2019-2020年中考數(shù)學 知識點聚焦 第三章 整式的加減.doc
《2019-2020年中考數(shù)學 知識點聚焦 第三章 整式的加減.doc》由會員分享,可在線閱讀,更多相關《2019-2020年中考數(shù)學 知識點聚焦 第三章 整式的加減.doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年中考數(shù)學 知識點聚焦 第三章 整式的加減高頻考點考查頻率所占分值1列代數(shù)式2求代數(shù)式的值3同類項及合并同類項39分4整式的加減5化簡、求值代數(shù)式求代數(shù)式的值求代數(shù)式值的方法 步驟:先代入,再計算代數(shù)式的意義代數(shù)式的讀法描述代數(shù)式的語言單項式整式的加減定義:幾個單項式的和多項式項:多項式中的每個單頂式次數(shù):多項式中次數(shù)最高項的次數(shù)多項式各項的排列整式運算法則合并同類項去括號法則括號前面是“”號括號前面是“”號整式的加減第5講 代數(shù)式的基礎知識知識能力解讀知能解讀 (一)用字母表示數(shù),列式表示數(shù)量關系用字母表示數(shù),可以簡明地表達一些一般的數(shù)量和數(shù)量關系,即把問題中與數(shù)量有關的語句,用含數(shù)、字母和運算符號的式子表示出來,(二)代數(shù)式的概念用運算符號(加、減、乘、除、乘方、開方)把數(shù)或表示數(shù)的字母連接而成的式子,叫作代數(shù)式,單獨的一個數(shù)或一個字母也是代數(shù)式注意:代數(shù)式中不含“”“”“”“”等符號(三)列代數(shù)式(1)把問題中與數(shù)量有關的語句,用含有數(shù)、字母和運算符號的式子表示出來,這就是列代數(shù)式(2)書寫代數(shù)式的注意事項:代數(shù)式中在表示數(shù)字與字母相乘或字母與字母相乘時,乘號通常省略不寫或簡寫為“”,且數(shù)字在前,字母在后,如2乘寫作或,乘寫作或若數(shù)字是帶分數(shù),要化成假分數(shù),如乘,應寫作或除法運算寫成分式的形式,如寫作,寫作在同一個問題中,不同的數(shù)量必須用不同的字母來表示在一些實際問題中,有時表示數(shù)量的代數(shù)式有單位,若代數(shù)式是積或商的形式,則單位直接寫在代數(shù)式的后面,如;若代數(shù)式是和或差的形式,則必須先把代數(shù)式用括號括起來,再將單位寫在代數(shù)式后面,如等(3)列代數(shù)式的步驟:讀懂題意,弄清其中的數(shù)量關系,抓住題目中表示運算關系的關鍵詞,如和、差、積、商、比、倍、分、大、小、增加了、增加到、減少、幾分之幾等分清運算順序,注意關鍵性的斷句及括號的恰當使用(四)解釋簡單代數(shù)式表示的實際背景或幾何意義實際問題中的數(shù)量關系可以用代數(shù)式表示,另一方面,同一個代數(shù)式可以揭示多種不同的實際意義注意在說代數(shù)式表示的實際意義時,數(shù)與字母的含義必須與實際相符(五)求代數(shù)式的值(1)概念:一般地,用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式中指定的運算順序計算得出結果,叫作求代數(shù)式的值(2)步驟:按照定義求代數(shù)式的值有“代入”和“計算”兩個步驟:第一步:“代入”,指用數(shù)值代替代數(shù)式里的字母;第二步:“計算”,指按代數(shù)式指明的運算,計算得出結果(3)方法:常見的基本方法有直接代入和整體代入以及化簡后代入注意:(1)代數(shù)式與代數(shù)式的值是兩個不同的概念,代數(shù)式表述的是問題的一般規(guī)律,而代數(shù)式的值是這個規(guī)律下的特殊情形;(2)代數(shù)式中字母的取值,必須使要求值的代數(shù)式有意義;(3)用代數(shù)式表示實際問題的數(shù)量關系時,字母的取值要保證具有實際意義;(4)代數(shù)式中的字母每取一個確定的數(shù)時,能相應地求出代數(shù)式的一個確定值(六)列代數(shù)式與求代數(shù)式的值的區(qū)別列代數(shù)式是把數(shù)量關系用含有數(shù)、表示數(shù)的字母和運算符號的式子表示出來,是由特殊到一般的思維方式;求代數(shù)式的值,是用數(shù)值代替代數(shù)式里的字母,按照運算關系計算得出結果,是由一般到特殊的思維方式方法技巧歸納方法技巧 (一)列代數(shù)式的方法技巧列代數(shù)式的關鍵是正確理解數(shù)量關系,弄清運算順序和括號的作用掌握文字語言“和、差、積、商、倍、分、大、小、多、少”等在數(shù)學語言中的含義,此外,還要掌握下述數(shù)量關系:行程問題:路程速度時間;工作問題:工作量工作效率工作時間;數(shù)字問題:三位數(shù)百位數(shù)字100十位數(shù)字10個位數(shù)字;利潤問題:利潤率100(二)求代數(shù)式值的方法(三)用代數(shù)式表示數(shù)的規(guī)律易混易錯辨析易混易錯知識1列代數(shù)式時,對一些語句理解不透容易出錯如“,兩數(shù)的平方和”與“,兩數(shù)和的平方”容易混淆2忽略題目中的單位和括號題目中有單位時,用字母表示的式子應帶單位如果列出的式子是單項式,單位可直接寫在式子的后面;如果列出的式子是多項式,應先用括號把式子括起來,再在式子后面寫上單位易混易錯 (一)代數(shù)式的書寫格式不規(guī)范(二)列有關實際問題的代數(shù)式時,不能正確理解題意導致列錯式中考試題研究中考命題規(guī)律本講的考點主要是列代數(shù)式,它是中考的基礎內容,單獨命題考查基本知識的運用,題型以填空題、選擇題為主,求代數(shù)式的值以及利用代數(shù)式表示規(guī)律是近幾年中考的熱點中考試題 (一)列代數(shù)式表示生活中的數(shù)量關系(二)觀察、歸納、推理型問題(三)求代數(shù)式的值(四)探究圖形中的變化規(guī)律第6講 整式的加減知識能力解讀知能解讀 (一)單項式、多項式、整式的定義及它們的聯(lián)系與區(qū)別(1)單項式:像,這些式子都是數(shù)或字母的積,這樣的式子叫作單項式特別地,單獨的一個數(shù)或個字母也是單項式(2)多項式:幾個單項式的和叫作多項式如,等(3)整式:單項式與多項式統(tǒng)稱整式它們的關系可以用圖表示注意:分母中含有字母的代數(shù)式不是單項式,如,都不是單項式;而是單項式,因為是表示圓周率的常數(shù)(二)單項式的系數(shù)、次數(shù)單項式的系數(shù)是指單項式中的數(shù)字因數(shù),單項式的次數(shù)是指單項式中所有字母的指數(shù)的和注意:(1)單項式的系數(shù)包括符號(2)當一個單項式的系數(shù)是1或時,“1”通常省略不寫,如,;單項式的系數(shù)是帶分數(shù)時,通常寫成假分數(shù),如寫成(3)單項式的次數(shù)是指所有字母的指數(shù)的和,不包括系數(shù)的指數(shù),如的次數(shù)是3,而不是6單獨一個非零的數(shù)是零次單項式(4)單項式的系數(shù)有數(shù)字系數(shù)和字母系數(shù)之分,這是因為系數(shù)都是相對于某些字母而言的例如,對于所有字母,來講,系數(shù)是6;而只對于字母來講,系數(shù)是(三)多項式的項、次數(shù)在多項式中,每個單項式叫作多項式的項其中,不含字母的項叫作常數(shù)項多項式中次數(shù)最高項的次數(shù)叫作這個多項式的次數(shù)一個多項式中有幾個單項式,它就是幾項式如多項式有四項,為,其中是常數(shù)項,這一項次數(shù)最高,所以這個多項式是四次四項式注意:(1)多項式的每一項都包括它前面的符號(2)多項式的各項名稱分別為:叫作四次項,叫作三次項,叫作一次項,叫作常數(shù)項(四)升冪排列與降冪排列為便于多項式的運算,可以用加法的交換律將多項式中各項按某個字母的指數(shù)的大小順序重新排列若按某個字母的指數(shù)從大到小的順序排列,叫作這個多項式按這個字母降冪排列若按某個字母的指數(shù)從小到大的順序排列,叫作這個多項式按這個字母升冪排列如多項式,按字母升冪排列為注意:(1)將各項重新排列后還是多項式的形式,各項的位置發(fā)生變化,其他都不變(2)各項移動時要連同它前面的符號一起移動(3)某項前的符號是“”,它在第一項位置時,“”可省略,在其他位置時不能省略(五)同類項的概念所含字母相同,并且相同字母的指數(shù)也相同的項叫作同類項幾個常數(shù)項也是同類項例如:與是同類項;與是同類項注意:判斷同類項的標準是“兩相同”,即所合字母相同,相同字母的指數(shù)也相同,二者缺一不可;而同類項與系數(shù)無關,與字母的排列順序也無關(六)合并同類項(1)定義:把多項式中的同類項合并成一項,叫作合并同類項(2)合并同類項的法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母連同它的指數(shù)不變,口訣為“同類項,需判斷;兩相同,是條件;合并時,需計算;系數(shù)加,兩不變”根據(jù)合并同類項的法則;在合并同類項時可以按以下步驟完成:第一步:準確找出同類項;第二步:利用法則,把同類項的系數(shù)相加,字母和字母的指數(shù)不變;第三步:寫出合并后的結果注意:如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結果為0;合并同類項時,只能把同類項合并成一項,不是同類項的不能合并;不能合并的項,在每步運算時不能漏掉(七)去括號去括號法則:如果括號外的因數(shù)是正數(shù),去括號后原括號內各項的符號與原來的符號相同;如果括號外的因數(shù)是負數(shù),去括號后原括號內各項的符號與原來的符號相反如:,注意:(1)去括號時,要連同括號前面的符號一起去掉(2)去括號時,首先要弄清楚括號前是“”還是“”(3)易犯的錯誤是:括號前面是“”,去括號時,只改變括號里第一項的符號,而其余各項的符號均忘記改變(八)整式的加減一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項去括號要依據(jù)去括號法則進行,若括號不止一種,通常要按照去小括號、中括號、大括號(或大括號、中括號、小括號)的順序來運算,直到結果中沒有括號為止求整式的和或差時,應先用括號將每一個整式括起來,再用加減運算符號連接,具體運算時,先去括號,再合并同類項根據(jù)題目的表現(xiàn)形式不同,我們可把整式的加減分為兩大類:(1)直接的整式加減問題,即算式直接給出,直接運用上述方法求解即可(2)間接的整式加減問題,與類型(1)不同,其求解步驟是:根據(jù)題意列出代數(shù)式;用加減號連接成整式的加減的算式;去括號,合并同類項注意:整式加減的最后結果要求:不能含有同類項,即要合并到不能再合并為止;一般按照某一字母降冪或升冪排列;不能出現(xiàn)帶分數(shù),帶分數(shù)要化成假分數(shù)(九)化簡求值問題對于代數(shù)式求值問題,我們一般不直接把字母的取值代入代數(shù)式中計算,而是先化簡(卻去括號、合并同類項),再代入求值,使計算簡捷明了方法技巧歸納方法技巧 (一)對單項式概念的理解及應用(二)對多項式概念的理解與應用(三)多項式的重新排列(四)同類項的識別方法同類項有兩個條件:一是所含字母相同,二是相同字母的指數(shù)也相同,二者缺一不可;而與系數(shù)和字母的排列順序無關(五)合并同類項的方法合并同類項時,一般按以下步驟進行:標:用不同的符號標出同類項;移:利用加法交換律把同類項移到一起;合:合并同類項(六)去括號法則的運用(七)整式的加減運算整式的加減是求幾個整式的和、差的運算,其實質就是去括號、合并同類項,運算結果仍是整式一般步驟為:(1)如果有括號,先去括號;(2)合并同類項(八)代數(shù)式求值代數(shù)式求值一般是先將代數(shù)式化簡,然后再代入求值有時我們還需根據(jù)題目的特點,選擇特殊的方法求代數(shù)式的值,如整體代入法等易混易錯辨析易混易錯知識1確定單項式的系數(shù)和次數(shù)如的系數(shù)是,而不是2或;次數(shù)是5,即,防止漏掉的指數(shù)12同類項概念理解有誤,導致在合并同類項過程中出現(xiàn)錯誤如這個計算過程是錯誤的合并同類項的前提是要合并的項是同類項,與不是同類項,故不能能合并3去括號時,易出現(xiàn)符號錯誤,漏乘某些項去括號時,括號前是“”,往往只改變了第一項的符號,而其余各項的符號忘了改變當括號前有數(shù)字因數(shù)時,易發(fā)生只將此數(shù)字因數(shù)與括號內的第一項相乘,而漏乘其他項的錯誤4多項式的次數(shù)與單項式的次數(shù)混淆如的次數(shù)是2,而不是3因為多項式的次數(shù)是組成多項式的單項式中的最高次項的次數(shù)注意與單項式次數(shù)定義的區(qū)別易混易錯 (一)括號前是“”時,去括號時容易弄錯符號或漏乘某些項(二)整式相加減時忽略括號的作用中考試題研究中考命題規(guī)律本講的考點主要是單項式的系數(shù)、次數(shù),多項式的項數(shù)、次數(shù),單項式的有關規(guī)律探究,同類項的概念與合并同類項,整式的加減運算,題型以填空題、選擇題為主,還常與其他知識綜合命題(一)單項式的規(guī)律探究(二)單項式的系數(shù)、次數(shù)與多項式的項數(shù)、次數(shù)(三)對同類項概念的理解(四)合并同類項(五)整式的化簡求值- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年中考數(shù)學 知識點聚焦 第三章 整式的加減 2019 2020 年中 數(shù)學 知識點 聚焦 第三 整式 加減
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.italysoccerbets.com/p-2652690.html