高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 小題速解方略—爭取高分的先機(jī) 專題三 三角函數(shù)與解三角形 3 正、余弦定理及解三角形限時(shí)速解訓(xùn)練 理
《高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 小題速解方略—爭取高分的先機(jī) 專題三 三角函數(shù)與解三角形 3 正、余弦定理及解三角形限時(shí)速解訓(xùn)練 理》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 小題速解方略—爭取高分的先機(jī) 專題三 三角函數(shù)與解三角形 3 正、余弦定理及解三角形限時(shí)速解訓(xùn)練 理(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
限時(shí)速解訓(xùn)練十 正、余弦定理及解三角形 (建議用時(shí)40分鐘) 一、選擇題(在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合要求的) 1.在△ABC中,已知A=,BC=3,AB=,則C=( ) A.或 B. C. D.或 解析:選B.由正弦定理=,即sin C=,因?yàn)?<C<π,所以C=或C=,因?yàn)閏=<a=3,所以C<,則C=,故選B. 2.已知△ABC的三邊分別為4,5,6,則△ABC的面積為( ) A. B. C. D. 解析:選B.設(shè)a=6,b=5,c=4,則由余弦定理得cos A==,所以sin A==,S△ABC=54=. 3.(2016山西朔州一模)若△ABC的三個(gè)內(nèi)角滿足sin A∶sin B∶sin C=5∶11∶13,則△ABC( ) A.一定是銳角三角形 B.一定是直角三角形 C.一定是鈍角三角形 D.可能是銳角三角形,也可能是鈍角三角形 解析:選C.由于sin A∶sin B∶sin C=5∶11∶13,結(jié)合正弦定理可知,a∶b∶c=5∶11∶13,不妨令a=5,b=11,c=13,由于cos C==<0,∴C為鈍角,故△ABC是鈍角三角形. 4.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c.若a2-b2=bc,sin C=2sin B,則A等于( ) A. B. C. D. 解析:選D.由題意得c=2b, cos A===, ∴A=. 5.(2016湖南常德調(diào)研)在△ABC中,AC=,BC=2,B=60,則BC邊上的高等于( ) A. B. C. D. 解析:選B.由余弦定理得AC2=BC2+AB2-2ABBCcos B,即()2=22+AB2-22ABcos 60,即AB2-2AB-3=0,得AB=3,故BC邊上的高是ABsin 60=. 6.(2016江西上饒一模)已知△ABC中,內(nèi)角A,B,C所對邊長分別為a,b,c,若A=,b=2acos B,c=1,則△ABC的面積等于( ) A. B. C. D. 解析:選B.由正弦定理得sin B=2sin Acos B,故tan B=2sin A=2sin =,又B∈(0,π),所以B=,又A=,所以△ABC是正三角形,所以S△ABC=bcsin A=11=. 7.張曉華同學(xué)騎電動自行車以24 km/h的速度沿著正北方向的公路行駛,在點(diǎn)A處望見電視塔S在電動車的北偏東30方向上,15 min后到點(diǎn) B處望見電視塔在電動車的北偏東75方向上,則電動車在點(diǎn)B時(shí)與電視塔S的距離是( ) A.2 km B.3 km C.3 km D.2 km 解析:選B.畫出示意圖如圖所示, 由條件知AB=24=6.在△ABS中, ∠BAS=30,AB=6,∠ABS=180-75=105, 所以∠ASB=45.由正弦定理知=,所以BS==3. 8.(2016河北衡水中學(xué)檢測)在△ABC中,角A,B,C的對邊分別是a,b,c.若a=5bsin C且cos A=5cos Bcos C,則tan A的值為( ) A.5 B.6 C.-4 D.-6 解析:選B.由正弦定理及已知得sin A=5sin Bsin C,① 又cos A=5cos Bcos C,② 由②-①得cos A-sin A=5(cos Bcos C-sin Bsin C)=5cos(B+C)=-5cos A,∴sin A=6cos A,∴tan A=6,選B. 9.設(shè)銳角△ABC的三內(nèi)角A、B、C所對的邊分別為a、b、c,且a=1,B=2A,則b的取值范圍為( ) A.(,) B.(1,) C.(,2) D.(0,2) 解析:選B.∵B=2A,∴sin B=sin 2A, ∴sin B=2sin Acos A,∴b=2acos A, 又∵a=1,∴b=2cos A, ∵△ABC為銳角三角形,∴0<A<,0<B<,0<C<,即0<A<,0<2A<,0<π-A-2A<,∴<A<,∴<cos A<,∴1<2cos A<, ∴b∈(1,). 10.(2016北京東城一模)在銳角△ABC中,AB=3,AC=4,S△ABC=3,則BC=( ) A.5 B.或 C. D. 解析:選D.由S△ABC=ABACsin∠BAC=34sin∠BAC=3,得sin∠BAC=,因?yàn)椤鰽BC為銳角三角形,所以∠BAC∈,故∠BAC=,在△ABC中,由余弦定理得,BC2=AC2+AB2-2ACABcos∠BAC=42+32-243cos=13.所以BC=,故選D. 11.已知△ABC中,內(nèi)角A、B、C所對的邊分別為a,b,c,且acos C+c=b,若a=1,c-2b=1,則角B為( ) A. B. C. D. 解析:選B.因?yàn)閍cos C+c=b,所以sin Acos C+sin C=sin B=sin(A+C)=sin Acos C+cos Asin C,所以sin C=cos Asin C,因?yàn)閟in C≠0,所以cos A=,因?yàn)锳為△ABC的內(nèi)角,所以A=,由余弦定理a2=b2+c2-2bccos A,知1=b2+c2-bc,聯(lián)立解得c=,b=1,由=,得sin B===,∵b<c,∴B<C,則B=,故選B. 12.在△ABC中,a、b、c分別是角A、B、C的對邊,若a2+b2=2 018c2,則的值為( ) A.0 B.1 C.2 017 D.2 018 解析:選C. = = = =cos C== ==2 017,故選C. 二、填空題(把答案填在題中橫線上) 13.在△ABC中,已知a=2,b=3,那么=________. 解析:由正弦定理得===. 答案: 14.已知△ABC的三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c,若△ABC的面積為,a=3,B=,則b=________. 解析:由題意可得S=acsin B,解得c=1,由余弦定理可得b2=a2+c2-2accos B=9+1-3=7,故b=. 答案: 15.在△ABC中,AB=,AC=1,∠B=30,△ABC的面積為,則∠C=________. 解析:由正弦定理得sin C==.又S△ABC=ACBCsin C=,所以BC=2.因?yàn)锳B<BC,所以∠C<∠A,所以∠C=60. 答案:60 16.在△ABC中,角A、B、C所對邊的邊長分別為a、b、c,設(shè)S是△ABC的面積,若2Ssin A<()sin B,則下列結(jié)論中: ①a2<b2+c2;②c2>a2+b2; ③cos Bcos C>sin Bsin C;④△ABC是鈍角三角形. 其中正確結(jié)論的序號是________. 解析:∵2Ssin A<()sin B, ∴2bcsin Asin A<cacos Bsin B, ∴bcsin Asin A<acsin Bcos B, 又由正弦定理可得:bsin A=asin B>0, ∴cos B>sin A>0,∴A、B均是銳角,而cos B=sin(90-B),故有sin(90-B)>sin A,即90-B>A,則A+B<90,∴C>90,∴△ABC是鈍角三角形,∴由余弦定理可得:cos C=<0,cos A=>0,即有c2>a2+b2,a2<b2+c2,故①②④正確; ∵cos Bcos C-sin Bsin C=cos(B+C)=-cos A<0,故③不正確,故答案為①②④. 答案:①②④- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)二輪復(fù)習(xí) 第1部分 小題速解方略爭取高分的先機(jī) 專題三 三角函數(shù)與解三角形 正、余弦定理及解三角形限時(shí)速解訓(xùn)練 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 部分 小題速解 方略 爭取 高分 先機(jī) 專題 三角函數(shù)
鏈接地址:http://m.italysoccerbets.com/p-11847710.html