捷達轎車的數(shù)據(jù)對制動系統(tǒng)進行設(shè)計【捷達轎車制動系統(tǒng)設(shè)計】
購買設(shè)計請充值后下載,資源目錄下的文件所見即所得,都可以點開預(yù)覽,資料完整,充值下載可得到資源目錄里的所有文件?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
南昌航空大學(xué)科技學(xué)院學(xué)士學(xué)位論文 多個圓盤濕制動器在潤滑的環(huán)境下的設(shè)計方法的研究秦大同 孫東葉( 重慶大學(xué) 機械傳動國家中心實驗室,中國重慶 400044 )摘要:在摩擦副之間發(fā)生的機械熱現(xiàn)象極大地改變多個濕制動器圓盤的襯套壓力和摩擦表面溫度的分配。 它已經(jīng)成為制動失敗的主要因素之一。 為了了解這些機械熱現(xiàn)象, 很多設(shè)計和對機械熱現(xiàn)象有很大影響的物質(zhì)因素,例如熱轉(zhuǎn)移系數(shù),摩擦因素, 滑動速度, 最初的襯套壓力等等都應(yīng)分析。等溫的設(shè)計方法是計劃設(shè)計一個多個濕制動器圓盤關(guān)鍵字: 濕制動器 機械熱現(xiàn)象 熱轉(zhuǎn)移系數(shù) 摩擦因素0介紹多個濕制動器圓盤主要地有摩擦副, 一個反對板塊和一個活塞。每一個摩擦副包括一個摩擦片和一個鋼片。摩擦片是圓盤中在摩擦材料的兩邊排成一行的金屬軸。正常濕制動器的結(jié)構(gòu)如圖1所示。 圖 1 多個圓盤濕制動器 機械熱現(xiàn)象由非均勻的 墊片熱變形所引起的。因為在徑向的熱發(fā)散,熱轉(zhuǎn)移系數(shù)和摩擦因素的分布不均勻, 所以在濕制動的嚙合期間摩擦表面溫度將會以不同的比率增加。 在較高溫度的分布區(qū)中,比較大的墊片熱變形將會見到。 即使最初的熱發(fā)散是均勻分布的。由于熱移動系數(shù)和摩擦因素效果的變化,變形將變的不均勻。 在變形較高的局部區(qū)域,必然產(chǎn)生較大的壓力。 依次,由于在這些區(qū)域的熱膨脹,從而引起較高的溫度上升和促進局部壓力的增加。 這個過程叫做 機械熱現(xiàn)象。 這個現(xiàn)象將會導(dǎo)致實連接區(qū)域的減少, 表面溫度和摩擦片損壞率的增加。機械熱現(xiàn)象主要是由于濕制動的失敗而造成的。 通過將摩擦襯套的壓力分布的最佳化來減少機械熱現(xiàn)象的效果。 基于有限的元素分析, 等溫的設(shè)計方法是計劃設(shè)計一個多個濕制動器圓盤。1機械熱現(xiàn)象的影響因素1.1 摩擦因素的影響摩擦片和鋼板之間的動摩擦因素在機械熱現(xiàn)象 上是影響因素之一。 當(dāng)滑動速度 v和襯套壓力 p 是常數(shù)的時候,熱發(fā)散 q 可能隨著摩擦因素 f的改變而不同。 因此 , 一個非均勻的熱墊片將會產(chǎn)生變形。 根據(jù)他們的構(gòu)成,用于濕制動器的摩擦材料分為多個類型, 例如sintered青銅-, 石墨- 和以紙為基礎(chǔ)的材料。材料的改變在嚙合期間能極大的影響平均動摩擦因素。 即使相同類型的摩擦材料, 隨著摩擦表面溫度 t , 滑動速度v 和襯套壓力 p的改變,平均動摩擦因素 f 將會極大的不同。以紙為基礎(chǔ)的摩擦材料在于研究紙。 紙 以它的高動摩擦因素和極低的靜態(tài)的/動態(tài)的系數(shù)比而聞名。 這個特征使得以紙為基礎(chǔ)的摩擦材料在制動期間非常的平滑和安靜。為了獲得隨著溫度 t變化的摩擦因素, 速度v 和壓力 p 的規(guī)律性, 以紙為基礎(chǔ)的摩擦材料的正交實驗完成的是一個 LBA0049 慣性力。在這實驗中,摩擦因素被定義為客觀的數(shù)值。 像溫度 t, 速度 v 和壓力 p 這樣的叁數(shù),以一個多線形的衰退方法被分析。 標準的正交表格 L 被采用。參數(shù) x,y, z,k和m 被定義為上限、下限、零界限、變化范圍和可變代碼。所有的叁數(shù)的變化范圍如表 1 所示。代碼變量只能從 -1 到 +1變化. (1) (2) (3) 表 1 代碼變量計劃 變量 溫度(Z1)t/ 速度(Z2)v/(ms-1) 壓強(Z3)p/MPa- 80 0.3 0.7 90 0.4 0.9 85 0.35 0.8 5 0.05 0.1函數(shù) 摩擦因素的衰減方程由以下方程給出: (4) (5)這里, -衰減系數(shù)表 2 摩擦因素的多線性變量衰退分析 i=1,2,3 (6) ji (7) 這里 N-實驗數(shù)字,N=8 M-相同實驗中的重復(fù)數(shù)字,M=3衰減方程系數(shù)的測試通過以下方程獲得: (8) (9)摩擦因素的衰減方程為: (10)如果溫度t,速度v,壓強p代替以變量,則得到摩擦因素新的方程: (11)1.2 熱轉(zhuǎn)移系數(shù)的影響摩擦材料的表面有允許冷卻液流動的凹槽。 熱轉(zhuǎn)移系數(shù)分布將會隨著凹槽式樣和徑向的位置而極大的改變。 即使熱發(fā)散的分布在沿著徑向是均勻的, 熱墊片的變形由于熱轉(zhuǎn)移系數(shù)的變化,也將會是非均勻的。 因此在冷卻液和鋼板之間的熱轉(zhuǎn)移系數(shù)也是機械熱現(xiàn)象影響因素之一。 首先, 拋物線的流程需要被定義。如果在那里存在一個三維空間流量的主方向 , 動力的散布,熱,質(zhì)量,等等,能在這些方向被疏忽。 如果沒相反的流程,這個流程叫做拋物線的流程。在引進在凹槽熱轉(zhuǎn)移問題上的數(shù)學(xué)方程之前,確定簡單假定的描述將會單個凹槽的層流流動和熱轉(zhuǎn)移的數(shù)學(xué)分析中給出(圖2)。圖 2 (1)在主要的流動方向, 熱發(fā)散和重量都被疏忽,而且對流是冷卻液流動和板塊之間的熱傳遞的主要因素。 (2)因為在鋼板和以紙為基礎(chǔ)的摩擦片之間的熱傳導(dǎo)率極大的不同, 所以大部份在制動期間產(chǎn)生的熱被鋼板吸收。 在摩擦片和冷卻液之間的熱傳導(dǎo)率能被認為等于零。上述的假定能減少訂單數(shù)目的計算量。 三維空間的流程將會被轉(zhuǎn)化為一系列的二維空間的流程。 在笛卡爾坐標系 中x , y, z(圖 2) 被解決如下。 連續(xù)性 (12)Navier-stokes 方程:在 x=0 , 0yd; u=0,v=0在 x=b , 0yd; u=0,v=0在 y=0 , 0xb; u=0,v=0在 y=d , 0xb; u=0,v=0 (13)這里 u,v,w -在x,y,z方向的速度的組成 b,d,l -凹槽的寬度,深度和長度 -油液密度 -動態(tài)黏度 pf -液流壓強 X,Y,Z -在x,y,z方向的重力u和 v 的結(jié)果能通過使用有限的不同方法的數(shù)字解決而獲得。速度 w 的整個分布能從下列方程式中獲得。 (14)在 x=0 或 x=b, 0yd; w=0在 y=0 或 y=d, 0xb; w=0 (15)當(dāng)?shù)谝粋€假設(shè)滿足,則等于零。溫度分布能從以下方程式中獲得。在 y=d, 0xb; t=tm在 y=0, 0xb; =0在 x=0, 0yd; =0在 x=b, 0xb; =0在 z=0, 0xb 0yd; t= (16)這里-鋼板的溫度 -冷卻液的初始溫度 -平常溫度的斜率 -液體的具體的熱度 -冷卻液的導(dǎo)熱率基于冷卻液的速度場能通過方程 (12) 到 (15)而得到, 每一個相連部分的溫度分布能藉著有限不同方法通過方程(16)獲得。 根據(jù)在表 3 所顯示出的參數(shù), 當(dāng) z 等于 35.5 毫米和 71 毫米的時候。 結(jié)果如圖 3 所示。在正常的鋼板和冷卻液之間方向的平均溫度的梯度是由下列圖表給定的。 圖 3 在z = 35.5 mm和z = 71 mm時的溫度域 (17) 表 3 結(jié)構(gòu)和物理參數(shù)摩擦片的內(nèi)部半徑/mm 160.5摩擦片的內(nèi)部半徑/mm 231.5油液凹槽的寬度 b/mm 3.18油液凹槽的深度 d/mm 0.64油液凹槽的長度 l/mm 71在單個凹槽中的油液質(zhì)量流動率m/(kgs-1 ) 3.24冷卻液的初始溫度 50液體的具體的熱度 2177-冷卻液的導(dǎo)熱率 0.126最后,熱傳遞系數(shù)沿著徑向通過方程 (18) 計算的: (18)被定義為如性質(zhì)上的溫度并通過下列方程計算: (19)圖 4 舉例說明在徑向的多個平行的凹槽熱移動系數(shù)的分布。 它顯示在摩擦片的內(nèi)部附近的冷卻效果顯然地是比較好的超過一在外部附近。 在設(shè)計一個濕制動器時,巨大的熱發(fā)散應(yīng)該在內(nèi)部附近產(chǎn)生來確保沿著板塊的徑向墊片的熱變形是均勻的。 圖 4 制動器的幾何和材料參數(shù)2 機械熱現(xiàn)象的 FEA 模型 在圖 1 所示的方案能在圖 5描述。它主要地包括摩擦片,鋼板,一個對立板塊和一個活塞。為了要建立有關(guān)的 FEA 模型,下列的關(guān)鍵點需要被考慮。(1)多個圓盤濕制動器的最重要的結(jié)構(gòu)特征是摩擦片和鋼板之間的間隙。 為了計算在摩擦副之間的壓力分布, 間隙被使用。 有間隙的 FEA 模型會成為一個非線性模型。(2)摩擦因素不是常數(shù)。 它將會隨著像板塊的表面溫度 t ,滑動速度v 和襯套壓力 p 不同的使用條件而改變。(3)在冷卻液和鋼板之間的熱轉(zhuǎn)移系數(shù)在徑向不是一個常數(shù)。在 FEA 模型中,每個部分被假設(shè)成一個線性彈性物體。系統(tǒng)的外力包括作用在活塞上的液體的壓力 p和通過在軸方向的浮液而作用在對立板上的支承力。 液體的壓力 p 依下列各項被定義無尺寸的量綱。 (20)這里 F-作用于活塞的應(yīng)力 A-單個摩擦表面的接觸面積 P-襯套壓力 圖 5 多個圓盤濕制動器的組合圖 當(dāng)多個圓盤濕制動器的幾何學(xué)的和物質(zhì)參數(shù)在表 4 中給出的時候. 表 4 制動器的幾何和材料參數(shù)鋼板的厚度g/mm 2.4摩擦片的厚度g+2/mm 2.74+21.18油管的實際半徑/mm 174鋼的彈性系數(shù) 200摩擦材料的彈性系數(shù) 2.1鋼的關(guān)比率 0.3摩擦材料的關(guān)比率 0.2油液壓強 2.5 為了核對 FEA 模型, 在開始的襯套壓力分布方面的實驗被完成。 有限元素的分析和實驗的結(jié)果如圖 6 所示。 圖 6 無綱量襯套壓強的分布在現(xiàn)實的制動器中,活塞和對立板的幾何參數(shù)是復(fù)雜的。 設(shè)計活塞和對立板的硬分配的率的方法學(xué)是在建立理想的起始壓力分配方面檢索表 。3 設(shè)計方法 在濕制動器的操作方面,二個不同的模態(tài)可能被識別。 在緊急制動模態(tài), 摩擦片和鋼板在非常短的時間內(nèi)彼此相互滑動。 它通常從 0.2秒到 2 秒之間變化。 在嚙合期間被產(chǎn)生時期的磨擦熱大都被和流動熱轉(zhuǎn)移的一個附屬角色的凹槽的鋼板吸收。 在持續(xù)不斷的制動模態(tài)中,二個板塊的滑動時間可能長達10 秒到 20 秒。 在這一模態(tài)中,溫度在板塊延伸結(jié)局定態(tài)的各種不同的翎骨針在幾秒之內(nèi)評價。 在哪一個所有的被產(chǎn)生的熱一定被在摩擦片的凹槽中流動的液移動之后。 熱轉(zhuǎn)移的價值 , 鋼板和凹槽之間的液體系數(shù)將會決定制動器的穩(wěn)定的溫度水平。摩擦副和切線的上升溫暖氣流的溫度 t 的強調(diào)分別地,相同鋼的板塊的被顯示為持續(xù)不斷的制動如圖 7所示。 圖 7 在持續(xù)制動中溫度和切應(yīng)力的斜坡曲線 在緊急制動過程中,鋼板的表面溫度和切線壓力被一個 LBA0049 慣性動力計的熱和標準度量測量了。 熱和標準度量沿著徑向均勻的分布。 在實驗的和有計劃的結(jié)果之間的比較如圖 8所示。 圖 8 測量和計算結(jié)果的對比 雖然開始的襯套壓力在內(nèi)部的輻部 ( 在圖 6 所示) ,圖 7 和圖 8 表所示的附近比較高高的電動壓力和高的溫度在外面的輻部附近這是局部熱流出輸入為什么在任何的翎骨是一個正常壓力,摩擦因素和滑動速度。 雖然濕制動器可能被設(shè)計到低的平均每單位襯套區(qū)域能源, 當(dāng)?shù)氐母咭r里壓力地點由于 熱 可能引起摩擦襯里的表面燒-在摩擦雙之間的機械不穩(wěn)定。 鋼板通常在支援板塊附近的活塞和最后的鋼板塊附近的第一鋼板塊被發(fā)現(xiàn)。 失敗的主要因素是由于棒的溫度不同而且熱的毀壞。 因為二個鋼的板塊只有一個摩擦表面, 盤子失敗可能是更多產(chǎn)生超過其他的板塊。 鋼板的破裂失敗由重復(fù)的剎周期的疲累損害所引起。 在一個嚙合期間,表面的溫度比鋼板的主要身體劑量更加快速地上升。 它在被張應(yīng)力平衡的鋼板的外部者引誘壓力在那比較冷的內(nèi)部鋼板塊。 當(dāng)這剎周期結(jié)束的時候,鋼板的外部溫度由于冷卻油的效果將會變成比鋼板的內(nèi)部溫度冷。 壓力在鋼板的外部者變成鋼板是內(nèi)部的在比較熱人中被壓力平衡的張力。 因此破裂可能在一個周期的無法欣然接受低數(shù)字中發(fā)生。 概述這些分析, 為了要避免由局部高溫和壓力所引起的剎車損壞, 運行動態(tài)壓力的有限元素計算和表面溫度是必需的。 對于濕的剎車適當(dāng)?shù)脑O(shè)計程序能在下列的步驟被描述: 首先,光線的方向的開始的襯里壓力分配在統(tǒng)一發(fā)情流出的情況之下被估計。其次,以熱轉(zhuǎn)移系數(shù)和摩擦因素的非均勻分布的影響力看來,開始的襯套壓力分布根據(jù)動態(tài)的壓迫力和摩擦溫度被校核。 第三, 為了要了解表面溫度的均勻分布和 墊片的熱變形, 活塞的結(jié)構(gòu)而且對立板最佳化。 這是等溫的設(shè)計方法。 它將會減少不宜的機械熱現(xiàn)象。4 結(jié)論 (1) 機械熱現(xiàn)象由非理性的開始的襯套壓力和熱轉(zhuǎn)移系數(shù)和摩擦因素的非均勻分布所引起。機械熱現(xiàn)象導(dǎo)致局部高溫和高壓力是導(dǎo)致多個圓盤濕制動器失效的主要因素。 (2) 在鋼板的表面上的切線壓力比徑向的壓力大。 因此鋼板的表面損壞通常是在徑向產(chǎn)生的。 (3) 如何設(shè)計活塞的幾何外型是多個圓盤濕制動器的重點。 活塞在摩擦副之間有在開始的襯套壓力分布上比較大的影響。 (4) 為了避免多個圓盤濕制動器的失效,等溫設(shè)計的方法被提出。 換句話說, 濕制動器設(shè)計者應(yīng)該盡全力沿著鋼板的徑向達成均勻的溫度分布。 傳記: 秦大同: 現(xiàn)在是中國重慶大學(xué)的機械工程學(xué)院的一位教授。 在 1991 年,他獲得中國重慶大學(xué)的機械工程博士學(xué)位。 他的研究興趣包括齒輪傳輸, CVT(不斷可變的傳輸), 對于汽車的AMT(自動的機械傳輸) 系統(tǒng), 等等。電話: +86-23-65104217; 電子郵件: dtqincqu.edu.cn 孫東葉:現(xiàn)在是中國重慶大學(xué)的自動化系的一位副教授。 在 1991 年,他獲得中國吉林科技大學(xué)博士學(xué)位。 他的研究興趣包括 CVT(不斷可變的傳輸), 對于汽車的AMT(自動的機械傳輸) 系統(tǒng), 等等。電話: +86-23-65103566; 電子郵件: dysuncqu.edu.cn參考:1 Zagrodzki P.多個離合器和剎車的機械熱現(xiàn)象的分析 。Wear,1990:(140) 291 3082Murali M R Krishna, Douglas Chojecki。結(jié)合使用有限元素對離合器和剎車中心軸的的失效分析。SAE Paper No. 982799, 1998 3 Tasuhite Miura , Noboru Sekine?;诩埖臐耠x合器的動態(tài)特性的研究 。SAE Paper No. 981102, 19984 Payvar P.在濕離合器的油凹槽中的Laminar熱傳遞。Int. J. Heat Mass Transfer, 1991, 34(7): 1 7911 798航空與機械工程學(xué)院 第13 頁 共 13 頁 哈爾濱工業(yè)大學(xué)華德應(yīng)用技術(shù)學(xué)院(論文) 摘 要 國內(nèi)汽車市場迅速發(fā)展,隨著汽車保有量的增加,帶來的安全問題也越來越引起人們的注意,而制動系統(tǒng)則是汽車主動安全的重要系統(tǒng)之一。因此,如何開發(fā)出高性能的制動系統(tǒng),為安全行駛提供保障是我們要解決的主要問題。另外,隨著汽車市場競爭的加劇,如何縮短產(chǎn)品開發(fā)周期、提高設(shè)計效率,降低成本等,提高產(chǎn)品的市場競爭力,已經(jīng)成為企業(yè)成功的關(guān)鍵。本說明書主要根據(jù)已有的捷達轎車的數(shù)據(jù)對制動系統(tǒng)進行設(shè)計。首先介紹了汽車制動系統(tǒng)的發(fā)展、結(jié)構(gòu)、分類,并通過對鼓式制動器和盤式制動器的結(jié)構(gòu)及優(yōu)缺點進行分析。最終確定方案采用前盤后鼓式制動器。除此之外,它還介紹了前后制動器、制動主缸的設(shè)計計算,主要部件的參數(shù)選擇等的設(shè)計過程。關(guān)鍵詞:制動;鼓式制動器;盤式制動器;目 錄摘要I目錄II第1章 緒論11.1 制動系統(tǒng)設(shè)計的意義11.2 制動系統(tǒng)研究現(xiàn)狀11.3 制動系統(tǒng)設(shè)計內(nèi)容21.4 制動系統(tǒng)設(shè)計要求2第2章 制動器設(shè)計計算42.1 捷達車的主要技術(shù)參數(shù)42.2 制動系統(tǒng)的主要參數(shù)及其選擇42.2.1 同步附著系數(shù)42.2.2 制動強度和附著系數(shù)利用率72.2.3 制動器最大的制動力矩102.3 制動器因數(shù)和制動蹄因數(shù)112.4 制動器的結(jié)構(gòu)參數(shù)與摩擦系數(shù)162.4.1 鼓式制動器的結(jié)構(gòu)參數(shù)162.4.2 盤式制動器的結(jié)構(gòu)參數(shù)192.5 制動器的設(shè)計計算202.5.1 制動蹄摩擦面的壓力分布規(guī)律202.5.2 制動器因數(shù)及摩擦力矩分析計算242.5.3 制動蹄片上的制動力矩262.6 摩擦襯片的磨損特性計算342.7 制動器的熱容量和溫升的核算352.8 駐車制動計算372.9 制動器主要零件的結(jié)構(gòu)設(shè)計392.9.1 制動鼓392.9.2 制動蹄402.9.3 制動底板412.9.4 制動蹄的支承412.9.5 制動輪缸412.9.6 制動盤422.9.7 制動塊422.9.8 摩擦材料422.9.9 制動摩擦襯片432.9.10 制動器間隙43第3章 制動驅(qū)動機構(gòu)的設(shè)計計算493.1 輪缸直徑與工作容積493.1.1 盤式制動器直徑與工作容積503.1.2 鼓式制動器直徑與工作容積513.2 制動主缸直徑與工作容積513.3 制動輪缸活塞寬度與缸筒的壁厚523.3.1 盤式制動輪缸活塞寬度與缸筒壁厚523.3.2 盤式制動器活塞寬度與缸筒壁厚533.4 制動主缸行程的計算543.5 制動主缸活塞寬度與缸筒的壁厚553.5.1 制動主缸活塞寬度553.6 制動踏板力與踏板行程55結(jié)論58參考文獻59致謝60V哈爾濱工業(yè)大學(xué)華德應(yīng)用技術(shù)學(xué)院畢業(yè)設(shè)計(論文)第1章 緒論1.1制動系統(tǒng)設(shè)計的意義汽車是現(xiàn)代交通工具中用得最多,最普遍,也是最方便的交通運輸工具。汽車制動系是汽車底盤上的一個重要系統(tǒng),它是制約汽車運動的裝置。而制動器又是制動系中直接作用制約汽車運動的一個關(guān)鍵裝置,是汽車上最重要的安全件。汽車的制動性能直接影響汽車的行駛安全性。隨著公路業(yè)的迅速發(fā)展和車流密度的日益增大,人們對安全性、可靠性要求越來越高,為保證人身和車輛的安全,必須為汽車配備十分可靠的制動系統(tǒng)。通過查閱相關(guān)的資料,運用專業(yè)基礎(chǔ)理論和專業(yè)知識,確定汽車制動器的設(shè)計方案,進行部件的設(shè)計計算和結(jié)構(gòu)設(shè)計。使其達到以下要求:具有足夠的制動效能以保證汽車的安全性;同時在材料的選擇上盡量采用對人體無害的材料。 1.2制動系統(tǒng)研究現(xiàn)狀車輛在行駛過程中要頻繁進行制動操作,由于制動性能的好壞直接關(guān)系到交通和人身安全,因此制動性能是車輛非常重要的性能之一,改善汽車的制動性能始終是汽車設(shè)計制造和使用部門的重要任務(wù)。當(dāng)車輛制動時,由于車輛受到與行駛方向相反的外力,所以才導(dǎo)致汽車的速度逐漸減小至零,對這一過程中車輛受力情況的分析有助于制動系統(tǒng)的分析和設(shè)計,因此制動過程受力情況分析是車輛試驗和設(shè)計的基礎(chǔ),由于這一過程較為復(fù)雜,因此一般在實際中只能建立簡化模型分析,通常人們主要從三個方面來對制動過程進行分析和評價:(1)制動效能:即制動距離與制動減速度;(2)制動效能的恒定性:即抗熱衰退性;(3)制動時汽車的方向穩(wěn)定性;目前,對于整車制動系統(tǒng)的研究主要通過路試或臺架進行,由于在汽車道路試驗中車輪扭矩不易測量,因此,多數(shù)有關(guān)傳動系!制動系的試驗均通過間接測量來進行汽車在道路上行駛,其車輪與地面的作用力是汽車運動變化的根據(jù),在汽車道路試驗中,如果能夠方便地測量出車輪上扭矩的變化,則可為汽車整車制動系統(tǒng)性能研究提供更全面的試驗數(shù)據(jù)和性能評價。1.3制動系統(tǒng)設(shè)計內(nèi)容(1)研究、確定制動系統(tǒng)的構(gòu)成 (2)汽車必需制動力及其前后分配的確定 前提條件一經(jīng)確定,與前項的系統(tǒng)的研究、確定的同時,研究汽車必需的制動力并把它們適當(dāng)?shù)胤峙涞角昂筝S上,確定每個車輪制動器必需的制動力。 (3) 確定制動器制動力、摩擦片壽命及構(gòu)造、參數(shù) 制動器必需制動力求出后,考慮摩擦片壽命和由輪胎尺寸等所限制的空間,選定制動器的型式、構(gòu)造和參數(shù),繪制布置圖,進行制動力制動力矩計算、摩擦磨損計算。 (4) 制動器零件設(shè)計 零件設(shè)計、材料、強度、耐久性及裝配性等的研究確定,進行工作圖設(shè)計。 1.4制動系統(tǒng)設(shè)計要求制定出制動系統(tǒng)的結(jié)構(gòu)方案,確定計算制動系統(tǒng)的主要設(shè)計參數(shù)制動器主要參數(shù)設(shè)計和液壓驅(qū)動系統(tǒng)的參數(shù)計算。利用計算機輔助設(shè)計繪制裝配圖和零件圖。 第2章 制動器設(shè)計計算 車輪制動器是行車制動系的重要部件。按GB7258-2004的規(guī)定,行車制動必須作用在車輛的所有的車輪上。2.1 捷達轎車的主要技術(shù)參數(shù)在制動器設(shè)計中需預(yù)先給定的整車參數(shù)如表2.1所示表2.1 捷達轎車整車參數(shù)已知參數(shù)捷達轎車軸距L(mm)2471整車整備質(zhì)量(Kg)1100滿載質(zhì)量(Kg)1500最高車速(km)175 同步附著系數(shù)0.89(空載),1.28(滿載)2.2制動系統(tǒng)的主要參數(shù)及其選擇2.2.1 同步附著系數(shù)對于前后制動器制動力為固定比值的汽車,只有在附著系數(shù)等于同步附著系數(shù)的路面上,前、后車輪制動器才會同時抱死,當(dāng)汽車在不同值的路面上制動時,可能有以下三種情況4。1、當(dāng)時線在曲線下方,制動時總是前輪先抱死,這是一種穩(wěn)定工況,但喪失了轉(zhuǎn)向能力;2、當(dāng)時線位于曲線上方,制動時總是后輪先抱死,這時容易發(fā)生后軸側(cè)滑而使汽車失去方向穩(wěn)定性;3、當(dāng)時制動時汽車前、后輪同時抱死,這時也是一種穩(wěn)定工況,但也喪失了轉(zhuǎn)向能力。為了防止汽車制動時前輪失去轉(zhuǎn)向能力和后輪產(chǎn)生側(cè)滑,希望在制動過程中,在即將出現(xiàn)車輪抱死但尚無任何車輪抱死時的制動減速度為該車可能產(chǎn)生的最高減速度。分析表明,汽車在同步附著系數(shù)的路面上制動(前、后車輪同時抱死)時,其制動減速度為,即,為制動強度。在其他附著系數(shù)的路面上制動時,達到前輪或后輪即將抱死的制動強度。這表明只有在的路面上,地面的附著條件才可以得到充分利用。附著條件的利用情況可以用附著系數(shù)利用率(或稱附著力利用率)來表示,可定義為 (2.1)式中:汽車總的地面制動力; 汽車所受重力; 汽車制動強度。當(dāng)時,利用率最高?,F(xiàn)代的道路條件大為改善,汽車行駛速度也大為提高,因而汽車因制動時后輪先抱死的后果十分嚴重。由于車速高,它不僅會引起側(cè)滑甚至甩尾會發(fā)生掉頭而喪失操縱穩(wěn)定性,因此后輪先抱死的情況是最不希望發(fā)生的,所以各類轎車和一般載貨汽車的值均有增大趨勢。國外有關(guān)文獻推薦滿載時的同步附著系數(shù):轎車??;貨車取為宜。我國GB126761999附錄制動力在車軸(橋)之間的分配及掛車之間制動協(xié)調(diào)性要求中規(guī)定了除、外其他類型汽車制動強度的要求。 對于制動強度在0.150.3之間,若各軸的附著利用曲線位于公式確定的與理想附著系數(shù)利用直線平行的兩條直線(如圖2.1)之間,則認為滿足條件要求;對于制動強度,若后軸附著利用曲線能滿足公式,則認為滿足的要求4。參考與同類車型的值,取。圖2.1除、外的其他類別車輛的制動強度與附著系數(shù)要求2.2.2 制動強度和附著系數(shù)利用率根據(jù)選定的同步附著系數(shù),已知: (2.2)式中:汽車軸距,mm; 制動力分配系數(shù); 滿載時汽車質(zhì)心距前軸中心的距離;滿載時汽車質(zhì)心距后軸中心的距離; 滿載時汽車質(zhì)心高度。求得: 進而求得 (2.3) (2.4)式中:制動強度;汽車總的地面制動力; 前軸車輪的地面制動力; 后軸車輪的地面制動力。當(dāng)時,故,;。此時,符合GB126761999的要求。當(dāng)時,可能得到的最大總制動力取決于前輪剛剛首先抱死的條件,即。此時求得:表2.2 取不同值時對比GB 12676-1999的結(jié)果0.10.20.30.40.50.60.71144.12376.953269.325080.196585.778207.5713725.480.0780.16170.22240.34560.448010.558330.677530.780.80850.74150.863980.896020.930560.9679GB126761999符合國家標準符合國家標準符合國家標準符合國家標準符合國家標準符合國家標準符合國家標準當(dāng)時,可能得到的最大的制動力取決于后輪剛剛首先抱死的條件,即。此時求得:表2.3取不同值時對比GB 12676-1999的結(jié)果0.812191.150.80521.0066GB126761999符合國家標準2.2.3 制動器最大的制動力矩為保證汽車有良好的制動效能和穩(wěn)定性,應(yīng)合理地確定前、后輪制動器的制動力矩。最大制動力是在汽車附著質(zhì)量被完全利用的條件下獲得的,這時制動力與地面作用于車輪的法向力 成正比。所以,雙軸汽車前、后車輪附著力同時被充分利用或前、后輪同時抱死的制動力之比為: (2.5)式中:汽車質(zhì)心離前、后軸的距離; 同步附著系數(shù); 汽車質(zhì)心高度。制動器所能產(chǎn)生的制動力矩,受車輪的計算力矩所制約,即 (2.6)式中:前軸制動器的制動力,; 后軸制動器的制動力,; 作用于前軸車輪上的地面法向反力;作用于后軸車輪上的地面法向反力;車輪的有效半徑。對于選取較大值的各類汽車,應(yīng)從保證汽車制動時的穩(wěn)定性出發(fā),來確定各軸的最大制動力矩。當(dāng)時,相應(yīng)的極限制動強度,故所需的后軸和前軸制動力矩為 (2.7) (2.8)式中:該車所能遇到的最大附著系數(shù); 制動強度; 車輪有效半徑。Nm Nm單個車輪制動器應(yīng)有的最大制動力矩為 、的一半,為2920.14 Nm 和532.5Nm。2.3 制動器因數(shù)和制動蹄因數(shù)制動器因數(shù)又稱為制動器效能因數(shù)。其實質(zhì)是制動器在單位輸入壓力或力的作用下所能輸出的力或力矩,用于評比不同結(jié)構(gòu)型式的制動器的效能。制動器因數(shù)可定義為在制動鼓或制動盤的作用半徑上所產(chǎn)生的摩擦力與輸入力之比,即 (2.9)式中:制動器效能因數(shù)制動器的摩擦力矩; 制動鼓或制動盤的作用半徑; 輸入力,一般取加于兩制動蹄的張開力(或加于兩制動塊的壓緊力)的平均值為輸入力。 對于鼓式制動器,設(shè)作用于兩蹄的張開力分別為、,制動鼓內(nèi)圓柱面半徑即制動鼓工作半徑為,兩蹄給予制動鼓的摩擦力矩分別為和,則兩蹄的效能因數(shù)即制動蹄因數(shù)分別為: (2.10) (2.11)整個鼓式制動器的制動因數(shù)則為 (2.12)當(dāng)時,則 (2.13)蹄與鼓間作用力的分布,其合力的大小、方向及作用點,需要較精確地分析、計算才能確定。今假設(shè)在張力P的作用下制動蹄摩擦襯片與鼓之間作用力的合力N如圖3.2所示作用于襯片的B點上。這一法向力引起作用于制動蹄襯片上的摩擦力為為摩擦系數(shù)。a,b,c,h,R 及為結(jié)構(gòu)尺寸,如圖3.2所示。圖3.2 鼓式制動器的簡化受力圖對領(lǐng)蹄取繞支點A的力矩平衡方程,即 (2.14)由上式得領(lǐng)蹄的制動蹄因數(shù)為 (2.15)當(dāng)制動鼓逆轉(zhuǎn)時,上述制動蹄便又成為從蹄,這時摩擦力的方向與圖3.2所示相反,用上述分析方法,同樣可得到從蹄繞支點A的力矩平衡方程,即 (2.16) (2.17)由式(2-15)可知:當(dāng)趨近于占時,對于某一有限張開力,制動鼓摩擦力趨于無窮大。這時制動器將自鎖。自鎖效應(yīng)只是制動蹄襯片摩擦系數(shù)和制動器幾何尺寸的函數(shù)。通過上述對領(lǐng)從蹄式制動器制動蹄因數(shù)的分析與計算可以看出,領(lǐng)蹄由于摩擦力對蹄支點形成的力矩與張開力對蹄支點的力矩同向而使其制動蹄因數(shù)值大,而從蹄則由于這兩種力矩反向而使其制動蹄因數(shù)值小。兩者在=0.30.35范圍內(nèi),當(dāng)張開力時,相差達3倍之多。圖2.3給出了領(lǐng)蹄與從蹄的制動蹄因數(shù)及其導(dǎo)數(shù)對摩擦系數(shù)的關(guān)系曲線。由該圖可見,當(dāng)增大到一定值時,領(lǐng)蹄的和均趨于無限大。它意味著此時只要施加一極小張開力,制動力矩將迅速增至極大的數(shù)值,此后即使放開制動踏板,領(lǐng)蹄也不能回位而是一直保持制動狀態(tài),發(fā)生“自鎖”現(xiàn)象。這時只能通過倒轉(zhuǎn)制動鼓消除制動。領(lǐng)蹄的和隨的增大而急劇增大的現(xiàn)象稱為自行增勢作用。反之,從蹄的和隨的增大而減小的現(xiàn)象稱為自行減勢作用。在制動過程中,襯片的溫度、相對滑動速度、壓力以及濕度等因素的變化會導(dǎo)致摩擦系數(shù)的改變。而摩擦系數(shù)的改變則會導(dǎo)致制動效能即制動器因數(shù)的改變。制動器因數(shù)對摩擦系數(shù) 的敏感性可由來衡量,因而稱為制動器的敏感度,它是制動器效能穩(wěn)定性的主要決定因素,而除決定于摩擦副材料外,又與摩擦副表面的溫度和水濕程度有關(guān),制動時摩擦生熱,因而溫度是經(jīng)常起作用的因素,熱穩(wěn)定性更為重要。熱衰退的臺架試驗表明,多次重復(fù)緊急制動可導(dǎo)致制動器因數(shù)值減小50%,而下長坡時的連續(xù)和緩制動也會使該值降至正常值的30%。1領(lǐng)蹄;2從蹄圖2.3制動蹄因數(shù)及其導(dǎo)數(shù)與摩擦系數(shù)的關(guān)系由圖2.3也可以看出,領(lǐng)蹄的制動蹄因數(shù)雖大于從蹄,但其效能穩(wěn)定性卻比從蹄差。就整個鼓式制動器而言,也在不同程度上存在以為表征的效能本身與其穩(wěn)定性之間的矛盾。由于盤式制動器的制動器因數(shù)對摩擦系數(shù)的導(dǎo)數(shù)()為常數(shù),因此其效能穩(wěn)定性最好。2.4 制動器的結(jié)構(gòu)參數(shù)與摩擦系數(shù)2.4.1 鼓式制動器的結(jié)構(gòu)參數(shù)1、制動鼓直徑 當(dāng)輸入力一定時,制動鼓的直徑越大,則制動力矩越大,且使制動器的散熱性能越好。但直徑的尺寸受到輪輞內(nèi)徑的限制,而且的增大也使制動鼓的質(zhì)量增加,使汽車的非懸掛質(zhì)量增加,不利于汽車的行駛的平順性。制動鼓與輪輞之間應(yīng)有一定的間隙,以利于散熱通風(fēng),也可避免由于輪輞過熱而損壞輪胎。由此間隙要求及輪輞的尺寸即可求得制動鼓直徑的尺寸。但由于捷達車型在制動鼓直徑均為固定值,所以現(xiàn)取鼓式制動器的直徑為180mm。2、制動蹄摩擦片寬度、制動蹄摩擦片的包角和單個制動器摩擦面積由制動鼓工作直徑及制動蹄片寬度尺寸系列的規(guī)定,選取制動蹄摩擦片寬度mm;摩擦片厚度mm。摩擦襯片的包角通常在范圍內(nèi)選取,試驗表明,摩擦襯片包角時磨損最小,制動鼓的溫度也最低,而制動效能則最高。再減小雖有利于散熱,但由于單位壓力過高將加速磨損。包角也不宜大于,因為過大不僅不利于散熱,而且易使制動作用不平順,甚至可能發(fā)生自鎖。綜上所述選取。 單個制動器摩擦面積: (2.18)式中:單個制動器摩擦面積,mm2制動鼓內(nèi)徑,mm; 制動蹄摩擦片寬度,mm; 為制動蹄的摩擦襯片包角,()。cm2表2.4 制動器襯片摩擦面積汽車類別汽車總質(zhì)量t單個制動器摩擦面積cm2轎車客車與貨車(多為)(多為)由表2.4數(shù)據(jù)可知設(shè)計符合要求。3、摩擦襯片起始角摩擦襯片起始角如圖3.4所示。通常是將摩擦襯片布置在制動蹄外緣的中央,并令。制動蹄包角圖2.4鼓式制動器的主要幾何參數(shù)4、張開力的作用線至制動器中心的距離在滿足制動輪缸布置在制動鼓內(nèi)的條件下,應(yīng)使距離(見圖2.4)盡可能地大,以提高其制動效能。初步設(shè)計時可暫取,根據(jù)設(shè)計時的實際情況取mm5、制動蹄支銷中心的坐標位置與如圖3.4所示,制動蹄支銷中心的坐標尺寸盡可能地小設(shè)計時常取mm,以使盡可能地大,初步設(shè)計可暫取,根據(jù)設(shè)計的實際情況取mm。6、摩擦片摩擦系數(shù)選擇摩擦片時,不僅希望起摩擦系數(shù)要高些,而且還要求其熱穩(wěn)定性好,受溫度和壓力的影響小。不宜單純的追求摩擦材料的高摩擦系數(shù),應(yīng)提高對摩擦系數(shù)的穩(wěn)定性和降低制動器對摩擦系數(shù)偏離正常值的敏感性的要求。后者對蹄式制動器是非常重要的各種制動器用摩擦材料的摩擦系數(shù)的穩(wěn)定值約為,少數(shù)可達0.7。一般說來,摩擦系數(shù)越高的材料,其耐磨性能越差。所以在制動器設(shè)計時,并非一定要追求最高摩擦系數(shù)的材料。當(dāng)前國產(chǎn)的制動摩擦片材料在溫度低于250時,保持摩擦系數(shù)=0.350.4已不成問題。因此,在假設(shè)的理想條件下計算制動器的制動力矩,取=0.3可使計算結(jié)果接近實際值。另外,在選擇摩擦材料時,應(yīng)盡量采用減少污染和對人體無害的材料。2.4.2盤式制動器的結(jié)構(gòu)參數(shù)1、制動盤直徑D制動盤直徑D希望盡量大些,這時制動盤的有效半徑得以增大,就可以降低制動鉗的夾緊力,降低摩擦襯塊的單位壓力和工作溫度。但制動盤的直徑D受輪輞直徑的限制,通常,制動盤的直徑D選擇輪輞直徑的7079,而總質(zhì)量大于2t的汽車應(yīng)取上限mm取制動盤直徑mm2、制動盤厚度h制動盤厚度h直接影響著制動盤質(zhì)量和工作時的溫升。為使質(zhì)量不致太大,制動盤厚度應(yīng)取得適當(dāng)小些;為了降低制動工作時的溫升,制動盤厚度又不宜過小。實心盤的厚度選擇10mm20mm,選擇制動盤厚度為h=13mm。3、摩擦襯塊工作面積A 推薦根據(jù)制動器摩擦襯塊單位面積占有的汽車質(zhì)量在范圍內(nèi)選取。根據(jù)推薦值取2.2,依汽車質(zhì)量1100kg,得到單片摩擦襯塊的工作面積取值為。 4、摩擦襯塊內(nèi)半徑與外半徑推薦摩擦襯塊的外半徑與內(nèi)半徑的比值不大于1.5。若此比值偏大,工作時摩擦襯塊外緣與內(nèi)緣的圓周速度相差較大,則其磨損就會不均勻,接觸面積將減小,最終會導(dǎo)致制動力矩變化大。取摩擦襯塊外半徑,內(nèi)半徑 則摩擦襯塊半徑選取符合要求。2.5 制動器的設(shè)計計算2.5.1 制動蹄摩擦面的壓力分布規(guī)律 從前面的分析可知,制動器摩擦材料的摩擦系數(shù)及所產(chǎn)生的摩擦力對制動器因數(shù)有很大影響。掌握制動蹄摩擦面上的壓力分布規(guī)律,有助于正確分析制動器因數(shù)。在理論上對制動蹄摩擦面的壓力分布規(guī)律作研究時,通常作如下一些假定:(1)制動鼓、蹄為絕對剛性;(2)在外力作用下,變形僅發(fā)生在摩擦襯片上;(3)壓力與變形符合虎克定律由于本次設(shè)計采用的是領(lǐng)從蹄式的制動鼓,現(xiàn)就領(lǐng)從蹄式的制動鼓制動蹄摩擦面的壓力分布規(guī)律進行分析。如圖2.5所示,制動蹄在張開力P作用下繞支承銷點轉(zhuǎn)動張開,設(shè)其轉(zhuǎn)角為,則蹄片上某任意點A的位移為= (2.19)式中;制動蹄的作用半徑。由于制動鼓剛性對制動蹄運動的限制,則其徑向位移分量將受壓縮,徑向壓縮為圖2.5 制動摩擦片徑向變形分析簡圖從圖2.5中的幾何關(guān)系可看到=因為為常量,單位壓力和變形成正比,所以蹄片上任意一點壓力可寫成 (2.20)式中:摩擦片上單位壓力。即制動器蹄片上壓力呈正弦分布,其最大壓力作用在與連線呈90的徑向線上。上述分析對于新的摩擦襯片是合理的,但制動器在使用過程中摩擦襯片有磨損,摩擦襯片在磨損的狀況下,壓力分布又會有差別。按照理論分析,如果知道摩擦襯片的磨損特性,也可確定摩擦襯片磨損后的壓力分布規(guī)律。根據(jù)國外資料,對于摩擦片磨損具有如下關(guān)系式 (2.21)式中:W磨損量;K磨損常數(shù);摩擦系數(shù);單位壓力;磨擦襯片與制動鼓之間的相對滑動速度。圖2.6 作為磨損函數(shù)的壓力分布值通過分析計算所得壓力分布規(guī)律如圖2.6所示。圖中表明在第11次制動后形成的單位面積壓力仍為正弦分布。如果摩擦襯片磨損有如下關(guān)系: (2.22)式中:磨損常數(shù)。則其磨損后的壓力分布規(guī)律為(C也為一常數(shù))。結(jié)果表示于圖2.6。2.5.2 制動器因數(shù)及摩擦力矩分析計算 如前所述,通常先通過對制動器摩擦力矩計算的分析,再根據(jù)其計算式由定義得出制動器因數(shù)BF的表達式。假設(shè)鼓式制動器中制動蹄只具有一個自由度運動,由此可得:(1)定出制動器基本結(jié)構(gòu)尺寸、摩擦片包角及其位置布置參數(shù),并規(guī)定制動鼓旋轉(zhuǎn)方向; (2)參見2.4.1節(jié)確定制動蹄摩擦片壓力分布規(guī)律,令; (3)在張開力P作用下,確定最大壓力值。參見圖2.7,所對應(yīng)的圓弧,圓弧面上的半徑方向作用的正壓力為,摩擦力為。把所有的作用力對點取矩,可得ph=RMsind-R(R-Mcos)sin (2.23)據(jù)此方程式可求出的值。 圖2.7 制動蹄摩擦力矩分析計算4、計算沿摩擦片全長總的摩擦力矩 T=R sind=R(cos-cos) (2.24)5、由公式(2.9)導(dǎo)出制動器因數(shù)由于導(dǎo)出過程的繁瑣,下面對支承銷式領(lǐng)從蹄制動器的制動因數(shù)進行分析計算。 單個領(lǐng)蹄的制動蹄因數(shù)BFTl (2.25) 單個從蹄的制動蹄因數(shù)BFT2 (2.26)以上兩式中: 以上各式中有關(guān)結(jié)構(gòu)尺寸參數(shù)見圖2.8。 整個制動器因數(shù)為 圖2.8 支承銷式制動蹄2.5.3 制動蹄片上的制動力矩1、鼓式制動蹄片上的制動力矩在計算鼓式制動器時,必須建立制動蹄對制動鼓的壓緊力與所產(chǎn)生的制動力矩之間的關(guān)系。為計算有一個自由度的制動蹄片上的力矩,在摩擦襯片表面上取一橫向單元面積,并使其位于與軸的交角為處,單元面積為。,其中b為摩擦襯片寬度,R為制動鼓半徑,為單元面積的包角,如圖2.8所示。 由制動鼓作用在摩擦襯片單元面積的法向力為: (2.27)而摩擦力產(chǎn)生的制動力矩為 在由至區(qū)段上積分上式,得 (2.28)當(dāng)法向壓力均勻分布時, (2.29)式(2.24)和式(2.25)給出的由壓力計算制動力矩的方法,但在實際計算中采用由張開力P計算制動力矩的方法則更為方便。圖2.9 張開力計算用圖增勢蹄產(chǎn)生的制動力矩可表達如下: (2.30)式中:單元法向力的合力;摩擦力的作用半徑(見圖2.9)。如果已知制動蹄的幾何參數(shù)和法向壓力的大小,便可算出蹄的制動力矩。為了求得力與張開力的關(guān)系式,寫出制動蹄上力的平衡方程式: (2.31)式中:軸與力的作用線之間的夾角;支承反力在工:軸上的投影。解式(3.27),得 (2.32)對于增勢蹄可用下式表示為 (2.33)對于減勢蹄可類似地表示為 (2.34)圖2.10 制動力矩計算用圖為了確定,及,必須求出法向力N及其分量。如果將(見圖2.10)看作是它投影在軸和軸上分量和的合力,則根據(jù)式(2.23)有: (2.35)因此對于領(lǐng)蹄: (2.36)=式中:。根據(jù)式(2.24)和式(2.26),并考慮到 (2.37)則有 (2.38)=0.183對于從蹄: =式中:則有: (2.38)=0.179 由于設(shè)計和相同,因此和值也近似取相同的。對具有兩蹄的制動器來說,其制動鼓上的制動力矩等于兩蹄摩擦力矩之和,即 (2.39)由式(2.33)和式(2.34)知=0.3=0.09對于液壓驅(qū)動的制動器來說,所需的張開力為Nm (2.40)計算蹄式制動器時,必須檢查蹄有無自鎖的可能,由式(3.33)得出自鎖條件。當(dāng)該式的分母等于零時,蹄自鎖: (2.41) (2.42)成立,不會自鎖。由式(2.24)和式(2.29)可求出領(lǐng)蹄表面的最大壓力為: (2.43)=1.26式中:,見圖2.9;,見圖2.10;摩擦襯片寬度;摩擦系數(shù)。因此鼓式制動器參數(shù)選取符合設(shè)計要求。2、盤式制動蹄片上的制動力矩盤式制動器的計算用簡圖如圖2.11所示,今假設(shè)襯塊的摩擦表面與制動盤接觸良好,且各處的單位壓力分布均勻,則盤式制動器的制動力矩為 (2.44)式中:摩擦系數(shù);N單側(cè)制動塊對制動盤的壓緊力(見圖2.11);R作用半徑。 圖2.11 盤式制動器計算用圖 圖2.12 鉗盤式制動器作用半徑計算用圖對于常見的扇形摩擦襯塊,如果其徑向尺寸不大,取R為平均半徑或有效半徑已足夠精確。如圖41所示,平均半徑為 式中 ,扇形摩擦襯塊的內(nèi)半徑和外半徑。根據(jù)圖2.12,在任一單元面積只上的摩擦力對制動盤中心的力矩為,式中q為襯塊與制動盤之間的單位面積上的壓力,則單側(cè)制動塊作用于制動盤上的制動力矩為 單側(cè)襯塊給予制動盤的總摩擦力為 得有效半徑為 令,則有 (2.45) 因,故。當(dāng),。但當(dāng)m過小,即扇形的徑向?qū)挾冗^大,襯塊摩擦表面在不同半徑處的滑磨速度相差太大,磨損將不均勻,因而單位壓力分布將不均勻,則上述計算方法失效。由求得:N則單位壓力 Nm Nm因此盤式制動器主要參數(shù)選取也符合設(shè)計要求。2.6 摩擦襯片的磨損特性計算摩擦襯片的磨損,與摩擦副的材質(zhì)、表面加工情況、溫度、壓力以及相對滑磨速度等多種因素有關(guān),因此在理論上要精確計算磨損性能是困難的。但試驗表明,摩擦表面的溫度、壓力、摩擦系數(shù)和表面狀態(tài)等是影響磨損的重要因素。汽車的制動過程是將其機械能(動能、勢能)的一部分轉(zhuǎn)變?yōu)闊崃慷纳⒌倪^程。在制動強度很大的緊急制動過程中,制動器幾乎承擔(dān)了耗散汽車全部動力的任務(wù)。此時由于在短時間內(nèi)熱量來不及逸散到大氣中,致使制動器溫度升高。此即所謂制動器的能量負荷。能量負荷愈大,則襯片的磨損愈嚴重。制動器的能量負荷常以其比能量耗散率作為評價指標。比能量耗散率又稱為單位功負荷或能量負荷,它表示單位摩擦面積在單位時間內(nèi)耗散的能量,其單位為W/mm2。雙軸汽車的單個前輪制動器和單個后輪制動器的比能量耗散率分別為 (2.46)式中:汽車回轉(zhuǎn)質(zhì)量換算系數(shù);汽車總質(zhì)量;,汽車制動初速度與終速度,m/s;計算時總質(zhì)量3.5t以上的貨車取=18m/s;制動減速度,m/s2,計算時取=0.6;制動時間,s;Al,A2前、后制動器襯片的摩擦面積;制動力分配系數(shù)。在緊急制動到時,并可近似地認為,則有 (2.47) 鼓式制動器的比能量耗損率以不大于1.8W/mm2為宜,但當(dāng)制動初速度低于式(2.40)下面所規(guī)定的值時,則允許略大于1.8W/mm2,盤式制動器比能量耗損率以不大于6.0W/mm2為宜。比能量耗散率過高,不僅會加速制動襯片的磨損,而且可能引起制動鼓或盤的龜裂。W/mm2 W/mm2因此,符合磨損和熱的性能指標要求。2.7 制動器的熱容量和溫升的核算應(yīng)核算制動器的熱容量和溫升是否滿足如下條件 (2.48)式中:各制動鼓的總質(zhì)量;與各制動鼓相連的受熱金屬件(如輪轂、輪輻、輪輞等)的總質(zhì)量;制動鼓材料的比熱容,對鑄鐵c=482 J/(kgK),對鋁合金c=880 J/(kgK);與制動鼓(盤)相連的受熱金屬件的比熱容;制動鼓(盤)的溫升(一次由=30km/h到完全停車的強烈制溫升不應(yīng)超過15);L滿載汽車制動時由動能轉(zhuǎn)變的熱能,因制動過程迅速,可以認為制動產(chǎn)生的熱能全部為前、后制動器所吸收,并按前、后軸制動力的分配比率分配給前、后制動器,即 (2.49)式中 滿載汽車總質(zhì)量;汽車制動時的初速度;汽車制動器制動力分配系數(shù)。盤式制動器:鼓式制動器:由以上計算校核可知符合熱容量和溫升的要求。2.8 駐車制動計算圖2.11為汽車在上坡路上停駐時的受力情況,由此可得出汽車上坡停駐時的后軸車輪的附著力為: (2.50)同樣可求出汽車下坡停駐時的后軸車輪的附著力為: (2.51) 圖2.11 汽車在坡路上停駐時的受力簡圖根據(jù)后軸車輪附著力與制動力相等的條件可求得汽車在上坡路和下坡路上停駐時的坡度極限傾角,即由 (2.52)求得汽車在上坡時可能停駐的極限上坡路傾角為 (2.53)汽車在下坡時可能停駐的極限下坡路傾角為 (2.54)一般對輕型貨車要求不應(yīng)小于16%20%,汽車列車的最大停駐坡度約為12左右。為了使汽車能在接近于由上式確定的坡度為的坡路上停駐,則應(yīng)使后軸上的駐車制動力矩接近于由所確定的極限值 (因),并保證在下坡路上能停駐的坡度不小于法規(guī)規(guī)定值。單個后輪駐車制動器的制動上限為Nm2.9 制動器主要零件的結(jié)構(gòu)設(shè)計2.9.1 制動鼓制動鼓應(yīng)具有高的剛性和大的熱容量,制動時其溫升不應(yīng)超過極限值。制動鼓的材料與摩擦襯片的材料相匹配,應(yīng)能保證具有高的摩擦系數(shù)并使工作表面磨損均勻。中型、重型貨車和中型、大型客車多采用灰鑄鐵HT200或合金鑄鐵制造的制動鼓(圖2.13(a);輕型貨車和一些轎車則采用由鋼板沖壓成形的輻板與鑄鐵鼓筒部分鑄成一體的組合式制動鼓(圖2.13(b);帶有灰鑄鐵內(nèi)鼓筒的鑄鋁合金制動鼓(圖2.12(c)在轎車上得到了日益廣泛的應(yīng)用,其耐磨性和散熱性都很好,而且減小了質(zhì)量。(a)鑄造制動鼓;(b),(c)組合式制動鼓1沖壓成形輻板;2鑄鐵鼓筒;3灰鑄鐵內(nèi)鼓;4鑄鋁臺金制動鼓圖2.13 制動鼓制動鼓相對于輪轂的對中如圖2.12所示,是以直徑為的圓柱表面的配合來定位,并在兩者裝配緊固后精加工制動鼓內(nèi)工作表面,以保證兩者的軸線重合。兩者裝配后需進行動平衡。許用不平衡度對轎車為1520Ncm;對貨車為3040Ncm。制動鼓壁厚的選取主要是從剛度和強度方面考慮。壁厚取大些也有助于增大熱容量,但試驗表明,壁厚從11mm增至20mm,摩擦表面平均最高溫度變化并不大。一般鑄造制動鼓的壁厚:轎車為712mm,中、重型貨車為1318mm。制動鼓在閉口一側(cè)可開小孔,用于檢查制動器間隙。捷達屬于乘用車,因此本設(shè)計制動鼓采用HT200灰鑄鐵鑄造,制動鼓壁的厚度選取12mm。2.9.2 制動蹄轎車和輕型、微型貨車的制動蹄廣泛采用T形型鋼輾壓或鋼板沖壓焊接制成;大噸位貨車的制動蹄則多用鑄鐵、鑄鋼或鑄鋁合金制成。制動蹄的斷面形狀和尺寸應(yīng)保證其剛度好,但小型車鋼板制的制動蹄腹板上有時開有一、兩條徑向槽,使蹄的彎曲剛度小些,以便使制動蹄摩擦襯片與鼓之間的接觸壓力均勻,因而使襯片磨損較為均勻,并減少制動時的尖叫聲。重型汽車制動蹄的斷面有工字形、山字形和字形幾種。制動蹄腹板和翼緣的厚度,轎車的約為35mm;貨車的約為58mm。摩擦襯片的厚度,轎車多用4.55mm;貨車多在8mm以上。襯片可以鉚接或粘接在制動蹄上,粘接的允許其磨損厚度較大,但不易更換襯片;鉚接的噪聲較小。因此,本設(shè)計制動蹄采用熱軋鋼板沖壓焊接制成,制動蹄腹板和翼緣的厚度分別取5mm和6mm。2.9.3 制動底板制動底板是除制動鼓外制動器各零件的安裝基體,應(yīng)保證各安裝零件相互間的正確位置。制動底板承受著制動器工作時的制動反力矩,故應(yīng)有足夠的剛度。為此,由鋼板沖壓成形的制動底板都具有凹凸起伏的形狀。重型汽車則采用可鍛鑄鐵KTH 37012的制動底座以代替鋼板沖壓的制動底板。剛度不足會導(dǎo)致制動力矩減小,踏板行程加大,襯片磨損也不均勻。因此,本設(shè)計制動底板采用熱軋鋼板沖壓成形,制動底板的厚度取5mm。2.9.4 制動蹄的支承 二自由度制動蹄的支承,結(jié)構(gòu)簡單,并能使制動蹄相對制動鼓自行定位。為了使具有支承銷的一個自由度的制動蹄的工作表面與制動鼓的工作表面同軸心,應(yīng)使支承位置可調(diào)。例如采用偏心支承銷或偏心輪。支承銷由45號鋼制造并高頻淬火。其支座為可鍛鑄鐵(KTH 37012)或球墨鑄鐵(QT 40018)件。青銅偏心輪可保持制動蹄腹板上的支承孔的完好性并防止這些零件的腐蝕磨損。具有長支承銷的支承能可靠地保持制動蹄的正確安裝位置,避免側(cè)向偏擺。有時在制動底板上附加一壓緊裝置,使制動蹄中部靠向制動底板,而在輪缸活塞頂塊上或在張開機構(gòu)調(diào)整推桿端部開槽供制動蹄腹板張開端插入,以保持制動蹄的正確位置。本設(shè)計為了使具有支承銷的一個自由度的制動蹄的工作表面與制動鼓的工作表面同軸心,采用支承銷。2.9.5 制動輪缸是液壓制動系采用的活塞式制動蹄張開機構(gòu),其結(jié)構(gòu)簡單,在車輪制動器中布置方便。輪缸的缸體由灰鑄鐵HT250制成。其缸筒為通孔,需搪磨?;钊射X合金制造?;钊舛藟河袖撝频拈_槽頂塊,以支承插入槽中的制動蹄腹板端部或端部接頭。輪缸的工作腔由裝在活塞上的橡膠密封圈或靠在活塞內(nèi)端面處的橡膠皮碗密封。多數(shù)制動輪缸有兩個等直徑活塞;少數(shù)有四個等直徑活塞;雙領(lǐng)蹄式制動器的兩蹄則各用一個單活塞制動輪缸推動。由于采用的是領(lǐng)從蹄式的制動器,缸體材料采用HT250的鑄鐵,兩個活塞推動。2.9.6.制動盤 制動盤一般由珠光體灰鑄鐵制成,其結(jié)構(gòu)形狀有平板形和禮帽形兩種。后一種的圓柱部分長度取決于布置尺寸。為了改善冷卻,有的鉗盤式制動器的制動盤鑄成中間有徑向通風(fēng)槽的雙層盤,可大大增加散熱面積,但盤的整體厚度較大。制動盤的工作表面應(yīng)光滑平整。兩側(cè)表面不平行度不應(yīng)大于 0.008mm,盤面擺差不應(yīng)大于 0.1mm。 本設(shè)計采用通風(fēng)式制動盤。2.9.7制動鉗 制動鉗由可鍛鑄鐵 K TH37012 或球墨鑄鐵 QT40018 制造, 也有用輕合金制造的,可做成整體的,也可做成兩個由螺栓連接。其外緣留有開口,以便不必拆下制動鉗便可檢查或更換制動塊。制動鉗體應(yīng)有高的強度和剛度。一般多在鉗體中加工出制動油缸,也有將單獨制造的油缸裝嵌入鉗體中的。為了減少傳給制動液的熱量,多將杯形活塞的開口端頂靠制動塊的背板?;钊设T鋁合金或鋼制造。為了提高耐磨損性能,活塞的工作表面進行鍍鉻處理。 2.9.8制動塊 制動塊由背板和摩擦襯塊構(gòu)成,兩者直接壓嵌在一起。襯塊多為扇面形,也有矩形、正方形或長圓形的?;钊麘?yīng)能壓住盡量多的制動塊面積,以免襯塊發(fā)生卷角而引起尖叫聲。制動塊背板由鋼板制成。許多盤式制動器裝有襯塊磨損達極限時的警報裝,以便及時更換摩擦襯片。制動塊的厚度取14mm。2.9.9 摩擦材料制動摩擦材料應(yīng)具有高而穩(wěn)定的摩擦系數(shù),抗熱衰退性能好,不能在溫度升到某一數(shù)值后摩擦系數(shù)突然急劇下降;材料的耐磨性好,吸水率低,有較高的耐擠壓和耐沖擊性能;制動時不產(chǎn)生噪聲和不良氣味,應(yīng)盡量采用少污染和對人體無害的材料。目前在制動器中廣泛采用著模壓材料,它是以石棉纖維為主并與樹脂粘結(jié)劑、調(diào)整摩擦性能的填充劑(由無機粉粒及橡膠、聚合樹脂等配成)與噪聲消除劑(主要成分為石墨)等混合后,在高溫下模壓成型的。模壓材料的撓性較差,故應(yīng)按襯片規(guī)格模壓,其優(yōu)點是可以選用各種不同的聚合樹脂配料,使襯片具有不同的摩擦性能和其他性能。各種摩擦材料摩擦系數(shù)的穩(wěn)定值約為0.30.5,少數(shù)可達0.7。設(shè)計計算制動器時一般取0.30.35。選用摩擦材料時應(yīng)注意,一般說來,摩擦系數(shù)愈高的材料其耐磨性愈差8。2.9.10 制動摩擦襯片在GB 5763-1998汽車用制動器襯片中,將制動摩擦襯片按用途分成4類,其中,第1類為駐車制動器用;第2類為微型、輕型汽車鼓式制動器用;第3類為中重型汽車的鼓式制動器用;第4類為盤式制動器用17。其摩擦性能見表2.5表2.5 汽車制動器摩擦襯片的摩擦性能類別項 目試驗溫度1001502002503003501類摩擦系數(shù)0.300.700.250.700.200.70指定摩擦系數(shù)的允許偏差0.100.120.12磨損率(V),107cm3/(Nm)1.002.003.002類摩擦系數(shù)0.250.650.250.700.200.700.150.70指定摩擦系數(shù)的允許偏差0.080.100.120.12磨損率(V),107cm3/(Nm)0.500.701.002.003類摩擦系數(shù)0.250.650.250.700.250.700.200.700.150.70指定摩擦系數(shù)的允許偏差0.080.100.120.120.14磨損率(V),107cm3/(Nm)0.500.701.001.503.004類摩擦系數(shù)0.250.650.250.700.250.700.250.700.250.700.200.70指定摩擦系數(shù)的允許偏差0.080.100.120.120.140.14磨損率(V),107cm3/(Nm)0.500.701.001.502.503.502.9.11 制動器間隙制動鼓與摩擦襯片之間在未制動的狀態(tài)下應(yīng)有工作間隙,以保證制動鼓能自由轉(zhuǎn)動。一般鼓式制動器的設(shè)定間隙為0.20.5mm,盤式制動器的為0.10.3mm;此間隙的存在會導(dǎo)致踏板或手柄的行程損失,因而間隙量應(yīng)盡量小??紤]到在制動過程中摩擦副可能產(chǎn)生機械變形和熱變形,因此制動器在冷卻狀態(tài)下應(yīng)有的間隙應(yīng)通過試驗來確定。另外,制動器在工作過程中會因為摩擦襯片的磨損而加大,因此制動器必須設(shè)有間隙調(diào)整機構(gòu)。在制動輪缸上采取措施實現(xiàn)工作間隙的自動調(diào)整,如圖2.14所示。用以限定不制動時制動蹄內(nèi)極限位置的限位摩擦環(huán)1裝在輪缸活塞2內(nèi)端的環(huán)槽中或借矩形斷面螺紋旋裝在活塞內(nèi)端。限位摩擦環(huán)是一個有切槽的彈性金屬環(huán),壓裝入輪缸后與缸壁之間的摩擦力可打400?;钊系沫h(huán)槽或螺旋槽的寬度大于限位摩擦環(huán)厚度,活塞相對于限位摩擦環(huán)的最大軸向位移量即為兩者之間的間隙。間隙應(yīng)等于在制動器間隙設(shè)定的標準時,施行完全制動時所需的輪缸活塞行程5。不制動時,制動蹄回位彈簧只能將制動蹄向內(nèi)拉到輪缸活塞與限位摩擦環(huán)外端面接觸為止,因為回位彈簧的拉力遠遠不足以克服摩擦限位環(huán)與缸壁間的摩擦力。此時如圖2.14所示,間隙存在于活塞與限位摩擦環(huán)內(nèi)端面之間1限位摩擦環(huán);2活塞;3制動輪缸圖2.14制動鼓與蹄間隙的工作問涼的自動調(diào)整裝置制動時,輪缸活塞外移。若制動器間隙正好等于設(shè)定值,則當(dāng)活塞移動到與限位摩擦環(huán)內(nèi)端面接觸(即間隙消失)時,制動器間隙應(yīng)以消失,并且蹄鼓已壓緊到足以產(chǎn)生最大制動力矩的程度。若制動器間隙有與種種原因增大到超過設(shè)定值時,則活塞外移到=0時仍不能實現(xiàn)完全制動。但只要輪缸液壓達到0.8,即能將活塞連同限位摩擦環(huán)繼續(xù)推出,直到實現(xiàn)完全制動。這樣,在解除制動時,活塞隨制動蹄向后移動到與處于新位置的限位摩擦環(huán)與缸壁之間這一不可逆轉(zhuǎn)的軸向相對位移,補償了制動器的過量間隙。2.10 制動蹄支承銷剪切應(yīng)力計算在計算得制動蹄片上的法向力,制動力矩及張開力(見2.4節(jié))后,可根據(jù)圖求得支承銷的支承力及支承銷的剪切應(yīng)力如下: (2.55)式中:支承銷的截面積。也可以用下述的簡化方法求得:如圖2.15所示,假設(shè)制動蹄與制動鼓之間的作用力的合力作用點位于制動蹄摩擦襯片的工作表面上,其法向合力與支承銷的反力分別平行,如圖2.15所示。對兩蹄分別繞中心點取矩,得 (2.56)圖2.15 制動蹄支承銷剪切應(yīng)力計算圖一般來說,的值總要大于的值,故僅計算領(lǐng)蹄的支承銷的剪切應(yīng)力即可: (2.57)式中:見圖2.15; 支承銷的截面積; 摩擦系數(shù); 許用剪切應(yīng)力。由式(2.28)知: 因此由式(2.56)知MPa 支承銷采用45號鋼制成,其許用剪切應(yīng)力=2545MPa9,因此符合剪切應(yīng)力要求。 第3章 制動驅(qū)動機構(gòu)的設(shè)計計算為了確定制動主缸和輪缸直徑、制動踏板上的力、踏板行程、踏板機構(gòu)傳動比以及采用增壓或助力裝置的必要性,必須進行如下的設(shè)計計算。3.1 輪缸直徑與工作容積為了確定制動主缸及制動輪缸的直徑、制動踏板力與踏板行程、踏板機構(gòu)的、傳動比,以及說明采用增壓助力裝置的必要性,必須進行如下的設(shè)計計算。制動輪缸對制動體的作用力與輪缸直徑及制動輪缸中的液壓壓力之間有如下關(guān)系式: (3.1)式中:考慮制動力調(diào)節(jié)裝置作用下的輪缸或管路液壓,8MPa 12MPa。制動管路液壓在制動時一般不超過10MPa12MPa,對盤式制動器可再高些。壓力越高則輪缸直徑就越小,但對管路尤其是制動軟管廈管接頭則提出了更高的要求,對軟管的耐壓性、強度以及接頭的密封性的要求就更加嚴格9。輪缸直徑應(yīng)在GB 752487標準規(guī)定的尺寸系列中選取,輪缸直徑的尺寸系列為14.5,16,17.5,19,20.5,22,(22.22),(23.81),24,(25.40),26,28,(28.58),30,32,35,38,42,46,50,56mm。3.1.1 盤式制動器直徑與工作容積根據(jù)前面算得的結(jié)果:,選取MPa,求: mm (4.2)由此,選取制動輪缸的直徑mm一個輪缸的工作容積 (3.3)式中:一個輪缸活塞的直徑; 輪缸的活塞數(shù)目; 一個輪缸活塞在完全制動時的行程: (3.4)在初步設(shè)計時,對鼓式制動器可取mm2.5mm;消除制動蹄與制動鼓問的間隙所需的輪缸活塞行程,對鼓式制動器等于相應(yīng)制動蹄中部與制動鼓之間的間隙的2倍;由于摩擦襯片變形而引起的輪缸活塞行程,可根據(jù)襯片的厚度、材料的彈性模量及單位壓力值來計算;分別為鼓式制動器的蹄的變形與鼓的變形而引起的輪缸活塞行程,其值由試驗確定。選取mm,求一個輪缸的工作容積。mm33.1.2 鼓式制動器直徑與工作容積,選取MPa,由式(3.2),求: mm 選取制動輪缸的直徑mm選取mm,求一個輪缸的工作容積。mm3全部輪缸的總工作容積為 (3.5)式中:輪缸的數(shù)目。mm3.2 制動主缸直徑與工作容積制動主缸的直徑應(yīng)符合GB 752487的系列尺寸,主缸直徑的系列尺寸為14.5,16,17.5,19,20.5,22,(22.22),(23.81),24,(25.40),26,28,(28.58),30,32,35,38,42,46mm。制動主缸應(yīng)有的工作容積 (3.8)式中:全部輪缸的總工作容積; 制動軟管在液壓下變形而引起的容積增量。在初步設(shè)計時,考慮到軟管變形,轎車制動主缸的工作容積可取為,貨車取,式中為全部輪缸的總工作容積。主缸活塞直徑和活塞行程可由下式確定: (3.9)取因此求知mm根據(jù)GB 752487的系列尺寸取mm。3.3 制動輪缸活塞寬度與缸筒的壁厚3.3.1 盤式制動輪缸活塞寬度與缸筒壁厚根據(jù)已有的公式計算活塞的寬度 (3.6)于是求知:mm。一般情況下,液壓缸缸筒壁厚由結(jié)構(gòu)確定,必要時進行強度校核。校核時分薄壁和厚壁兩種情況進行9。現(xiàn)取壁厚10mm,由于,因此按厚壁進行校核。 (3.7)式中:輪缸壁厚; 試驗壓力(當(dāng)缸的額定壓力Mpa時,取=1.5); 缸筒材料許用應(yīng)力,=(為材料抗拉強度,n為安全系數(shù),一般取n=5)。mm 由于mm
收藏