購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
附錄 1
先進制造技術(shù)的新發(fā)展
摘要:?本文介紹了當(dāng)今制造技術(shù)面臨的問題,論述了先進制造的前沿科學(xué),并展望了先進制造技術(shù)的發(fā)展前景。
關(guān)鍵詞:問題;?先進制造技術(shù);?前沿科學(xué);?應(yīng)用前景
制造業(yè)是現(xiàn)代國民經(jīng)濟和綜合國力的重要支柱,其生產(chǎn)總值一般占一個國家國內(nèi)生產(chǎn)總值的20%~55%。在一個國家的企業(yè)生產(chǎn)力構(gòu)成中,制造技術(shù)的作用一般占60%左右。專家認為,世界上各個國家經(jīng)濟的競爭,主要是制造技術(shù)的競爭。其競爭能力最終體現(xiàn)在所生產(chǎn)的產(chǎn)品的市場占有率上。隨著經(jīng)濟技術(shù)的高速發(fā)展以及顧客需求和市場環(huán)境的不斷變化,這種競爭日趨激烈,因而各國政府都非常重視對先進制造技術(shù)的研究。
1.?當(dāng)前制造科學(xué)要解決的問題
當(dāng)前制造科學(xué)要解決的問題主要集中在以下幾方面:
(1)制造系統(tǒng)是一個復(fù)雜的大系統(tǒng),為滿足制造系統(tǒng)敏捷性、快速響應(yīng)和快速重組的能力,必須借鑒信息科學(xué)、生命科學(xué)和社會科學(xué)等多學(xué)科的研究成果,探索制造系統(tǒng)新的體系結(jié)構(gòu)、制造模式和制造系統(tǒng)有效的運行機制。制造系統(tǒng)優(yōu)化的組織結(jié)構(gòu)和良好的運行狀況是制造系統(tǒng)建模、仿真和優(yōu)化的主要目標(biāo)。制造系統(tǒng)新的體系結(jié)構(gòu)不僅對制造企業(yè)的敏捷性和對需求的響應(yīng)能力及可重組能力有重要意義,而且對制造企業(yè)底層生產(chǎn)設(shè)備的柔性和可動態(tài)重組能力提出了更高的要求。生物制造觀越來越多地被引入制造系統(tǒng),以滿足制造系統(tǒng)新的要求。?
(2)為支持快速敏捷制造,幾何知識的共享已成為制約現(xiàn)代制造技術(shù)中產(chǎn)品開發(fā)和制造的關(guān)鍵問題。例如在計算機輔助設(shè)計與制造(CAD/CAM)集成、坐標(biāo)測量(CMM)和機器人學(xué)等方面,在三維現(xiàn)實空間(3-Real?Space)中,都存在大量的幾何算法設(shè)計和分析等問題,特別是其中的幾何表示、幾何計算和幾何推理問題;在測量和機器人路徑規(guī)劃及零件的尋位(如Localization)等方面,存在C-空間(配置空間Configuration?Space)的幾何計算和幾何推理問題;在物體操作(夾持、抓取和裝配等)描述和機器人多指抓取規(guī)劃、裝配運動規(guī)劃和操作規(guī)劃方面則需要在旋量空間(Screw?Space)進行幾何推理。制造過程中物理和力學(xué)現(xiàn)象的幾何化研究形成了制造科學(xué)中幾何計算和幾何推理等多方面的研究課題,其理論有待進一步突破,當(dāng)前一門新學(xué)科--計算機幾何正在受到日益廣泛和深入的研究。
(3)在現(xiàn)代制造過程中,信息不僅已成為主宰制造產(chǎn)業(yè)的決定性因素,而且還是最活躍的驅(qū)動因素。提高制造系統(tǒng)的信息處理能力已成為現(xiàn)代制造科學(xué)發(fā)展的一個重點。由于制造系統(tǒng)信息組織和結(jié)構(gòu)的多層次性,制造信息的獲取、集成與融合呈現(xiàn)出立體性、信息度量的多維性、以及信息組織的多層次性。在制造信息的結(jié)構(gòu)模型、制造信息的一致性約束、傳播處理和海量數(shù)據(jù)的制造知識庫管理等方面,都還有待進一步突破。
(4)各種人工智能工具和計算智能方法在制造中的廣泛應(yīng)用促進了制造智能的發(fā)展。一類基于生物進化算法的計算智能工具,在包括調(diào)度問題在內(nèi)的組合優(yōu)化求解技術(shù)領(lǐng)域中,受到越來越普遍的關(guān)注,有望在制造中完成組合優(yōu)化問題時的求解速度和求解精度方面雙雙突破問題規(guī)模的制約。制造智能還表現(xiàn)在:智能調(diào)度、智能設(shè)計、智能加工、機器人學(xué)、智能控制、智能工藝規(guī)劃、智能診斷等多方面。
這些問題是當(dāng)前產(chǎn)品創(chuàng)新的關(guān)鍵理論問題,也是制造由一門技藝上升為一門科學(xué)的重要基礎(chǔ)性問題。這些問題的重點突破,可以形成產(chǎn)品創(chuàng)新的基礎(chǔ)研究體系。
2?.現(xiàn)代機械的前沿科學(xué)
不同科學(xué)之間的交叉融合將產(chǎn)生新的科學(xué)聚集,經(jīng)濟的發(fā)展和社會的進步對科學(xué)技術(shù)產(chǎn)生了新的要求和期望,從而形成前沿科學(xué)。前沿科學(xué)也就是已解決的和未解決的科學(xué)問題之間的界域。前沿科學(xué)具有明顯的時域、領(lǐng)域和動態(tài)特性。前沿科學(xué)區(qū)別于一般基礎(chǔ)科學(xué)的重要特征是它涵蓋了實際中出現(xiàn)的關(guān)鍵科學(xué)技術(shù)問題。超聲電機、超高速切削、綠色設(shè)計與制造等領(lǐng)域,國內(nèi)外已經(jīng)做了大量的研究工作,但創(chuàng)新的關(guān)鍵是機械科學(xué)問題還不明朗。大型復(fù)雜機械系統(tǒng)的性能優(yōu)化設(shè)計和產(chǎn)品創(chuàng)新設(shè)計、智能結(jié)構(gòu)和系統(tǒng)、智能機器人及其動力學(xué)、納米摩擦學(xué)、制造過程的三維數(shù)值模擬和物理模擬、超精度和微細加工關(guān)鍵工藝基礎(chǔ)、大型和超大型精密儀器裝備的設(shè)計和制造基礎(chǔ)、虛擬制造和虛擬儀器、納米測量及儀器、并聯(lián)軸機床、微型機電系統(tǒng)等領(lǐng)域國內(nèi)外雖然已做了不少研究,但仍有許多關(guān)鍵科學(xué)技術(shù)問題有待解決。
信息科學(xué)、納米科學(xué)、材料科學(xué)、生命科學(xué)、管理科學(xué)和制造科學(xué)將是改變21世紀的主流科學(xué),由此產(chǎn)生的高新技術(shù)及其產(chǎn)業(yè)將改變世界的面貌。因此,與以上領(lǐng)域相交叉發(fā)展的制造系統(tǒng)和制造信息學(xué)、納米機械和納米制造科學(xué)、仿生機械和仿生制造學(xué)、制造管理科學(xué)和可重構(gòu)制造系統(tǒng)等會是21世紀機械科學(xué)的重要前沿科學(xué)。
2.1?制造科學(xué)與信息科學(xué)的交叉--制造信息科學(xué)
機電產(chǎn)品是信息在原材料上的物化。許多現(xiàn)代產(chǎn)品的價值增值主要體現(xiàn)在信息上。因此制造過程中信息的獲取和應(yīng)用十分重要。信息化是制造科學(xué)技術(shù)走向全球化和現(xiàn)代化的重要標(biāo)志。人們一方面對制造技術(shù)開始探索產(chǎn)品設(shè)計和制造過程中的信息本質(zhì),另一方面對制造技術(shù)本身加以改造,以使得其適應(yīng)新的信息化制造環(huán)境。隨著對制造過程和制造系統(tǒng)認識的加深,研究者們正試圖以全新的概念和方式對其加以描述和表達,以進一步達到實現(xiàn)控制和優(yōu)化的目的。?
與制造有關(guān)的信息主要有產(chǎn)品信息、工藝信息和管理信息,這一領(lǐng)域有如下主要研究方向和內(nèi)容:
(1)?制造信息的獲取、處理、存儲、傳遞和應(yīng)用,大量制造信息向知識和決策轉(zhuǎn)化。
(2)?非符號信息的表達、制造信息的保真?zhèn)鬟f、制造信息的管理、非完整制造信息狀態(tài)下的生產(chǎn)決策、虛擬管理制造、基于網(wǎng)絡(luò)環(huán)境下的設(shè)計和制造、制造過程和制造系統(tǒng)中的控制科學(xué)問題。
這些內(nèi)容是制造科學(xué)和信息科學(xué)基礎(chǔ)融合的產(chǎn)物,構(gòu)成了制造科學(xué)中的新分支--制造信息學(xué)。
2.2?微機械及其制造技術(shù)研究
微型電子機械系統(tǒng)(MEMS),是指集微型傳感器、微型執(zhí)行器以及信號處理和控制電路、接口電路、通信和電源于一體的完整微型機電系統(tǒng)。MEMS技術(shù)的目標(biāo)是通過系統(tǒng)的微型化、集成化來探索具有新原理、新功能的元件和系統(tǒng)。MEMS的發(fā)展將極大地促進各類產(chǎn)品的袖珍化、微型化,成數(shù)量級的提高器件與系統(tǒng)的功能密度、信息密度與互聯(lián)密度,大幅度地節(jié)能、節(jié)材。它不僅可以降低機電系統(tǒng)的成本,而且還可以完成許多大尺寸機電系統(tǒng)無法完成的任務(wù)。例如用尖端直徑為5μm的微型鑷子可以夾起一個紅細胞;制造出3mm大小能夠開動的小汽車;可以在磁場中飛行的像蝴蝶大小的飛機等。MEMS技術(shù)的發(fā)展開辟了技術(shù)全新的領(lǐng)域和產(chǎn)業(yè),具有許多傳統(tǒng)傳感器無法比擬的優(yōu)點,因此在制造業(yè)、航空、航天、交通、通信、農(nóng)業(yè)、生物醫(yī)學(xué)、環(huán)境監(jiān)控、軍事、家庭以及幾乎人們接觸到的所有領(lǐng)域中都有著十分廣闊的應(yīng)用前景。
微機械是機械技術(shù)與電子技術(shù)在納米尺度上相融合的產(chǎn)物。早在1959年就有科學(xué)家提出微型機械的設(shè)想,1962年第一個硅微型壓力傳感器問世。1987年美國加州大學(xué)伯克利分校研制出轉(zhuǎn)子直徑為60~120μm的硅微型靜電電動機,顯示出利用硅微加工工藝制作微小可動結(jié)構(gòu)并與集成電路兼容制造微小系統(tǒng)的潛力。微機械技術(shù)有可能像20世紀的微電子技術(shù)那樣,在21世紀對世界科技、經(jīng)濟發(fā)展和國防建設(shè)產(chǎn)生巨大的影響。近10年來,微機械的發(fā)展令人矚目。其特點如下:相當(dāng)數(shù)量的微型元器件(微型結(jié)構(gòu)、微型傳感器和微型執(zhí)行器等)和微系統(tǒng)研究成功,體現(xiàn)了其現(xiàn)實的和潛在的應(yīng)用價值;多種微型制造技術(shù)的發(fā)展,特別是半導(dǎo)體微細加工等技術(shù)已成為微系統(tǒng)的支撐技術(shù);微型機電系統(tǒng)的研究需要多學(xué)科交叉的研究隊伍,微型機電系統(tǒng)技術(shù)是在微電子工藝的基礎(chǔ)上發(fā)展的多學(xué)科交叉的前沿研究領(lǐng)域,涉及電子、機械、材料、物理學(xué)、化學(xué)以及生物醫(yī)學(xué)等多種技術(shù)和科學(xué)。
目前對微觀條件下的機械系統(tǒng)的運動規(guī)律,微小構(gòu)件的物理特性和載荷作用下的力學(xué)行為等尚缺乏充分的認識,還沒有形成基于一定理論基礎(chǔ)之上的微系統(tǒng)設(shè)計理論與方法,因此只能憑經(jīng)驗和試探的方法進行研究。微型機械系統(tǒng)研究中存在的關(guān)鍵科學(xué)問題有微系統(tǒng)的尺度效應(yīng)、物理特性和生化特性等。微系統(tǒng)的研究正處于突破的前夜,是亟待深入研究的領(lǐng)域。
2.3?材料制備/零件制造一體化和加工新技術(shù)基礎(chǔ)
材料是人類進步的里程碑,是制造業(yè)和高技術(shù)發(fā)展的基礎(chǔ)。每一種重要新材料的成功制備和應(yīng)用,都會推進物質(zhì)文明,促進國家經(jīng)濟實力和軍事實力的增強。21世紀中,世界將由資源消耗型的工業(yè)經(jīng)濟向知識經(jīng)濟轉(zhuǎn)變,要求材料和零件具有高的性能以及功能化、智能化的特性;要求材料和零件的設(shè)計實現(xiàn)定量化、數(shù)字化;要求材料和零件的制備快速、高效并實現(xiàn)二者一體化、集成化。材料和零件的數(shù)字化設(shè)計與擬實仿真優(yōu)化是實現(xiàn)材料與零件的高效優(yōu)質(zhì)制備/制造及二者一體化、集成化制造的關(guān)鍵。一方面,通過計算機完成擬實仿真優(yōu)化后可以減少材料制備與零件制造過程中的實驗性環(huán)節(jié),獲得最佳的工藝方案,實現(xiàn)材料與零件的高效優(yōu)質(zhì)制備/制造;另一方面,根據(jù)不同材料性能的要求,如彈性模量、熱膨脹系數(shù)、電磁性能等,研究材料和零件的設(shè)計形式。進而結(jié)合傳統(tǒng)的去除材料式制造技術(shù)、增加材料式覆層技術(shù)等,研究多種材料組分的復(fù)合成形工藝技術(shù)。形成材料與零件的數(shù)字化制造理論、技術(shù)和方法,如快速成形技術(shù)采用材料逐漸增長的原理,突破了傳統(tǒng)的去材法和變形法機械加工的許多限制,加工過程不需要工具或模具,能迅速制造出任意復(fù)雜形狀又具有一定功能的三維實體模型或零件。?
2.4?機械仿生制造
21世紀將是生命科學(xué)的世紀,機械科學(xué)和生命科學(xué)的深度融合將產(chǎn)生全新概念的產(chǎn)品(如智能仿生結(jié)構(gòu)),開發(fā)出新工藝(如生長成形工藝)和開辟一系列的新產(chǎn)業(yè),并為解決產(chǎn)品設(shè)計、制造過程和系統(tǒng)中一系列難題提供新的解決方法。這是一個極富創(chuàng)新和挑戰(zhàn)的前沿領(lǐng)域。
地球上的生物在漫長的進化中所積累的優(yōu)良品性為解決人類制造活動中的各種難題提供了范例和指南。從生命現(xiàn)象中學(xué)習(xí)組織與運行復(fù)雜系統(tǒng)的方法和技巧,是今后解決目前制造業(yè)所面臨許多難題的一條有效出路。仿生制造指的是模仿生物器官的自組織、自愈合、自增長與自進化等功能結(jié)構(gòu)和運行模式的一種制造系統(tǒng)與制造過程。如果說制造過程的機械化、化延伸了人類的體力,智能化延伸了人類的智力,那么,"仿生制造"則可以說延伸了人類自身的組織結(jié)構(gòu)和進化過程。
仿生制造所涉及的科學(xué)問題是生物的"自組織"機制及其在制造系統(tǒng)中的應(yīng)用問題。所謂"自組織"是指一個系統(tǒng)在其內(nèi)在機制的驅(qū)動下,在組織結(jié)構(gòu)和運行模式上不斷自我完善、從而提高對于環(huán)境適應(yīng)能力的過程。仿生制造的"自組織"機制為自下而上的產(chǎn)品并行設(shè)計、制造工藝規(guī)程的生成、生產(chǎn)系統(tǒng)的動態(tài)重組以及產(chǎn)品和制造系統(tǒng)的趨優(yōu)提供了理論基礎(chǔ)和實現(xiàn)條件。仿生制造屬于制造科學(xué)和生命科學(xué)的"遠緣雜交",它將對21世紀的制造業(yè)產(chǎn)生巨大的影響。
仿生制造的研究內(nèi)容目前有兩個方面:
2.4.1?面向生命的仿生制造?
研究生命現(xiàn)象的一般規(guī)律和模型,例如人工生命、細胞機、生物的信息處理技巧、生物智能、生物型的組織結(jié)構(gòu)和運行模式以及生物的進化和趨優(yōu)機制等;
2.4.2?面向制造的仿生制造?
研究仿生制造系統(tǒng)的自組織機制與方法,例如:基于充分信息共享的仿生設(shè)計原理,基于多自律單元協(xié)同的分布式控制和基于進化機制的尋優(yōu)策略;研究仿生制造的概念體系及其基礎(chǔ),例如:仿生空間的形式化描述及其信息映射關(guān)系,仿生系統(tǒng)及其演化過程的復(fù)雜度計量方法。
機械仿生與仿生制造是機械科學(xué)與生命科學(xué)、信息科學(xué)、材料科學(xué)等學(xué)科的高度融合,其研究內(nèi)容包括生長成形工藝、仿生設(shè)計和制造系統(tǒng)、智能仿生機械和生物成形制造等。目前所做的研究工作大多屬前沿探索性的工作,具有鮮明的基礎(chǔ)研究的特點,如果抓住機遇研究下去,將可能產(chǎn)生革命性的突破。今后應(yīng)關(guān)注的研究領(lǐng)域有生物加工技術(shù)、仿生制造系統(tǒng)、基于快速原型制造技術(shù)的組織學(xué),以及與生物相關(guān)的關(guān)鍵技術(shù)基礎(chǔ)等。
?3.?現(xiàn)代制造技術(shù)的發(fā)展趨勢
20世紀90年代以來,世界各國都把制造技術(shù)的研究和開發(fā)作為國家的關(guān)鍵技術(shù)進行優(yōu)先發(fā)展,如美國的先進制造技術(shù)計劃AMTP、日本的智能制造技術(shù)(IMS)國際合作計劃、韓國的高級現(xiàn)代技術(shù)國家計劃(G--7)、德國的制造2000計劃和歐共體的ESPRIT和BRITE-EURAM計劃。
隨著電子、信息等高新技術(shù)的不斷發(fā)展,市場需求個性化與多樣化,未來現(xiàn)代制造技術(shù)發(fā)展的總趨勢是向精密化、柔性化、網(wǎng)絡(luò)化、虛擬化、智能化、綠色集成化、全球化的方向發(fā)展。
當(dāng)前現(xiàn)代制造技術(shù)的發(fā)展趨勢大致有以下九個方面:
(1)?信息技術(shù)、管理技術(shù)與工藝技術(shù)緊密結(jié)合,現(xiàn)代制造生產(chǎn)模式會獲得不
斷發(fā)展。
(2)?設(shè)計技術(shù)與手段更現(xiàn)代化。
(3)?成型及制造技術(shù)精密化、制造過程實現(xiàn)低能耗。
(4)?新型特種加工方法的形成。
(5)?開發(fā)新一代超精密、超高速制造裝備。
(6)?加工工藝由技藝發(fā)展為科學(xué)。
(7)?實施無污染綠色制造。
(8)?制造業(yè)中廣泛應(yīng)用虛擬現(xiàn)實技術(shù)。
(9)?制造以人為本。
附錄 2
The new advanced manufacturing technology development
Abstract : This paper has presented the problems facing today's manufacturing technology, advanced manufacturing discussed in the forefront of science, and a vision for the future development of advanced manufacturing technology.
Keyword:Advanced manufacturing technologies; Frontier science; Applications prospects
Modern manufacturing is an important pillar of the national economy and overall national strength and its GDP accounted for a general national GDP 20%~55%. In the composition of a country's business productivity, manufacturing technology around 60% of the general role. Experts believe that the various countries in the world economic competition, mainly manufacturing technology competition. Their competitiveness in the production of the final product market share. With the rapid economic and technological development and customer needs and the changing market environment, this competition is becoming increasingly fierce, and that Governments attach great importance to the advanced manufacturing technology research.
1 .Current manufacturing science to solve problems
Manufacturing science to solve the current problems focused on the following aspects :
(1) Manufacturing systems is a complex systems, and manufacturing systems to meet both agility, rapid response and rapid reorganization of the capacity to learn from the information science, life science and social science interdisciplinary research, and explore new manufacturing system architecture, manufacturing models and manufacturing systems effective operational mechanism. Manufacturing systems optimized organizational structure and good performance is manufacturing system modelling, simulation and optimization of the main objectives. Manufacturing system architecture not only to create new enterprises both agility and responsiveness to the needs and the ability to reorganize significance, but also for the soft production equipment manufacturing enterprises bottom reorganization and dynamic capacity to set higher demands. Biological manufacturing outlook increasingly being introduced to the system to meet new demands manufacturing systems.
(2) The rapid rise in support of manufacturing, geometric knowledge sharing has become a modern manufacturing constraints, product development and manufacturing technologies of the key issues. For example, in computer-aided design and manufacturing (CAD/CAM) integration, coordinates measurements (CMM) and robotics fields, in 3D real space (3-Real Space), there are a lot of geometric algorithm design and analysis, especially the geometric said, geometric calculation and geometric reasoning; In measurement and robot path planning and parts search spaces (such as Localization), the existence of space C- interspace (configuration space Configuration Space) geometric calculation and geometric reasoning; Objects in operation (rescue, paying and assembly, etc.) means paying more description and robot planning, campaign planning and assembly operations planning is needed in the types of space (Screw Space) geometric reasoning. Manufacturing process of physical and geometric mechanics phenomenon of scientific research to create a geometric calculation and geometric reasoning, and other aspects of the research topic, the theory pending further breakthrough, the new one door disciplines -- computer geometric are being increasingly broad and in-depth study.
(3) In the modern manufacturing process, information not only manufacturing industries have become dominated the decisive factor, but also the most active ones. Manufacturing information systems to improve throughput of modern manufacturing has become a focus of scientific development. The manufacturing information system organization and structure required to create information access, integration and integration show three-dimensional in nature, measuring the multidimensional nature of the information, and information organizations nature. Information structure models in the manufacturing, manufacturing information consistency constraint, and the dissemination of data processing and the manufacture of enormous knowledge base management, and other areas, there is a need to further breakthroughs.
(4) The calculation of the wisdom of artificial intelligence tools and methods in the manufacture of a wide range of applications for manufacturing smart development. Category based on the calculation of biological evolution algorithms smart tools, including activation issues optimize GPS technology portfolio by growing concern is in the manufacture of the complete portfolio optimization problems combined speed and precision of GPS issues both in size constraints. Manufacturing wisdom manifested in the following aspects : wisdom activation, wisdom design, intelligent processing, robotics, intelligent control, intelligent process planning, smart diagnostic, and other aspects. These innovative products are the key theoretical issues, but also by creating a door for a science skills in the important basic issues. The focus in these issues, we can form the basis of product innovation research system.
2. Modern mechanical engineering at the frontiers of science
Cross-integration between the different science will produce new scientific gathering, economic development and social progress of science and technology created new demands and expectations, thus creating a frontier science. Frontier science is settled and unsettled issues between the scientific community. Frontier science, with a clear domain, and dynamic character of the area. Works frontier science from the general basic science is an important characteristic of the actual works, it covers the key emerging science and technology issues. Ultrasonic electrical, ultra-high-speed machines, green design and manufacturing, and other fields, and has done a lot of research work, but innovation is the key question is not clear mechanical science. Large complex mechanical system design and performance optimization of product innovation design, smart structures and systems, intelligent robots and their dynamics, nano Mocaxue, manufacturing process 3D numerical simulations and physical simulation, precision and ultra-fine processing technology key basis, about 10 mega large and sophisticated equipment design and manufacturing base, virtual manufacturing and virtual instruments, nanometer measurement and instrumentation, parallel connection axis machine tools, and although the field of micro-electromechanical systems have done a lot of research, but there are still many key science and technology issues to be resolved. Information science, nano science, materials science, life science, management science and manufacturing science of the 21st century will be to change the mainstream science, and the resulting high-tech industry will change the face of the world. Therefore, the above areas of cross-development manufacturing systems and manufacturing informatics, nano manufacturing machinery and nano science, better machinery and better manufacturing science, management science and manufacturing systems will be critical to the 21st century mechanical engineering science is important frontier science.
2.1 Manufacturing science and information science cross -- manufacturing informatics
Mechanical and electrical products, chemical raw materials in the information. Many modern value added products primarily reflected in the information. Thus the manufacturing process for the acquisition and application of information is very important. Information science and technology is to create an important symbol of globalization and modernization. While the manufacturing technology began to explore product design and manufacturing processes, the nature of the information, on the other hand, to create technology to transform itself to adapt to the new information makes its manufacturing environment. Along with the manufacturing process and manufacturing systems to deepen understanding, researchers are trying to new concepts and approaches to their description and expression to achieve further control and optimization purposes.
And manufacturing-related information mainly product information, technical information and information management in this area following major research direction and content :
(1) manufacturing information acquisition, processing, storage, transmission and application of knowledge to create information and decision-making transformation.
(2) Non-symbols expressing information, manufacturing information enables transmission, manufacturing information management, manufacturing information integrity in a state of non-production decision-making, management of virtual manufacturing, based on the network environment of the design and manufacturing, manufacturing process control and manufacturing systems science. These elements are manufactured in science and the scientific basis for the integration of product information, constitute the manufacture of the new branch of science -- to create informatics.
2.2 Micro mechanical and manufacturing technology research
Micro-electronic mechanical systems (MEMS) refers to the collection of micro-sensors, micro-devices and the implementation of signal processing and control circuits, interface circuits, communications and power with the integration of micro-electromechanical system integrity. MEMS technology objectives through system miniaturization, to explore a new theory of integration, new functional components and systems. MEMS development will greatly facilitate the pocket of various products, miniaturization, a number of devices and systems to enhance the level of functional density, information density and Internet density, significantly saving, thin section. Not only can it reduce the cost of mechanical and electrical systems, but also to be completed and the size of many large systems impossible task. For example, using sophisticated 5μm diameter micro tweezers walls are made of a red blood cell can; Created to keep the cars 3mm size; In the magnetic field, like butterflies flying size aircraft. MEMS technology has opened up a completely new technology areas and industries, with many traditional sensors incomparable advantages in manufacturing, aerospace, transportation, telecommunications, agriculture, biomedical, environmental monitoring, military, families, and access to almost all areas have very broad application prospects.
Micro machinery is machinery and electronic technology in nano-scale technology integration photogenic product. Back in 1959 scientists have raised the idea of micro-mechanical and micro-1962, the first silicon pressure sensors. 1987 California University of California Berkeley developed rotor diameter of the silicon micro-60~120 16ug m electrostatic electric motors, show produced using silicon micro-machining small movable structures and compatible with IC manufacturing micro system potential. Micro-mechanical technology might like 20th century microelectronics technology, the technology of the world in the 21st century, economic development and national defense building a tremendous impact. Over the past 10 years, the development of micro-mechanical spectacular. Its characteristics are as follows : a considerable number of micro-components (micro structure, the implementation of micro-sensors and micro-machines, etc.) and micro-systems research success reflects the current and potential applications of value; The development of micro-manufacturing technology, particularly semiconductor processing technology have become small micro systems support technology; micro-electromechanical systems research needs of the interdisciplinary research team, micro-electromechanical systems technology in the development of microelectronics technology on the basis of multidisciplinary cross-frontier area of research, involving electronic engineering, mechanical engineering, materials engineering, physics, chemistry and biomedical engineering and other technical and scientific.
The current micro-mechanical systems under the conditions of the campaign laws, the physical characteristics and micro components of the role of the mechanics payload acts lack adequate understanding is not yet in a theoretical basis for a micro-system design theory and methodology, and therefore can By experience and test methods research. Micro-mechanical systems, the existence of key scientific research issues of micro-scale system effects, physical properties and biochemical characteristics. Micro-system research are in the eve of a breakthrough, which is the in-depth study of the area.
2.3 Material produced / manufactured parts integration of new technologies for processing.
Material is a milestone in the progress of mankind, is the manufacturing and high-tech development. Every important to the success of the production and application of new materials, will promote the material and the promotion of national economic strength and military strength. 21, the world will be resource consumption-based economy to a knowledge-based industrial transformation for materials and parts and functions of a high performance, intelligent features; Request materials and components designed to achieve quantitative-based and digitized; Prepare materials and components for the rapid, efficient and achieve both integration and integrated. Digital materials and components designed to be a simulation and optimization of materials and components to achieve high quality production / manufacturing and other integration, integrated manufacturing key. On the one hand, to be completed through computer simulation optimization can reduce the material is produced in the course of manufacture of spare parts and experimental links to the best craft programmes, materials and components to achieve high quality production / manufacturing; On the other hand, according to the requirements of different material properties, such as flexible modules volume, thermal expansion coefficient, magnetic performance, Research materials and components designed form. And the removal of traditional materials-manufacturing technology, and increase the level of information technology, the research group of synthetic materials is a process technology. Forming materials and components manufacture digital theory, technology and methods, such as rapid adoption of emerging technologies material g