2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第36講 空間向量及其應(yīng)用教案 新人教版.doc
《2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第36講 空間向量及其應(yīng)用教案 新人教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第36講 空間向量及其應(yīng)用教案 新人教版.doc(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第36講 空間向量及其應(yīng)用教案 新人教版一課標(biāo)要求:(1)空間向量及其運(yùn)算 經(jīng)歷向量及其運(yùn)算由平面向空間推廣的過程; 了解空間向量的概念,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示; 掌握空間向量的線性運(yùn)算及其坐標(biāo)表示; 掌握空間向量的數(shù)量積及其坐標(biāo)表示,能運(yùn)用向量的數(shù)量積判斷向量的共線與垂直。(2)空間向量的應(yīng)用 理解直線的方向向量與平面的法向量; 能用向量語言表述線線、線面、面面的垂直、平行關(guān)系; 能用向量方法證明有關(guān)線、面位置關(guān)系的一些定理(包括三垂線定理); 能用向量方法解決線線、線面、面面的夾角的計(jì)算問題,體會(huì)向量方法在研究幾何問題中的作用。二命題走向本講內(nèi)容主要涉及空間向量的坐標(biāo)及運(yùn)算、空間向量的應(yīng)用。本講是立體幾何的核心內(nèi)容,高考對本講的考察形式為:以客觀題形式考察空間向量的概念和運(yùn)算,結(jié)合主觀題借助空間向量求夾角和距離。預(yù)測07年高考對本講內(nèi)容的考查將側(cè)重于向量的應(yīng)用,尤其是求夾角、求距離,教材上淡化了利用空間關(guān)系找角、找距離這方面的講解,加大了向量的應(yīng)用,因此作為立體幾何解答題,用向量法處理角和距離將是主要方法,在復(fù)習(xí)時(shí)應(yīng)加大這方面的訓(xùn)練力度。三要點(diǎn)精講1空間向量的概念向量:在空間,我們把具有大小和方向的量叫做向量。如位移、速度、力等。相等向量:長度相等且方向相同的向量叫做相等向量。表示方法:用有向線段表示,并且同向且等長的有向線段表示同一向量或相等的向量。說明:由相等向量的概念可知,一個(gè)向量在空間平移到任何位置,仍與原來的向量相等,用同向且等長的有向線段表示;平面向量僅限于研究同一平面內(nèi)的平移,而空間向量研究的是空間的平移。2向量運(yùn)算和運(yùn)算率 加法交換率:加法結(jié)合率:數(shù)乘分配率:說明:引導(dǎo)學(xué)生利用右圖驗(yàn)證加法交換率,然后推廣到首尾相接的若干向量之和;向量加法的平行四邊形法則在空間仍成立。3平行向量(共線向量):如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量。平行于記作。 注意:當(dāng)我們說、共線時(shí),對應(yīng)的有向線段所在直線可能是同一直線,也可能是平行直線;當(dāng)我們說、平行時(shí),也具有同樣的意義。共線向量定理:對空間任意兩個(gè)向量()、,的充要條件是存在實(shí)數(shù)使注:上述定理包含兩個(gè)方面:性質(zhì)定理:若(0),則有,其中是唯一確定的實(shí)數(shù)。判斷定理:若存在唯一實(shí)數(shù),使(0),則有(若用此結(jié)論判斷、所在直線平行,還需(或)上有一點(diǎn)不在(或)上)。對于確定的和,表示空間與平行或共線,長度為 |,當(dāng)0時(shí)與同向,當(dāng)0時(shí)與反向的所有向量。若直線l,P為l上任一點(diǎn),O為空間任一點(diǎn),下面根據(jù)上述定理來推導(dǎo)的表達(dá)式。推論:如果l為經(jīng)過已知點(diǎn)A且平行于已知非零向量的直線,那么對任一點(diǎn)O,點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,滿足等式 其中向量叫做直線l的方向向量。在l上取,則式可化為 當(dāng)時(shí),點(diǎn)P是線段AB的中點(diǎn),則 或叫做空間直線的向量參數(shù)表示式,是線段AB的中點(diǎn)公式。注意:表示式()、()既是表示式,的基礎(chǔ),也是常用的直線參數(shù)方程的表示形式;推論的用途:解決三點(diǎn)共線問題。結(jié)合三角形法則記憶方程。4向量與平面平行:如果表示向量的有向線段所在直線與平面平行或在平面內(nèi),我們就說向量平行于平面,記作。注意:向量與直線a的聯(lián)系與區(qū)別。共面向量:我們把平行于同一平面的向量叫做共面向量。共面向量定理 如果兩個(gè)向量、不共線,則向量與向量、共面的充要條件是存在實(shí)數(shù)對x、y,使注:與共線向量定理一樣,此定理包含性質(zhì)和判定兩個(gè)方面。推論:空間一點(diǎn)P位于平面MAB內(nèi)的充要條件是存在有序?qū)崝?shù)對x、y,使或?qū)臻g任一定點(diǎn)O,有在平面MAB內(nèi),點(diǎn)P對應(yīng)的實(shí)數(shù)對(x, y)是唯一的。式叫做平面MAB的向量表示式。又代入,整理得 由于對于空間任意一點(diǎn)P,只要滿足等式、之一(它們只是形式不同的同一等式),點(diǎn)P就在平面MAB內(nèi);對于平面MAB內(nèi)的任意一點(diǎn)P,都滿足等式、,所以等式、都是由不共線的兩個(gè)向量、(或不共線三點(diǎn)M、A、B)確定的空間平面的向量參數(shù)方程,也是M、A、B、P四點(diǎn)共面的充要條件。5空間向量基本定理:如果三個(gè)向量、不共面,那么對空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組x, y, z, 使說明:由上述定理知,如果三個(gè)向量、不共面,那么所有空間向量所組成的集合就是,這個(gè)集合可看作由向量、生成的,所以我們把,叫做空間的一個(gè)基底,都叫做基向量;空間任意三個(gè)不共面向量都可以作為空間向量的一個(gè)基底;一個(gè)基底是指一個(gè)向量組,一個(gè)基向量是指基底中的某一個(gè)向量,二者是相關(guān)聯(lián)的不同的概念;由于可視為與任意非零向量共線。與任意兩個(gè)非零向量共面,所以,三個(gè)向量不共面就隱含著它們都不是。推論:設(shè)O、A、B、C是不共面的四點(diǎn),則對空間任一點(diǎn)P,都存在唯一的有序?qū)崝?shù)組,使6數(shù)量積(1)夾角:已知兩個(gè)非零向量、,在空間任取一點(diǎn)O,作,則角AOB叫做向量與的夾角,記作ABO(1)OAB(2)ABO(3)說明:規(guī)定0,因而=;如果=,則稱與互相垂直,記作;ABO(4)在表示兩個(gè)向量的夾角時(shí),要使有向線段的起點(diǎn)重合,注意圖(3)、(4)中的兩個(gè)向量的夾角不同,圖(3)中AOB=,圖(4)中AOB=,從而有=.(2)向量的模:表示向量的有向線段的長度叫做向量的長度或模。(3)向量的數(shù)量積:叫做向量、的數(shù)量積,記作。ABl即=,向量:(4)性質(zhì)與運(yùn)算率。 =0 = 四典例解析題型1:空間向量的概念及性質(zhì)例1有以下命題:如果向量與任何向量不能構(gòu)成空間向量的一組基底,那么的關(guān)系是不共線;為空間四點(diǎn),且向量不構(gòu)成空間的一個(gè)基底,那么點(diǎn)一定共面;已知向量是空間的一個(gè)基底,則向量,也是空間的一個(gè)基底。其中正確的命題是( ) 解析:對于“如果向量與任何向量不能構(gòu)成空間向量的一組基底,那么的關(guān)系一定共線”;所以錯(cuò)誤。正確。點(diǎn)評:該題通過給出命題的形式考察了空間向量能成為一組基的條件,為此我們要掌握好空間不共面與不共線的區(qū)別與聯(lián)系。例2下列命題正確的是( )若與共線,與共線,則與共線;向量共面就是它們所在的直線共面;零向量沒有確定的方向;若,則存在唯一的實(shí)數(shù)使得;解析:A中向量為零向量時(shí)要注意,B中向量的共線、共面與直線的共線、共面不一樣,D中需保證不為零向量。答案C。點(diǎn)評:零向量是一個(gè)特殊的向量,時(shí)刻想著零向量這一特殊情況對解決問題有很大用處。像零向量與任何向量共線等性質(zhì),要兼顧。題型2:空間向量的基本運(yùn)算例3如圖:在平行六面體中,為與的交點(diǎn)。若,則下列向量中與相等的向量是( ) 解析:顯然;答案為A。點(diǎn)評:類比平面向量表達(dá)平面位置關(guān)系過程,掌握好空間向量的用途。用向量的方法處理立體幾何問題,使復(fù)雜的線面空間關(guān)系代數(shù)化,本題考查的是基本的向量相等,與向量的加法.考查學(xué)生的空間想象能力。例4已知:且不共面.若,求的值.解:,且即又不共面,點(diǎn)評:空間向量在運(yùn)算時(shí),注意到如何實(shí)施空間向量共線定理。題型3:空間向量的坐標(biāo)例5(1)已知兩個(gè)非零向量=(a1,a2,a3),=(b1,b2,b3),它們平行的充要條件是()A. :|=:|B.a1b1=a2b2=a3b3C.a1b1+a2b2+a3b3=0D.存在非零實(shí)數(shù)k,使=k(2)已知向量=(2,4,x),=(2,y,2),若|=6,則x+y的值是()A. 3或1 B.3或1 C. 3 D.1(3)下列各組向量共面的是()A. =(1,2,3),=(3,0,2),=(4,2,5)B. =(1,0,0),=(0,1,0),=(0,0,1)C. =(1,1,0),=(1,0,1),=(0,1,1)D. =(1,1,1),=(1,1,0),=(1,0,1)解析:(1)D;點(diǎn)撥:由共線向量定線易知;(2)A點(diǎn)撥:由題知或;(3)A點(diǎn)撥:由共面向量基本定理可得。點(diǎn)評:空間向量的坐標(biāo)運(yùn)算除了數(shù)量積外就是考察共線、垂直時(shí)參數(shù)的取值情況。例6已知空間三點(diǎn)A(2,0,2),B(1,1,2),C(3,0,4)。設(shè)=,=,(1)求和的夾角;(2)若向量k+與k2互相垂直,求k的值.思維入門指導(dǎo):本題考查向量夾角公式以及垂直條件的應(yīng)用,套用公式即可得到所要求的結(jié)果.解:A(2,0,2),B(1,1,2),C(3,0,4),=,=,=(1,1,0),=(1,0,2).(1)cos=,和的夾角為。(2)k+=k(1,1,0)+(1,0,2)(k1,k,2),k2=(k+2,k,4),且(k+)(k2),(k1,k,2)(k+2,k,4)=(k1)(k+2)+k28=2k2+k10=0。則k=或k=2。點(diǎn)撥:第(2)問在解答時(shí)也可以按運(yùn)算律做。(+)(k2)=k22k22=2k2+k10=0,解得k=,或k=2。題型4:數(shù)量積例7(xx江西、山西、天津理,4)設(shè)、c是任意的非零平面向量,且相互不共線,則()()= | ()()不與垂直(3+2)(32)=9|24|2中,是真命題的有( )A. B. C. D.答案:D解析:平面向量的數(shù)量積不滿足結(jié)合律.故假;由向量的減法運(yùn)算可知|、|、|恰為一個(gè)三角形的三條邊長,由“兩邊之差小于第三邊”,故真;因?yàn)椋ǎǎ?()()=0,所以垂直.故假;(3+2)(32)=94=9|24|2成立.故真.點(diǎn)評:本題考查平面向量的數(shù)量積及運(yùn)算律。例8(1)(xx上海文,理2)已知向量和的夾角為120,且|=2,|=5,則(2)=_.(2)設(shè)空間兩個(gè)不同的單位向量=(x1,y1,0),=(x2,y2,0)與向量=(1,1,1)的夾角都等于。(1)求x1+y1和x1y1的值;(2)求的大小(其中0。解析:(1)答案:13;解析:(2)=22=2|2|cos120=2425()=13。(2)解:(1)|=|=1,x+y=1,x=y=1.又與的夾角為,=|cos=.又=x1+y1,x1+y1=。另外x+y=(x1+y1)2-2x1y1=1,2x1y1=()21=.x1y1=。(2)cos=x1x2+y1y2,由(1)知,x1+y1=,x1y1=.x1,y1是方程x2x+=0的解.或同理可得或,或cos=+=+=.0,=。評述:本題考查向量數(shù)量積的運(yùn)算法則。題型5:空間向量的應(yīng)用例9(1)已知a、b、c為正數(shù),且a+b+c=1,求證:+4。(2)已知F1=i+2j+3k,F(xiàn)2=-2i+3j-k,F(xiàn)3=3i-4j+5k,若F1,F(xiàn)2,F(xiàn)3共同作用于同一物體上,使物體從點(diǎn)M1(1,-2,1)移到點(diǎn)M2(3,1,2),求物體合力做的功。解析:(1)設(shè)=(,),=(1,1,1),則|=4,|=.|,=+|=4.當(dāng)=時(shí),即a=b=c=時(shí),取“=”號(hào)。(2)解:W=Fs=(F1+F2+F3)=14。點(diǎn)評:若=(x,y,z),=(a,b,c),則由|,得(ax+by+cz)2(a2+b2+c2)(x2+y2+z2).此式又稱為柯西不等式(n=3)。本題考查|的應(yīng)用,解題時(shí)要先根據(jù)題設(shè)條件構(gòu)造向量,然后結(jié)合數(shù)量積性質(zhì)進(jìn)行運(yùn)算。空間向量的數(shù)量積對應(yīng)做功問題。例10如圖,直三棱柱中,求證: 證明:同理又設(shè)為中點(diǎn),則又點(diǎn)評:從上述例子可以看出,利用空間向量來解決位置關(guān)系問題,要用到空間多邊形法則,向量的運(yùn)算,數(shù)量積以及平行,相等和垂直的條件。五思維總結(jié)本講內(nèi)容主要有空間直角坐標(biāo)系,空間向量的坐標(biāo)表示,空間向量的坐標(biāo)運(yùn)算,平行向量,垂直向量坐標(biāo)之間的關(guān)系以及中點(diǎn)公式.空間直角坐標(biāo)系是選取空間任意一點(diǎn)O和一個(gè)單位正交基底i,j,k建立坐標(biāo)系,對于O點(diǎn)的選取要既有作圖的直觀性,而且使各點(diǎn)的坐標(biāo),直線的坐標(biāo)表示簡化,要充分利用空間圖形中已有的直線的關(guān)系和性質(zhì);空間向量的坐標(biāo)運(yùn)算同平面向量類似,具有類似的運(yùn)算法則.一個(gè)向量在不同空間的表達(dá)方式不一樣,實(shí)質(zhì)沒有改變.因而運(yùn)算的方法和運(yùn)算規(guī)律結(jié)論沒變。如向量的數(shù)量積ab=|a|b|cos在二維、三維都是這樣定義的,不同點(diǎn)僅是向量在不同空間具有不同表達(dá)形式.空間兩向量平行時(shí)同平面兩向量平行時(shí)表達(dá)式不一樣,但實(shí)質(zhì)是一致的,即對應(yīng)坐標(biāo)成比例,且比值為,對于中點(diǎn)公式要熟記。對本講內(nèi)容的考查主要分以下三類:1以選擇、填空題型考查本章的基本概念和性質(zhì)此類題一般難度不大,用以解決有關(guān)長度、夾角、垂直、判斷多邊形形狀等問題。2向量在空間中的應(yīng)用在空間坐標(biāo)系下,通過向量的坐標(biāo)的表示,運(yùn)用計(jì)算的方法研究三維空間幾何圖形的性質(zhì)。在復(fù)習(xí)過程中,抓住源于課本,高于課本的指導(dǎo)方針。本講考題大多數(shù)是課本的變式題,即源于課本。因此,掌握雙基、精通課本是本章關(guān)鍵。- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí)單元講座 第36講 空間向量及其應(yīng)用教案 新人教版 2019 2020 年高 數(shù)學(xué) 第一輪 復(fù)習(xí) 單元 講座 36 空間 向量 及其 應(yīng)用 教案 新人
鏈接地址:http://m.italysoccerbets.com/p-2586199.html