探討問題,因此按此順序命名為相位滯后-超前校正。此外,由于相位的滯后與超前不是在同
54、一個頻率點發(fā)生的,因此不能相互抵消。假設采取在低頻段使相位超前,而在中頻段使相位滯后,如此效果與上述相反,將使系統(tǒng)的穩(wěn)態(tài)性能和穩(wěn)定性、快速性全面變差,因此,這是不可取的。 6-8在自動控制系統(tǒng)中,假設串聯(lián)校正裝置的傳遞函數(shù)為 問這屬于哪一類校正?試定性分析它對系統(tǒng)性能的影響? 解:該校正裝置屬于超前校正,它使校正環(huán)節(jié)的最大超前角出現(xiàn)在系統(tǒng)新的穿越頻率處,從而增大系統(tǒng)的相位裕度,改變開環(huán)頻率特性,進而可以實現(xiàn)在不改變穩(wěn)態(tài)性能的前提下,改善系統(tǒng)的動態(tài)性能。 6-9單位反響控制系統(tǒng)原有的開環(huán)傳遞函數(shù)G0(s)和兩種串聯(lián)校正裝置Gc(s)的對數(shù)幅頻特性曲線如習題6-1圖所示。 (1) 試
55、寫出每種方案校正后的系統(tǒng)開環(huán)傳遞函數(shù)表達式; (2) 比擬兩種校正效果的優(yōu)缺點。 圖6-1 習題6-9圖 解:〔1〕由圖〔a〕可得,未校正系統(tǒng)開環(huán)傳遞函數(shù)為 其中,,即 由圖可得,滯后校正傳遞函數(shù)為 如此可得校正后系統(tǒng)的開環(huán)傳遞函數(shù)為 畫出校正后系統(tǒng)的開環(huán)對數(shù)幅頻特性如圖6-2〔a〕所示, 由圖〔b〕可得,系統(tǒng)采用的是超前校正,超前校正傳遞函數(shù)為 如此可得圖〔b〕中校正后系統(tǒng)的開環(huán)傳遞函數(shù)為 畫出校正后系統(tǒng)的開環(huán)對數(shù)幅頻特性如圖〔b〕所示 (a) (b)
56、 圖6-2 習題6-9圖 〔2〕圖〔a〕為滯后串聯(lián)校正。由圖可見,校正后的系統(tǒng)以[-20]斜率穿過0dB線,從而使系統(tǒng)的相角裕度增大,同時高頻衰減快,增強了高頻干擾能力。但由于校正后系統(tǒng)的開環(huán)截止頻率’減小,因而系統(tǒng)的瞬態(tài)〔暫態(tài)〕響應時間增長。 圖〔b〕為超前串聯(lián)校正。由圖可見,校正后的系統(tǒng)以[-20]斜率穿過0dB線,從而使系統(tǒng)的增大,因而系統(tǒng)的瞬態(tài)響應加快,調節(jié)時間減小。但抑制高頻干擾能力削弱。 6-10 圖6-3為某單位負反響系統(tǒng)校正前、 后的開環(huán)對數(shù)幅頻特性〔漸近線〕,試分析校正前L1(ω)、校正后L2(ω)系統(tǒng)動態(tài)和穩(wěn)態(tài)性能〔γ、σ、ts、ess〕的
57、變化。 圖6-3 習題6-10圖 解:比擬和可知:為向下平移了14dB。 〔1〕校正后低頻段斜率沒變但高度下降,所以K減小,減小穩(wěn)態(tài)精度降低。 〔2〕校正后中頻段斜率在之前由原來的﹣40dB/dec,變?yōu)?20dB/dec,所以γ增大,σ減小,穩(wěn)定性提高;但下降,使增大,快速性變差。 〔3〕校正后高頻段衰減值增大,抗干擾能力提高。 6-11 控制系統(tǒng)的開環(huán)傳遞函數(shù)為 (1) 繪制系統(tǒng)的對數(shù)頻率特性曲線,并求相角裕量。 (2) 如采用傳遞函數(shù)為 的串聯(lián)超前校正裝置,繪制校正后系統(tǒng)的對數(shù)頻率特性曲線,求出校正后的相角裕量,并討論校正后系統(tǒng)
58、的性能有何改良。 解:〔1〕由題意可得,系統(tǒng)各環(huán)節(jié)轉折頻率為 , 確定低頻段漸近線:在處找一點,該點的對數(shù)幅值,即高度為 過該點畫一條斜率為-20dB/dec的直線; 在第一個轉折頻率處,根據(jù)慣性環(huán)節(jié)的特性,將曲線的斜率改變?yōu)?40dB/dec,以此類推,每到一轉折頻率處,就改變一次曲線的斜率,最后得到對數(shù)幅頻特性曲線如如如下圖所示。 圖6-4 習題6-11圖 令,可得,如此得 〔2〕加校正裝置后,系統(tǒng)傳遞函數(shù)變?yōu)? 由傳遞函數(shù)可得各環(huán)節(jié)轉折頻率 ,,, 確定低頻段漸近線:過點〔1,20〕作一條斜率為-20dB/dec的
59、直線,每到一轉折頻率處,根據(jù)對應環(huán)節(jié)的特性改變一次漸近線的斜率,最后得到對數(shù)幅頻特性曲線如如如下圖所示。 圖6-5 習題6-11圖 令,可得,如此可得 參加校正網(wǎng)絡后,在不改變系統(tǒng)靜態(tài)指標的前提下,系統(tǒng)的動態(tài)性指標有了明顯改善,相位裕量增加,穿越頻率增大,因此系統(tǒng)的超調量減小,調節(jié)時間縮短。 6-12單位反響系統(tǒng)的開環(huán)傳遞函數(shù)為 設計一串聯(lián)滯后校正裝置,使系統(tǒng)的相角裕量 γ′≥40°, 并保持原有的開環(huán)增益。 解:〔1〕求得未校正系統(tǒng)的相位裕量,不滿足要求。 〔2〕未校正系統(tǒng)的相位角為:=+時的頻率,令其為新的剪切頻率,如此 ,取 〔3〕為保證
60、滯后校正網(wǎng)絡對系統(tǒng)在處的相頻特性根本不影響,按下式計算滯后校正網(wǎng)絡的第二轉折頻率:,即: 〔4〕滯后校正網(wǎng)絡的傳遞函數(shù)為 〔5〕校正后系統(tǒng)的開環(huán)傳遞函數(shù)為: 6-13 單位負反響系統(tǒng)的開環(huán)傳遞函數(shù)為,試設計串聯(lián)滯后超前校正裝置,使校正后系統(tǒng)具有相角浴量,穿越頻率,靜態(tài)速度誤差系數(shù)。 解:由題意可得代入題式,得單位負反響系統(tǒng)的開環(huán)傳遞函數(shù)為 繪制未校正系統(tǒng)的對數(shù)幅頻特性如如如下圖所示。 圖6-6 習題6-13圖 令,計算未校正系統(tǒng)的剪切頻率,即 ,得 在期望的穿越頻率處,未校正系統(tǒng)的相角裕度為 為了保證的相角裕度,必須增加至少的超前角,所以需要加超
61、前校正。 另外, 即如果選,就要將中頻段的開環(huán)增益降低,因此可知需要引進滯后校正。 由,故 因此,超前局部的傳遞函數(shù)為 由于它的零點和對象的一個極點十分接近,故該取, 所以 設計滯后局部:要使成為增益穿越頻率,必須滿足 ,可解得,即 令,得,所以 滯后局部的傳遞函數(shù)為 從而可得,超前滯后裝置的傳遞函數(shù)為 校正后的開環(huán)傳遞函數(shù)為 驗算,,,,符合要求。 6-14設單位反響系統(tǒng)的開環(huán)傳遞函數(shù)為 假設使系統(tǒng)的穩(wěn)態(tài)誤差系數(shù)Kv=10,相角裕量不小于50°, 試確定系統(tǒng)的串聯(lián)校正裝置。 解:給定系統(tǒng)的穩(wěn)定裕量時宜采用頻率響應校正設計方法。
62、確定期望的開環(huán)增益K。因為,所以取。 分析增益校正后的系統(tǒng)。圖6-7中的虛線為的對數(shù)幅頻特性和相頻特性。圖6-7中的對數(shù)幅頻特性采用的是漸近線,漸近線的拐點處的分貝數(shù)用數(shù)字表示。相頻特性為示意圖。 從圖6-7虛線所示的對數(shù)幅頻特性可以測算出增益穿越頻率,相位裕量。校正的任務是增加相位裕量。由圖可以看出,采用超前角證,可以提高相位裕量。因為增益已經(jīng)確定,所以超前校正裝置采用,的形式。在時,,因此校正裝置不會影響低頻增益,故而不會改變已獲得的靜態(tài)誤差系數(shù)。 圖6-7 習題6-14圖 由可得,并進而取。 超前校正裝置的最大相頻率為,而且在該頻率的增益為。要使增益穿越頻率等于,曲
63、線必須在處穿過ω軸,即 所以 有圖可以算出。進而取可得 ,,, 故校正裝置的傳遞函數(shù)為 6-15 單位負反響系統(tǒng)的開環(huán)傳遞函數(shù)為試設計串聯(lián)校正裝置,使系統(tǒng),超調量不大于25%,調節(jié)時間不小于1s。 解:由得。 ,故,如此主導極點為。 取校正環(huán)節(jié)的傳遞函數(shù)為,設,由相角方程 得,如此 由模值方程得 校正后開環(huán)傳遞函數(shù)為 6-16某控制系統(tǒng)如圖6-8所示,選擇K1和K2,使階躍輸入時的超調量為5%,穩(wěn)態(tài)誤差系數(shù)Kv=5。 圖6-8 習題6-16圖 答案略 6-17原系統(tǒng)的不可變局部 要求用PID校正方法,使系統(tǒng)滿足γ≥45°,
64、 ωc=0.5 rad/s。試確定校正環(huán)節(jié)的參數(shù)。 答案略 第7章 非線性系統(tǒng)的一般分析方法 【課后自測】 7-1 判斷題7-31圖中各系統(tǒng)是否穩(wěn)定,與兩曲線交點是否為自振點。 圖7-1 題7-1圖 解:〔a〕系統(tǒng)不穩(wěn)定 曲線G(jw)與曲線有交點a、b。對于a點,當A增大時, 由G(jw)左側穩(wěn)定區(qū)進入右側不穩(wěn)定區(qū),所以交點a不是自振點。對于b點,當A點增大時時,由G(jw)右側不穩(wěn)定區(qū)進入左側穩(wěn)定區(qū),所以交點b是穩(wěn)定工作點,是自振點。 (b)系統(tǒng)不穩(wěn)定 G(jw)曲線與曲線有交點a、b,對于a點,當A增大時, 由G(jw)左側穩(wěn)定區(qū)進入右側不穩(wěn)定區(qū),
65、所以交點a不是自振點。對于b點,當A點增大時時,由G(jw) 右側不穩(wěn)定區(qū)進入左側穩(wěn)定區(qū),所以交點b是自振點。 〔c〕曲線被G(jw)曲線所包圍,系統(tǒng)不穩(wěn)定。 〔d〕系統(tǒng)不穩(wěn)定 曲線G(jw)與曲線曲線有一個交點,在交點處,當A增大時, 由G(jw)右側不穩(wěn)定區(qū)進入左側穩(wěn)定區(qū),所以交點是自振點。 〔e〕系統(tǒng)穩(wěn)定 〔f〕系統(tǒng)不穩(wěn)定 G(jw)曲線與曲線有交點a、b,對于a點,當A增大時, 由G(jw)右不側穩(wěn)定區(qū)進入左側穩(wěn)定區(qū),所以交點a是自振點。對于b點,當A點增大時時,由G(jw) 右側穩(wěn)定區(qū)進入左側不穩(wěn)定區(qū),所以交點b不是自振點。 7-2試求圖7-32所示非線性特性的描述
66、函數(shù),畫出-1/N曲線,并指出X=0,X=1和X=∞時的-1/N值。 圖7-2題7-2圖 解:由圖可得非線性元件特性為 令,當時, 因是t的奇函數(shù),故 所以 當時,, 此時 如此 7-3 某單位反響系統(tǒng),其前向通道有一描述函數(shù)的非線性元件,線性局部的傳遞函數(shù)為,試用描述函數(shù)法確定系統(tǒng)是否存在自振?假設有,參數(shù)是多少? 解:非線性局部負倒數(shù)描述函數(shù)為: 作和曲線如圖1所示。由圖可知系統(tǒng)存在穩(wěn)定的自振點。 由描述函數(shù)分析法可得: 即 解得:,。系統(tǒng)產(chǎn)生自振蕩,。 圖7-3穩(wěn)定性分析 7-4系統(tǒng)方框圖如圖7-4所示,圖中,請判定時系統(tǒng)的穩(wěn)定性,試問K應限制在什么圍,系統(tǒng)才不會產(chǎn)生自持振蕩? 圖7-4題7-4圖 解: =0.8603 = 令 可見,使系統(tǒng)穩(wěn)定的圍為:。故時系統(tǒng)穩(wěn)定。 7-5 設三個非線性系統(tǒng)的非線性環(huán)節(jié)一樣,其線性局局部別為 ; ; 。 用描述函數(shù)法分析時,那個系統(tǒng)分析的準確度高? 解:線性局部低通過濾波特性越好。描述函數(shù)法分析結果
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應急處置程序和方法
- 某物業(yè)公司冬季除雪工作應急預案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設備設施故障應急預案
- 某物業(yè)公司小區(qū)地下停車場管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應急處理預案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領班總結
- 某公司安全生產(chǎn)舉報獎勵制度
- 物業(yè)管理:火情火災應急預案
- 某物業(yè)安保崗位職責
- 物業(yè)管理制度:節(jié)前工作重點總結
- 物業(yè)管理:某小區(qū)消防演習方案
- 某物業(yè)公司客服部工作職責