挖掘機(jī)智能操作箱箱體注塑模具設(shè)計(jì)含10張CAD圖
挖掘機(jī)智能操作箱箱體注塑模具設(shè)計(jì)含10張CAD圖,挖掘機(jī),智能,操作,箱體,注塑,模具設(shè)計(jì),10,cad
課題申報(bào)表
指導(dǎo)教師
XX
職稱
XX
教研室
XX
申報(bào)課題名稱
挖掘機(jī)智能操作箱箱體注塑模具設(shè)計(jì)
課題類型
工程設(shè)計(jì)類
課題來源
B.社會(huì)生產(chǎn)實(shí)踐
課
題
簡(jiǎn)
介
挖掘機(jī)在工程建設(shè)和搶險(xiǎn)救災(zāi)中用于挖掘、裝卸、起重、打樁、夯土、破碎、拆除等多種作業(yè)。挖掘機(jī)的控制部分放置在操縱箱中,回轉(zhuǎn)、挖掘、裝卸動(dòng)作靠控制操縱箱前側(cè)的先導(dǎo)手柄完成。傳統(tǒng)挖掘機(jī)操縱箱缺少智能控制的功能設(shè)置,不能滿足挖機(jī)在危險(xiǎn)環(huán)境下工作的產(chǎn)品升級(jí)換代需求。操縱箱箱體需要根據(jù)智能控制需求,改變其形態(tài)。本課題根據(jù)挖掘機(jī)智能操作箱箱體要求,進(jìn)行注塑模具的設(shè)計(jì)和仿真。
課題要求
(包括所具備的條件)
課題要求(包括所具備的條件):
1、應(yīng)用cad設(shè)計(jì)軟件,對(duì)挖掘機(jī)先導(dǎo)操縱箱體注塑模具設(shè)計(jì)。
2、在cad中建立挖掘機(jī)智能操縱箱模具。
課題工作量要求
課題工作量要求:
1、挖掘機(jī)先導(dǎo)操縱箱體注塑模具的設(shè)計(jì)及仿真分析;
2、挖掘機(jī)先導(dǎo)操縱箱體注塑模具的裝配圖及零件圖;
3、說明書一份,5000字;
4、譯文5000字。
教研室
審定意見
通過 室主任簽字:
學(xué) 院
審定意見
同意
教學(xué)院長(zhǎng)簽字:
任 務(wù) 書
1.畢業(yè)設(shè)計(jì)的背景:
模具是生產(chǎn)各種工業(yè)產(chǎn)品的重要工藝裝備,隨著塑料工業(yè)的迅速發(fā)展,以及塑料制品在各個(gè)工業(yè)部門的推廣應(yīng)用,產(chǎn)品對(duì)模具的要求也越來越高,傳統(tǒng)的模具設(shè)計(jì)方法已無法適應(yīng)當(dāng)今的要求。與傳統(tǒng)的模具設(shè)計(jì)相比,計(jì)算機(jī)輔助設(shè)計(jì)(CAD)技術(shù)無論是在提高生產(chǎn)率、保證產(chǎn)品質(zhì)量方面,還是在降低成本、減輕勞動(dòng)強(qiáng)度方面,都具有極大的優(yōu)越性。
挖掘機(jī)在工程建設(shè)和搶險(xiǎn)救災(zāi)中用于挖掘、裝卸、起重、打樁、夯土、破碎、拆除等多種作業(yè)。挖掘機(jī)的控制部分放置在操縱箱中,回轉(zhuǎn)、挖掘、裝卸動(dòng)作靠控制操縱箱前側(cè)的先導(dǎo)手柄完成。傳統(tǒng)挖掘機(jī)操縱箱缺少智能控制的功能設(shè)置,不能滿足挖機(jī)在危險(xiǎn)環(huán)境下工作的產(chǎn)品升級(jí)換代需求。操縱箱箱體需要根據(jù)智能控制需求,改變其形態(tài)。本課題根據(jù)挖掘機(jī)智能操作箱箱體要求,進(jìn)行注塑模具的設(shè)計(jì)和仿真。
2.畢業(yè)設(shè)計(jì)(論文)的內(nèi)容和要求:
要求學(xué)生具備XX專業(yè)的理論基礎(chǔ)知識(shí),具有一定的查閱文獻(xiàn)、閱讀外文文獻(xiàn)和數(shù)據(jù)處理的能力,應(yīng)用Pro/E或UG設(shè)計(jì)軟件,對(duì)挖掘機(jī)智能操作箱箱體注塑模具設(shè)計(jì),在Pro/E中建立挖掘機(jī)智能操縱箱模具數(shù)字模型與動(dòng)作仿真。
內(nèi)容:
1、cad建模
2、設(shè)計(jì)澆注系統(tǒng);
3、布置型腔;
4、選擇分型面;
5、確定脫模方式:
6、注塑機(jī)的選用
工作量要求:
1、開題報(bào)告一份;
2、外文翻譯一篇(5000字以上,要求翻譯內(nèi)容與畢業(yè)論文課題有關(guān));
3、畢業(yè)論文一份(要求中、英文摘要,且中文摘要400字左右;正文15000字以上,零件圖與裝配圖一套);
4、主要參考?文獻(xiàn)不少于15篇(包括2篇以上外文文獻(xiàn))。
3.主要參考文獻(xiàn):
[1] 甄瑞麟,磨具制造工藝學(xué)[M].北京:清華大學(xué)出版社,2005-1
[2] Dong Mei Jiao,F(xiàn)ang Deng,Wei Min Yang. Design of Injection Mold and Research of Process for Plastic Parts Based on CAE Analysis[J]. Trans Tech,2017-7-17.
[3] 李維,模具設(shè)計(jì)師(注塑模)[M].北京:中國(guó)勞動(dòng)社會(huì)保障出版社,2009-9
[4] 彭建聲,秦曉剛.模具技術(shù)問答[M].北京:機(jī)械工業(yè)出版社,2010.
[5] 趙蓓蓓.初探塑料模具材料現(xiàn)狀及發(fā)展方向[J].科技資訊,2009(34).
[6] 歐圣雅.冷沖壓與塑料成型機(jī)械. [J].北京:機(jī)械工業(yè)出版社,1999-12
[7] Noah S. Nelson,Steven R. Buchman,Albert J. Shih [J]. Emerald, 2017-1.
[8] 劉平平.注塑模自動(dòng)分模技術(shù)研究[D].上海:同濟(jì)大學(xué), 2009.
[9] 房顏明. 注塑模具的標(biāo)準(zhǔn)化探討與其自動(dòng)化設(shè)計(jì)研究[J].科技展望,2017-02-10.
[10] 張?zhí)m英.注塑成型模具設(shè)計(jì)的要點(diǎn)分析[J].山東工業(yè)技術(shù),2017-01-01.
[11] Chung Ming Tan. An Innovative Compression Mold Design for Manufacture of Reel Mower Helical Blades[J]. Trans Tech,2016.
[12] Ulf Bruder. Mold Design and Product Quality[M]. Elsevier Inc,2015.
[13] Jerry M. Fischer. Causes of Molded-Part Variation[M]. Elsevier Inc,2003.
[14] 田光輝,林紅旗.模具設(shè)計(jì)與制造[M].北京大學(xué)出版社,2015-01.
[15] 鄭崢.沖壓注塑成型設(shè)備[M].北京:北京理工大學(xué)出版社,2010-12
[16]袁小會(huì),肖志余,劉金鐵,《塑料成型工藝與模具設(shè)計(jì)》與PROE課程銜接研究[J].教育教學(xué)論壇,2015
4.畢業(yè)設(shè)計(jì)(論文)進(jìn)度計(jì)劃(以周為單位):
第一周:深入了解畢業(yè)設(shè)計(jì)課題,完成畢業(yè)設(shè)計(jì)及任務(wù)書;
第二周:完成開題報(bào)告;
第三周:搜集素材;
第四周:翻譯相關(guān)外文文獻(xiàn);
第五周:初步構(gòu)設(shè)并確定設(shè)計(jì)方案。完成裝配圖草圖的繪制。
第六周:計(jì)算確定各零件基本尺寸。
第七周:繪制總裝配圖。
第八周:繪制總裝配圖
第九周:編寫設(shè)計(jì)說明書
第十周:編寫設(shè)計(jì)說明書
第十一周:繪制零件圖
第十二周:修訂初稿
第十三周:完成答辯
教研室審查意見:
室主任簽名: 年 月 日
學(xué)院審查意見:
教學(xué)院長(zhǎng)簽名: 年 月 日
開題報(bào)告
課題名稱
操縱箱結(jié)構(gòu)件沖壓模具設(shè)計(jì)
課題來源
A.教師科研
課題類型
應(yīng)用(實(shí)驗(yàn))研究類
1.選題的背景及意義:
模具是生產(chǎn)各種工業(yè)產(chǎn)品的重要工藝裝備,隨著塑料工業(yè)的迅速發(fā)展,以及塑料制品在各個(gè)工業(yè)部門的推廣應(yīng)用,產(chǎn)品對(duì)模具的要求也越來越高,傳統(tǒng)的模具設(shè)計(jì)方法已無法適應(yīng)當(dāng)今的要求。與傳統(tǒng)的模具設(shè)計(jì)相比,計(jì)算機(jī)輔助設(shè)計(jì)(CAD)技術(shù)無論是在提高生產(chǎn)率、保證產(chǎn)品質(zhì)量方面,還是在降低成本、減輕勞動(dòng)強(qiáng)度方面,都具有極大的優(yōu)越性。
挖掘機(jī)在工程建設(shè)和搶險(xiǎn)救災(zāi)中用于挖掘、裝卸、起重、打樁、夯土、破碎、拆除等多種作業(yè)。挖掘機(jī)的控制部分放置在操縱箱中,回轉(zhuǎn)、挖掘、裝卸動(dòng)作靠控制操縱箱前側(cè)的先導(dǎo)手柄完成。傳統(tǒng)挖掘機(jī)操縱箱缺少智能控制的功能設(shè)置,不能滿足挖機(jī)在危險(xiǎn)環(huán)境下工作的產(chǎn)品升級(jí)換代需求。操縱箱箱體需要根據(jù)智能控制需求,改變其形態(tài)。本課題根據(jù)挖掘機(jī)智能操作箱箱體要求,進(jìn)行注塑模具的設(shè)計(jì)和仿真。
2.研究?jī)?nèi)容擬解決的主要問題:
應(yīng)用UG設(shè)計(jì)軟件,對(duì)挖掘機(jī)智能操作箱箱體注塑模具設(shè)計(jì),在UG中建立挖掘機(jī)智能操縱箱模具數(shù)字模型與動(dòng)作仿真。
擬解決的主要問題:
1、cad建模
2、設(shè)計(jì)澆注系統(tǒng);
3、布置型腔;
4、選擇分型面;
5、確定脫模方式:
6、注塑機(jī)的選用
3.研究方法技術(shù)路線:
研究方法技術(shù)路線:
(1).根據(jù)所選挖掘前導(dǎo)到操縱箱體進(jìn)行塑件的工藝性分析,其中包括對(duì)塑件原材料的分析、尺寸精度的分析、表面質(zhì)量分析、結(jié)構(gòu)工藝性分析等。
(2).成型設(shè)備選擇,計(jì)算注塑模的尺寸,校核注塑機(jī)的有關(guān)參數(shù)。
(3).采用cad模具設(shè)計(jì)系統(tǒng)來制作三維模型,進(jìn)行挖掘機(jī)前導(dǎo)操縱箱的各個(gè)系統(tǒng)設(shè)計(jì)和各種制模方案的制定。用cad模具設(shè)計(jì)系統(tǒng)提供的MoldWizard來創(chuàng)建分型線、分型面和曲面補(bǔ)片。使用HB_MOULD加載模架及其零部件
(4).在ADAMS中進(jìn)行動(dòng)力學(xué)仿真分析,優(yōu)化模具結(jié)構(gòu)。
(5).繪制模具裝配圖和零件圖。
4.研究的總體安排和進(jìn)度計(jì)劃:
總體安排和進(jìn)度計(jì)劃:
第一周:深入了解畢業(yè)設(shè)計(jì)課題,完成畢業(yè)設(shè)計(jì)及任務(wù)書;
第二周:完成開題報(bào)告;
第三周:搜集素材;
第四周:翻譯相關(guān)外文文獻(xiàn);
第五周:初步構(gòu)設(shè)并確定設(shè)計(jì)方案。完成裝配圖草圖的繪制。
第六周:計(jì)算確定各零件基本尺寸。
第七周:繪制總裝配圖。
第八周:繪制總裝配圖
第九周:編寫設(shè)計(jì)說明書
第十周:編寫設(shè)計(jì)說明書
第十一周:繪制零件圖
第十二周:修訂初稿
第十三周:完成答辯
5.主要參考文獻(xiàn):
[1] 甄瑞麟,磨具制造工藝學(xué)[M].北京:清華大學(xué)出版社,2005-1
[2] Dong Mei Jiao,F(xiàn)ang Deng,Wei Min Yang. Design of Injection Mold and Research of Process for Plastic Parts Based on CAE Analysis[J]. Trans Tech,2017-7-17.
[3] 李維,模具設(shè)計(jì)師(注塑模)[M].北京:中國(guó)勞動(dòng)社會(huì)保障出版社,2009-9
[4] 彭建聲,秦曉剛.模具技術(shù)問答[M].北京:機(jī)械工業(yè)出版社,2010.
[5] 趙蓓蓓.初探塑料模具材料現(xiàn)狀及發(fā)展方向[J].科技資訊,2009(34).
[6] 歐圣雅.冷沖壓與塑料成型機(jī)械. [J].北京:機(jī)械工業(yè)出版社,1999-12
[7] Noah S. Nelson,Steven R. Buchman,Albert J. Shih [J]. Emerald, 2017-1.
[8] 劉平平.注塑模自動(dòng)分模技術(shù)研究[D].上海:同濟(jì)大學(xué), 2009.
[9] 房顏明. 注塑模具的標(biāo)準(zhǔn)化探討與其自動(dòng)化設(shè)計(jì)研究[J].科技展望,2017-02-10.
[10] 張?zhí)m英.注塑成型模具設(shè)計(jì)的要點(diǎn)分析[J].山東工業(yè)技術(shù),2017-01-01.
[11] Chung Ming Tan. An Innovative Compression Mold Design for Manufacture of Reel Mower Helical Blades[J]. Trans Tech,2016.
[12] Ulf Bruder. Mold Design and Product Quality[M]. Elsevier Inc,2015.
[13] Jerry M. Fischer. Causes of Molded-Part Variation[M]. Elsevier Inc,2003.
[14] 田光輝,林紅旗.模具設(shè)計(jì)與制造[M].北京大學(xué)出版社,2015-01.
[15] 鄭崢.沖壓注塑成型設(shè)備[M].北京:北京理工大學(xué)出版社,2010-12
[16]袁小會(huì),肖志余,劉金鐵,《塑料成型工藝與模具設(shè)計(jì)》與PROE課程銜接研究[J].教育教學(xué)論壇,2015
指導(dǎo)教師意見:
指導(dǎo)教師簽名: 年 月 日
教研室意見:
通過,同意開題
教研室主任簽名: 年 月 日
學(xué)院意見:
教學(xué)院長(zhǎng)簽名: 年 月 日
指導(dǎo)記錄
第一次指導(dǎo)記錄:初次與學(xué)生見面,給學(xué)生講解論文資料搜集所需要的工具,比如中國(guó)知網(wǎng)和萬方數(shù)據(jù)。講解了論文的結(jié)構(gòu),論文可以分為好幾個(gè)部分。開頭、結(jié)尾和中間的內(nèi)容是最重要的部分。詢問學(xué)生論文寫作的方向,解答學(xué)生關(guān)于論文方向確定的問題。
指導(dǎo)地點(diǎn) XX 2018年 3月 2日
第二次指導(dǎo)記錄:確定學(xué)生論文的中英文題目,通過學(xué)生的思考和導(dǎo)師的建議,形成每個(gè)人的論文題目,對(duì)論文中的主要內(nèi)容進(jìn)行簡(jiǎn)單的講解和解釋,之后討論論文的整體方向,擬定初步的提綱,然后對(duì)學(xué)生收集到的資料進(jìn)行初步的篩選,定下具體的研究設(shè)計(jì)方向。
指導(dǎo)地點(diǎn) XX 2018年 3月 7日
第三次指導(dǎo)記錄:通知學(xué)生完成論文的開題報(bào)告,說明開題報(bào)告的重要性。然后說明開題報(bào)告的具體格式和書寫方法,給學(xué)生分發(fā)模板幫助寫作。
指導(dǎo)地點(diǎn) XX 2018年 3月 14日
第四次指導(dǎo)記錄:完善學(xué)生的提綱,糾正提綱中的錯(cuò)誤。提醒學(xué)生論文內(nèi)容要突出重點(diǎn),然后對(duì)開題報(bào)告進(jìn)行一個(gè)總結(jié),然后提交并上傳開題報(bào)告。
指導(dǎo)地點(diǎn) XX 2018年 3月 21日
第五次指導(dǎo)記錄:學(xué)生可以正式開始寫論文了,老師提出問題并提供建議。其中包括文章的標(biāo)題,格式都要嚴(yán)格規(guī)范。查找論文中多于的,不切合論文題目的內(nèi)容,對(duì)內(nèi)容中的錯(cuò)誤也一并加以指出,提出對(duì)學(xué)生修改論文的建議
指導(dǎo)地點(diǎn) XX 2018年 3月 28日
第六次指導(dǎo)記錄:老師閱讀學(xué)生的論文,仔細(xì)考慮學(xué)生新加入的論文內(nèi)容,了解論文想要表達(dá)的內(nèi)容,指出學(xué)生論文中的比例問題,在尊重學(xué)生意見的基礎(chǔ)上,修改了學(xué)生的提綱和部分論文內(nèi)容,提出一些建議。
指導(dǎo)地點(diǎn) XX 2018年 4月 5日
第七次指導(dǎo)記錄:對(duì)于學(xué)生手中的資料進(jìn)行篩選分配,對(duì)于論文資料分配的問題,提出最好的解決辦法就是按照自己論文的提綱進(jìn)行撰寫,突出重點(diǎn),避免出現(xiàn)頭重腳輕,文章雜亂的問題。對(duì)于重點(diǎn)部分的資料,進(jìn)行擴(kuò)展和延伸,提升論文的整體質(zhì)量。
指導(dǎo)地點(diǎn) XX 2018年 4月 11日
第八次指導(dǎo)記錄:經(jīng)過和導(dǎo)師的討論,最終論文的方向不變,但是調(diào)整了論文的設(shè)計(jì)步驟以及各個(gè)步驟的比例。
指導(dǎo)地點(diǎn) XX 2018年 4月 20日
第九次指導(dǎo)記錄:導(dǎo)師對(duì)論文的字?jǐn)?shù)把控提出自己的建議和看法,重點(diǎn)內(nèi)容的字?jǐn)?shù)不能少于2000字,并且要配圖加以說明,圖片的數(shù)量要多一些,才能使設(shè)計(jì)過程變得更加直觀和完整。總體字?jǐn)?shù)也要超過15000字,如果字?jǐn)?shù)不足的話,可以在緒論中多加一些內(nèi)容來充實(shí)論文。
指導(dǎo)地點(diǎn) XX 2018年 4月 26日
第十次指導(dǎo)記錄:通知學(xué)生們關(guān)于中期檢查的問題,完成中期檢查表。注意格式問題。論文也完成了大半,對(duì)于學(xué)生的論文進(jìn)行完整的檢查,檢查論文中出現(xiàn)的問題,并對(duì)學(xué)生們提出的問題一一解答。讓學(xué)生們互相討論自己論文中遇到問題,形成一個(gè)完整的互幫互助小組,集合一個(gè)小組的力量,完善大家的論文。
指導(dǎo)地點(diǎn) XX 2018年 5月 5日
第十一次指導(dǎo)記錄:本次指導(dǎo)是學(xué)生們初稿提交以后的第一次指導(dǎo),對(duì)初稿的認(rèn)真檢查可以省去后面的反復(fù)修改。導(dǎo)師檢查論文,提出格式上的錯(cuò)誤,比如表格要用三線表,內(nèi)容的字體行距一定要統(tǒng)一等等細(xì)節(jié)問題。對(duì)于正文再提出修改的意見,希望學(xué)生能夠耐心的完成修改任務(wù)。
指導(dǎo)地點(diǎn) XX 2018年 5月 18日
第十二次指導(dǎo)記錄:本次指導(dǎo)針對(duì)學(xué)生的論文進(jìn)行最后的修改,迎接即將到來的答辯。檢查論文的重復(fù)率,查重合格后,再檢查學(xué)生設(shè)計(jì)的圖紙是否符合規(guī)范。對(duì)于終稿進(jìn)行潤(rùn)色,然后裝訂完成,迎接下一周的答辯。
指導(dǎo)地點(diǎn) XX 2018年 5月 24日
第十三次指導(dǎo)記錄:
指導(dǎo)地點(diǎn) 年 月 日
第十四次指導(dǎo)記錄:
指導(dǎo)地點(diǎn) 年 月 日
第十五次指導(dǎo)記錄:
指導(dǎo)地點(diǎn) 年 月 日
中期匯報(bào)表
學(xué)生姓名
XX
專 業(yè)
XX
學(xué) 號(hào)
20140603118
設(shè)計(jì)(論文)題目
挖掘機(jī)智能操作箱箱體注塑模具設(shè)計(jì)
畢業(yè)設(shè)計(jì)(論文)前期工作小結(jié)
前期完成課題申報(bào)表、任務(wù)書、開題報(bào)告等表格的填寫,并查閱文獻(xiàn)為模具設(shè)計(jì)做好準(zhǔn)備。主要完成了操縱箱某結(jié)構(gòu)件注塑模具的結(jié)構(gòu)分析,材料性能分析,將零件結(jié)構(gòu)簡(jiǎn)化,然后確定模具類型和注塑工藝方案,最后參考模具設(shè)計(jì)書進(jìn)行計(jì)算。
指導(dǎo)教師意見
畢業(yè)設(shè)計(jì)期間,能夠認(rèn)真完成任務(wù),按時(shí)出勤,主動(dòng)向老師報(bào)告設(shè)計(jì)和設(shè)計(jì)過程中出現(xiàn)的問題,并針對(duì)出現(xiàn)的問題查閱資料,反思設(shè)計(jì)過程中出現(xiàn)的問題,保證設(shè)計(jì)的順利進(jìn)行。
簽名:
年 月 日
XX中期情況檢查表
學(xué)院名稱: XX 檢查日期: 2018年 4月 12日
學(xué)生姓名
XX
專 業(yè)
XX
指導(dǎo)教師
夏曉雷
設(shè)計(jì)(論文)題目
挖掘機(jī)智能操作箱箱體注塑模具設(shè)計(jì)
工作進(jìn)度情況
前期完成課題申報(bào)表、任務(wù)書、開題報(bào)告等表格的填寫,并查閱文獻(xiàn)為模具設(shè)計(jì)做好準(zhǔn)備。
主要完成了操縱箱某結(jié)構(gòu)件沖壓模具的結(jié)構(gòu)分析,材料性能分析,將零件結(jié)構(gòu)簡(jiǎn)化,然后確定模具類型和沖裁工藝方案,最后參考模具設(shè)計(jì)書進(jìn)行計(jì)算。
是否符合任務(wù)書要求進(jìn)度
是
能否按期完成任務(wù)
能
工作態(tài)度情況
(態(tài)度、紀(jì)律、出勤、主動(dòng)接受指導(dǎo)等)
畢業(yè)設(shè)計(jì)期間,能夠認(rèn)真完成任務(wù),按時(shí)出勤,主動(dòng)向老師報(bào)告設(shè)計(jì)和設(shè)計(jì)過程中出現(xiàn)的問題,并針對(duì)出現(xiàn)的問題查閱資料,反思設(shè)計(jì)過程中出現(xiàn)的問題,保證設(shè)計(jì)的順利進(jìn)行。
質(zhì)量
評(píng)價(jià)
(針對(duì)已完成的部分)
針對(duì)前期制定的設(shè)計(jì)說明方案進(jìn)行模具設(shè)計(jì),所涉及的模具方案及尺寸合理。
存在問題和解決辦法
在模具設(shè)計(jì)過程中,對(duì)于一些參數(shù)的選擇存在一些問題,而且CAD圖存在許多細(xì)節(jié)問題。
檢查人簽名
教學(xué)院長(zhǎng)簽名
指導(dǎo)教師評(píng)閱表
學(xué)院: XX 專業(yè): XX 學(xué)生: XX
學(xué)號(hào): XX
題目: 挖掘機(jī)智能操作箱箱體注塑模具設(shè)計(jì)?
評(píng)價(jià)
項(xiàng)目
評(píng)價(jià)要素
成績(jī)?cè)u(píng)定
優(yōu)
良
中
及格
不及格
工作
態(tài)度
工作態(tài)度認(rèn)真,按時(shí)出勤
能按規(guī)定進(jìn)度完成設(shè)計(jì)任務(wù)
選題
質(zhì)量
選題方向和范圍
選題難易度
選題理論意義和實(shí)際應(yīng)用價(jià)值
能力
水平
查閱和應(yīng)用文獻(xiàn)資料能力
綜合運(yùn)用知識(shí)能力
研究方法與手段
實(shí)驗(yàn)技能和實(shí)踐能力
創(chuàng)新意識(shí)
設(shè)計(jì)
論文
質(zhì)量
內(nèi)容與寫作
結(jié)構(gòu)與水平
規(guī)范化程度
成果與成效
指導(dǎo)
教師
意見
建議成績(jī)
是否同意參加答辯
評(píng)語:
本課題對(duì)操縱箱結(jié)構(gòu)件進(jìn)行沖壓模具設(shè)計(jì), 該用血在畢業(yè)設(shè)計(jì)過程中態(tài)度認(rèn)真負(fù)責(zé)、積極主動(dòng),獨(dú)立查閱和應(yīng)用相關(guān)文獻(xiàn)資料的能力較強(qiáng),具有良好的分析能力和解決問題的能力、具備較強(qiáng)的對(duì)立閱讀的能力、研究計(jì)算結(jié)構(gòu)準(zhǔn)確、設(shè)計(jì)合理有依據(jù),能很好完成畢業(yè)設(shè)計(jì)的相關(guān)內(nèi)容,論文書寫合乎規(guī)范、文字流暢、邏輯性強(qiáng)。
? ?
指導(dǎo)教師簽名:
年 月 日
評(píng)閱教師評(píng)閱表
學(xué)院: XX 專業(yè): XX 學(xué)生: XX
學(xué)號(hào): XX
題目: 挖掘機(jī)智能操作箱箱體注塑模具設(shè)計(jì)
評(píng)價(jià)
項(xiàng)目
評(píng)價(jià)要素
成績(jī)?cè)u(píng)定
優(yōu)
良
中
及格
不及格
選題
質(zhì)量
選題方向和范圍
選題難易度
選題理論意義和實(shí)際應(yīng)用價(jià)值
能力
水平
查閱和應(yīng)用文獻(xiàn)資料能力
綜合運(yùn)用知識(shí)能力
研究方法與手段
實(shí)驗(yàn)技能和實(shí)踐能力
創(chuàng)新意識(shí)
設(shè)計(jì)
論文
質(zhì)量
內(nèi)容與寫作
結(jié)構(gòu)與水平
規(guī)范化程度
成果與成效
評(píng)閱
教師
意見
建議成績(jī)
是否同意參加答辯
評(píng)語:
? ?
? ?
? ?
評(píng)閱教師簽名:
年 月 日
答辯及綜合成績(jī)?cè)u(píng)定表
學(xué) 院
XX
專 業(yè)
XX
學(xué)生姓名
XX
學(xué) 號(hào)
XX
指導(dǎo)教師
夏曉雷
設(shè)計(jì)論文題 目
挖掘機(jī)智能操作箱箱體注塑模具設(shè)計(jì)
答辯時(shí)間
2018年 5月 28 日 9時(shí) 00分至9 時(shí) 20分
答辯地點(diǎn)
敬本樓C304
答辯小組成 員
姓名
職稱
XX
副XX
XX
XX
講師
答辯
記錄
提問人
提問主要內(nèi)容
學(xué)生回答摘要
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
答辯記錄人簽名:
答辯
小組
意見
答辯評(píng)語:
?
?
?
答辯成績(jī):
答辯小組組長(zhǎng)簽名:
綜合
成績(jī)
評(píng)定
指導(dǎo)教師評(píng)定成績(jī)
評(píng)閱教師評(píng)定成績(jī)
答辯成績(jī)
綜合評(píng)定成績(jī)
答辯委員會(huì)主任簽名:
?
年 月 日
19
Integrated simulation of the injection molding process with stereolithography molds
Abstract Functional parts are needed for design veri,cation testing, ,eld trials, customer evaluation, and production planning. By eliminating multiple steps, the creation of the injection mold directly by a rapid prototyping (RP) process holds the best promise of reducing the time and cost needed to mold low-volume quantities of parts. The potential of this integration of injection molding with RP has been demonstrated many times. What is missing is the fundamental understanding of how the modi,cations to the mold material and RP manufacturing process impact both the mold design and the injection molding process. In addition, numerical simulation techniques have now become helpful tools of mold designers and process engineers for traditional injection molding. But all current simulation packages for conventional injection molding are no longer applicable to this new type of injection molds, mainly because the property of the mold material changes greatly. In this paper, an integrated approach to accomplish a numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. Comparisons with experimental results are employed for veri,cation, which show that the present scheme is well suited to handle RP fabricated stereolithography (SL) molds.
Keywords Injection molding Numerical simulation Rapid prototyping
1 Introduction
In injection molding, the polymer melt at high temperature is injected into the mold under high pressure [1]. Thus, the mold material needs to have thermal and mechanical properties capable of withstanding the temperatures and pressures of the molding cycle. The focus of many studies has been to create the
injection mold directly by a rapid prototyping (RP) process. By eliminating multiple steps, this method of tooling holds the best promise of reducing the time and cost needed to create low-volume quantities of parts in a production material. The potential of integrating injection molding with RP technologies has been demonstrated many times. The properties of RP molds are very different from those of traditional metal molds. The key differences are the properties of
1
thermal conductivity and elastic modulus (rigidity). For example, the polymers used in RP-fabricated stereolithography (SL) molds have a thermal conductivity that is less than one thousandth that of an aluminum tool. In using RP technologies to create molds, the entire mold design and injection-molding process parameters need to be modi,ed and optimized from
traditional methodologies due to the completely different tool material. However, there is still not a fundamental understanding of how the modi,cations to the mold tooling method and
material impact both the mold design and the injection molding process parameters. One cannot obtain reasonable results by simply changing a few material properties in current models. Also, using traditional approaches when making actual parts may be generating sub-optimal results. So there is a dire need to study the interaction between the rapid tooling (RT) process and material and injection molding, so as to establish the mold design criteria and techniques for an RT-oriented injection molding process.
In addition, computer simulation is an effective approach for predicting the quality of molded parts. Commercially available simulation packages of the traditional injection molding process have now become routine tools of the mold designer and process engineer [2]. Unfortunately, current simulation programs for conventional injection molding are no longer applicable to RP molds, because of the dramatically dissimilar tool material. For instance, in using the existing simulation software with aluminum and SL molds and comparing with experimental results, though the simulation values of part distortion are reasonable for the aluminum mold, results are unacceptable, with the error exceeding 50%. The distortion during injection molding is due to shrinkage and warpage of the plastic part, as well as the mold. For ordinarily molds, the main factor is the shrinkage and warpage of the plastic part, which is modeled accurately in current simulations. But for RP molds, the distortion of the mold has potentially more in,uence, which have been neglected in current models. For instance, [3] used a simple three-step simulation process to consider the mold distortion, which had too much deviation.
In this paper, based on the above analysis, a new simulation system for RP molds is developed. The proposed system focuses on predicting part distortion, which is dominating defect in RP-molded parts. The developed simulation can be applied as an evaluation tool for RP mold design and process optimization. Our simulation system is veri,ed by an experimental
example.
Although many materials are available for use in RP technologies, we concentrate on using stereolithography (SL), the original RP technology, to create polymer molds. The SL process uses photopolymer and laser energy to build a part layer by layer. Using SL takes advantage of
2
both the commercial dominance of SL in the RP industry and the subsequent expertise base that has been developed for creating accurate, high-quality parts. Until recently, SL was primarily used to create physical models for visual inspection and form-,t studies with very limited func-
tional applications. However, the newer generation stereolithographic photopolymers have improved dimensional, mechanical and thermal properties making it possible to use them for actual functional molds.
2 Integrated simulation of the molding process
2.1 Methodology
In order to simulate the use of an SL mold in the injection molding process, an iterative method is proposed. Different software modules have been developed and used to accomplish this task. The main assumption is that temperature and load boundary conditions cause signi,cant distortions in the SL mold. The simulation steps are as follows:
1 The part geometry is modeled as a solid model, which is translated to a ,le readable by
the ,ow analysis package.
2 Simulate the mold-,lling process of the melt into a photopolymer mold, which will
output the resulting temperature and pressure pro,les.
3 Structural analysis is then performed on the photopolymer mold model using the thermal and load boundary conditions obtained from the previous step, which calculates the distortion that the mold undergo during the injection process.
4 If the distortion of the mold converges, move to the next step. Otherwise, the distorted mold cavity is then modeled (changes in the dimensions of the cavity after distortion), and returns to the second step to simulate the melt injection into the distorted mold.
5 The shrinkage and warpage simulation of the injection molded part is then applied, which calculates the ,nal distortions of the molded part.
In above simulation ,ow, there are three basic simulation modules.
2. 2 Filling simulation of the melt
2.2.1 Mathematical modeling
In order to simulate the use of an SL mold in the injection molding process, an iterative method is proposed. Different software modules have been developed and used to accomplish
3
this task. The main assumption is that temperature and load boundary conditions cause significant distortions in the SL mold. The simulation steps are as follows:
1. The part geometry is modeled as a solid model, which is translated to a file readable by the flow analysis package.
2. Simulate the mold-filling process of the melt into a photopolymer mold, which will output the resulting temperature and pressure profiles.
3. Structural analysis is then performed on the photopolymer mold model using the thermal and load boundary conditions obtained from the previous step, which calculates the distortion that the mold undergo during the injection process.
4. If the distortion of the mold converges, move to the next step. Otherwise, the distorted mold cavity is then modeled (changes in the dimensions of the cavity after distortion), and returns to the second step to simulate the melt injection into the distorted mold.
5. The shrinkage and warpage simulation of the injection molded part is then applied, which calculates the final distortions of the molded part.
In above simulation flow, there are three basic simulation modules.
2.2 Filling simulation of the melt
2.2.1 Mathematical modeling
Computer simulation techniques have had success in predicting filling behavior in extremely complicated geometries. However, most of the current numerical implementation is based on a hybrid finite-element/finite-difference solution with the middleplane model. The application process of simulation packages based on this model is illustrated in Fig. 2-1. However, unlike the surface/solid model in mold-design CAD systems, the so-called middle-plane (as shown in Fig. 2-1b) is an imaginary arbitrary planar geometry at the middle of the cavity in the gap-wise direction, which should bring about great inconvenience in applications. For example, surface models are commonly used in current RP systems (generally STL file format), so secondary modeling is unavoidable when using simulation packages because the models in the RP and simulation systems are different. Considering these defects, the surface model of the cavity is introduced as datum planes in the simulation, instead of the middle-plane.
According to the previous investigations [4–6], fillinggoverning equations for the flow and
temperature field can be written as:
4
where x, y are the planar coordinates in the middle-plane, and z is the gap-wise coordinate;
u, v,w are the velocity components in the x, y, z directions; u, v are the average whole-gap
thicknesses; and η, ρ,CP (T), K(T) represent viscosity, density, specific heat and thermal
conductivity of polymer melt, respectively.
Fig.2-1 a–d. Schematic procedure of the simulation with middle-plane model. a The 3-D surface model b The
middle-plane model c The meshed middle-plane model d The display of the simulation result
In addition, boundary conditions in the gap-wise direction can be defined as:
where TW is the constant wall temperature (shown in Fig. 2a).
Combining Eqs. 1–4 with Eqs. 5–6, it follows that the distributions of the u, v, T, P at z
coordinates should be symmetrical, with the mirror axis being z = 0, and consequently the u, v
averaged in half-gap thickness is equal to that averaged in wholegap thickness. Based on this characteristic, we can divide the whole cavity into two equal parts in the gap-wise direction, as described by Part I and Part II in Fig. 2b. At the same time, triangular finite elements are
generated in the surface(s) of the cavity (at z = 0 in Fig. 2b), instead of the middle-plane (at z = 0
in Fig. 2a). Accordingly, finite-difference increments in the gapwise direction are employed only in the inside of the surface(s) (wall to middle/center-line), which, in Fig. 2b, means from z = 0 to
z = b. This is single-sided instead of two-sided with respect to the middle-plane (i.e. from the middle-line to two walls). In addition, the coordinate system is changed from Fig. 2a to Fig. 2b to alter the finite-element/finite-difference scheme, as shown in Fig. 2b. With the above adjustment, governing equations are still Eqs. 1–4. However, the original boundary conditions in
5
the gapwise direction are rewritten as:
Meanwhile, additional boundary conditions must be employed at z = b in order to keep the
flows at the juncture of the two parts at the same section coordinate [7]:
where subscripts I, II represent the parameters of Part I and Part II, respectively, and Cm-I
and Cm-II indicate the moving free melt-fronts of the surfaces of the divided two parts in the filling stage.
It should be noted that, unlike conditions Eqs. 7 and 8, ensuring conditions Eqs. 9 and 10 are upheld in numerical implementations becomes more difficult due to the following reasons:
1. The surfaces at the same section have been meshed respectively, which leads to a distinctive pattern of finite elements at the same section. Thus, an interpolation operation should be employed for u, v, T, P during the comparison between the two parts at the juncture.
2. Because the two parts have respective flow fields with respect to the nodes at point A and point C (as shown in Fig. 2b) at the same section, it is possible to have either both filled or one filled (and one empty). These two cases should be handled separately, averaging the operation for the former, whereas assigning operation for the latter.
3. It follows that a small difference between the melt-fronts is permissible. That allowance can be implemented by time allowance control or preferable location allowance control of the melt-front nodes.
4. The boundaries of the flow field expand by each melt-front advancement, so it is necessary to check the condition Eq. 10 after each change in the melt-front.
5. In view of above-mentioned analysis, the physical parameters at the nodes of the same section should be compared and adjusted, so the information describing finite elements of the same section should be prepared before simulation, that is, the matching operation among the elements should be preformed.
6
Fig. 2a,b. Illustrative of boundary conditions in the gap-wise direction a of the middle-plane model b of the
surface model
2.2.2 Numerical implementation
Pressure field. In modeling viscosity η, which is a function of shear rate, temperature and pressure of melt, the shear-thinning behavior can be well represented by a cross-type model such as:
where n corresponds to the power-law index, and τ? characterizes the shear stress level of
the transition region between the Newtonian and power-law asymptotic limits. In terms of an
Arrhenius-type temperature sensitivity and exponential pressure dependence, η0(T, P) can
be represented with reasonable accuracy as follows:
Equations 11 and 12 constitute a five-constant (n, τ?, B, Tb, β) representation for viscosity.
The shear rate for viscosity calculation is obtained by:
Based on the above, we can infer the following filling pressure equation from the governing Eqs. 1–4:
where S is calculated by S = b0/(b?z)2 η dz. Applying the Galerkin method, the pressure
finite-element equation is deduced as:
7
where l_ traverses all elements, including node N, and where I and j represent the local node number in element l_ corresponding to the node number N and N_ in the whole, respectively. The D(l_) ij is calculated as follows:
where A(l_) represents triangular finite elements, and L(l_) i is the pressure trial function in finite elements.
Temperature field. To determine the temperature profile across the gap, each triangular finite element at the surface is further divided into NZ layers for the finite-difference grid.
The left item of the energy equation (Eq. 4) can be expressed as:
where TN, j,t represents the temperature of the j layer of node N at time t. The heat
conduction item is calculated by:
where l traverses all elements, including node N, and i and j represent the local node
number in element l corresponding to the node number N and N_ in the whole, respectively.
The heat convection item is calculated by:
For viscous heat, it follows that:
Substituting Eqs. 17–20 into the energy equation (Eq. 4), the temperature equation
8
becomes:
2.3 Structural analysis of the mold
The purpose of structural analysis is to predict the deformation occurring in the photopolymer mold due to the thermal and mechanical loads of the filling process. This model is based on a three-dimensional thermoelastic boundary element method (BEM). The BEM is ideally suited for this application because only the deformation of the mold surfaces is of interest. Moreover, the BEM has an advantage over other techniques in that computing effort is not wasted on calculating deformation within the mold.
The stresses resulting from the process loads are well within the elastic range of the mold material. Therefore, the mold deformation model is based on a thermoelastic formulation. The thermal and mechanical properties of the mold are assumed to be isotropic and temperature independent.
Although the process is cyclic, time-averaged values of temperature and heat flux are used for calculating the mold deformation. Typically, transient temperature variations within a mold have been restricted to regions local to the cavity surface and the nozzle tip [8]. The transients decay sharply with distance from the cavity surface and generally little variation is observed beyond distances as small as 2.5 mm. This suggests that the contribution from the transients to the deformation at the mold block interface is small, and therefore it is reasonable to neglect the transient effects. The steady state temperature field satisfies Laplace’s equation 2T = 0 and the
time-averaged boundary conditions. The boundary conditions on the mold surfaces are described in detail by Tang et al. [9]. As for the mechanical boundary conditions, the cavity surface is subjected to the melt pressure, the surfaces of the mold connected to the worktable are fixed in space, and other external surfaces are assumed to be stress free.
The derivation of the thermoelastic boundary integral formulation is well known [10]. It is given by:
where uk, pk and T are the displacement, traction and temperature,α, ν represent the thermal
9
expansion coefficient and Poisson’s ratio of the material, and r = |y?x|. clk(x) is the surface
coefficient which depends on the local geometry at x, the orientation of the coordinate frame and
Poisson’s ratio for the domain [11]. The fundamental displacement ?ulk at a point y in the xk
direction, in a three-dimensional infinite isotropic elastic domain, results from a unit load concentrated at a point x acting in the xl direction and is of the form:
where δlk is the Kronecker delta function and μ is the shear modulus of the mold material.
The fundamental traction ?plk , measured at the point y on a surface with unit normal n, is:
Discretizing the surface of the mold into a total of N elements transforms Eq. 22 to:
where Γn refers to the nth surface element on the domain.
Substituting the appropriate linear shape functions into Eq. 25, the linear boundary element formulation for the mold deformation model is obtained. The equation is applied at each node on the discretized mold surface, thus giving a system of 3N linear equations, where N is the total
number of nodes. Each node has eight associated quantities: three components of displacement, three components of traction, a temperature and a heat flux. The steady state thermal model supplies temperature and flux values as known quantities for each node, and of the remaining six quantities, three must be specified. Moreover, the displacement values specified at a certain number of nodes must eliminate the possibility of a rigid-body motion or rigid-body rotation to ensure a non-singular system of equations. The resulting system of equations is assembled into a integrated matrix, which is solved with an iterative solver.
2.4 Shrinkage and warpage simulation of the molded part
Internal stresses in injection-molded components are the principal cause of shrinkage and warpage. These residual stresses are mainly frozen-in thermal stresses due to inhomogeneous
10
cooling, when surface layers stiffen sooner than the core region, as in free quenching. Based on the assumption of the linear thermo-elastic and linear thermo-viscoelastic compressible behavior of the polymeric materials, shrinkage and warpage are obtained implicitly using displac
收藏