(天津?qū)S茫?020版高考數(shù)學(xué)大一輪復(fù)習(xí) 11.1 隨機(jī)事件與古典概型精練.docx
《(天津?qū)S茫?020版高考數(shù)學(xué)大一輪復(fù)習(xí) 11.1 隨機(jī)事件與古典概型精練.docx》由會員分享,可在線閱讀,更多相關(guān)《(天津?qū)S茫?020版高考數(shù)學(xué)大一輪復(fù)習(xí) 11.1 隨機(jī)事件與古典概型精練.docx(16頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
11.1隨機(jī)事件與古典概型【真題典例】挖命題【考情探究】考點(diǎn)內(nèi)容解讀5年考情預(yù)測熱度考題示例考向關(guān)聯(lián)考點(diǎn)1.事件與概率1.了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義,了解頻率與概率的區(qū)別2.了解兩個互斥事件的概率加法公式2016天津文,2互斥事件的概率加法公式互斥事件、相互獨(dú)立事件2.古典概型1.理解古典概型及其概率計算公式2.會計算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率2018天津文,152017天津文,32015天津文,152014天津文,15古典概型的應(yīng)用列舉法計算隨機(jī)事件所含基本事件數(shù)分析解讀一、事件與概率1.了解隨機(jī)事件的發(fā)生存在的規(guī)律性和隨機(jī)事件概率的意義.2.了解等可能事件概率的意義,會用排列、組合的基本公式計算一些等可能事件的概率.3.用互斥事件的概率公式計算事件的概率是高考的熱點(diǎn).二、古典概型在古典概型條件下,能用事件的概率公式解決實(shí)際問題.本節(jié)在高考中單獨(dú)命題時,通常以選擇題、填空題的形式出現(xiàn),分值約為5分,屬于中低檔題.隨機(jī)事件、古典概型與隨機(jī)變量的分布列、期望與方差等綜合在一起考查時,一般以解答題的形式出現(xiàn),分值約為13分,屬于中檔題.破考點(diǎn)【考點(diǎn)集訓(xùn)】考點(diǎn)一事件與概率1.(2018課標(biāo)文,5,5分)從2名男同學(xué)和3名女同學(xué)中任選2人參加社區(qū)服務(wù),則選中的2人都是女同學(xué)的概率為()A.0.6B.0.5C.0.4D.0.3答案D2.近年來共享單車在我國主要城市發(fā)展迅速.目前市場上有多種類型的共享單車,有關(guān)部門對其中三種品牌共享單車(M、Y、F)進(jìn)行統(tǒng)計(統(tǒng)計對象年齡在1555歲),相關(guān)數(shù)據(jù)如表1,表2所示.三種品牌共享單車使用人群年齡所占百分比(表1)品牌年齡分組MYF15,25)25%20%35%25,35)50%55%25%35,45)20%20%20%45,555%a%20%不同性別選擇共享單車種類情況統(tǒng)計(表2)性別使用單車種類數(shù)(種)男女120%50%235%40%345%10%(1)根據(jù)表1估算出使用Y品牌共享單車人群的平均年齡;(2)若從統(tǒng)計對象中隨機(jī)選取男女各一人,試估計男性使用共享單車種類數(shù)大于女性使用共享單車種類數(shù)的概率;(3)有一個年齡在2535歲之間的共享單車用戶,他使用Y品牌共享單車出行的概率最大,使用F品牌共享單車出行的概率最小.試問此說法是否正確?(只需寫出結(jié)論)解析(1)a=5.由表1知使用Y品牌共享單車人群的平均年齡的估計值為2020%+3055%+4020%+505%=31.答:使用Y品牌共享單車人群的平均年齡約為31歲.(2)設(shè)事件Ai為“男性選擇i種共享單車”,i=1,2,3,設(shè)事件Bi為“女性選擇i種共享單車”,i=1,2,3,設(shè)事件E為“男性使用共享單車種類數(shù)大于女性使用共享單車種類數(shù)”.由題意知,E=A2B1A3B1A3B2,因此P(E)=P(A2B1)+P(A3B1)+P(A3B2)=0.58.答:男性使用共享單車種類數(shù)大于女性使用共享單車種類數(shù)的概率為0.58.(3)此說法不正確.思路分析(1)先利用表格中的相關(guān)數(shù)據(jù)求出a,再利用均值公式得出結(jié)果;(2)把所求事件分解成幾個互斥事件,利用互斥事件概率的加法公式求概率;(3)利用概率的定義判斷正誤.方法點(diǎn)撥求隨機(jī)事件的概率時,要抓住事件之間的關(guān)系,把所求事件進(jìn)行分解,利用概率的加法公式和乘法公式求概率.考點(diǎn)二古典概型3.(2018課標(biāo),8,5分)我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如30=7+23.在不超過30的素數(shù)中,隨機(jī)選取兩個不同的數(shù),其和等于30的概率是()A.112B.114C.115D.118答案C4.某校高三年級共有學(xué)生195人,其中女生105人,男生90人.現(xiàn)采用按性別分層抽樣的方法,從中抽取13人進(jìn)行問卷調(diào)查.設(shè)其中某項(xiàng)問題的選擇為“同意”“不同意”兩種,且每人都做了一種選擇.下面表格中提供了被調(diào)查人答卷情況的部分信息.同意不同意合計女學(xué)生4男學(xué)生2(1)完成上述統(tǒng)計表;(2)根據(jù)上表的數(shù)據(jù)估計高三年級學(xué)生對該項(xiàng)問題選擇“同意”的人數(shù);(3)從被抽取的女生中隨機(jī)選取2人進(jìn)行訪談,求選取的2名女生中至少有一人選擇“同意”的概率.解析(1)統(tǒng)計表如下:同意不同意合計女學(xué)生437男學(xué)生426(2)估計高三年級學(xué)生該項(xiàng)問題選擇“同意”的人數(shù)為47105+4690=60+60=120.(3)設(shè)選擇“同意”的4名女生分別為A1,A2,A3,A4,選擇“不同意”的3名女生分別為B1,B2,B3.從7人中隨機(jī)選出2人的情況有A1A2,A1A3,A1A4,A1B1,A1B2,A1B3,A2A3,A2A4,A2B1,A2B2,A2B3,A3A4,A3B1,A3B2,A3B3,A4B1,A4B2,A4B3,B1B2,B1B3,B2B3,共21種.其中2人都選擇“不同意”的情況有B1B2,B1B3,B2B3,共3種.設(shè)“2名女生中至少有一人選擇同意”為事件M,所以P(M)=1-321=67.煉技法【方法集訓(xùn)】方法1隨機(jī)事件的頻率與概率的常見類型及解題策略1.(2014陜西,6,5分)從正方形四個頂點(diǎn)及其中心這5個點(diǎn)中,任取2個點(diǎn),則這2個點(diǎn)的距離不小于該正方形邊長的概率為()A.15B.25C.35D.45答案C2.(2016課標(biāo),18,12分)某險種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險次數(shù)的關(guān)聯(lián)如下:上年度出險次數(shù)012345保費(fèi)0.85aa1.25a1.5a1.75a2a設(shè)該險種一續(xù)保人一年內(nèi)出險次數(shù)與相應(yīng)概率如下:一年內(nèi)出險次數(shù)012345概率0.300.150.200.200.100.05(1)求該續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;(2)若該續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出60%的概率;(3)求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.解析(1)設(shè)A表示事件:“該續(xù)保人本年度的保費(fèi)高于基本保費(fèi)”,則事件A發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險次數(shù)大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(3分)(2)設(shè)B表示事件:“該續(xù)保人本年度的保費(fèi)比基本保費(fèi)高出60%”,則事件B發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險次數(shù)大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率為311.(7分)(3)記續(xù)保人本年度的保費(fèi)為X元,則X的分布列為X0.85aa1.25a1.5a1.75a2aP0.300.150.200.200.100.05EX=0.85a0.30+a0.15+1.25a0.20+1.5a0.20+1.75a0.10+2a0.05=1.23a.因此續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值為1.23.(12分)易錯警示對條件概率的定義理解不到位,或者不會運(yùn)用條件概率的求解公式,導(dǎo)致出錯.評析本題考查了隨機(jī)事件的概率,同時考查了考生的應(yīng)用意識及數(shù)據(jù)處理能力,屬中檔題.方法2古典概型的求解方法3.(2016江蘇,7,5分)將一顆質(zhì)地均勻的骰子(一種各個面上分別標(biāo)有1,2,3,4,5,6個點(diǎn)的正方體玩具)先后拋擲2次,則出現(xiàn)向上的點(diǎn)數(shù)之和小于10的概率是.答案564.(2014江西,12,5分)10件產(chǎn)品中有7件正品、3件次品,從中任取4件,則恰好取到1件次品的概率是.答案12過專題【五年高考】A組自主命題天津卷題組1.(2017天津文,3,5分)有5支彩筆(除顏色外無差別),顏色分別為紅、黃、藍(lán)、綠、紫.從這5支彩筆中任取2支不同顏色的彩筆,則取出的2支彩筆中含有紅色彩筆的概率為()A.45B.35C.25D.15答案C2.(2016天津文,2,5分)甲、乙兩人下棋,兩人下成和棋的概率是12,甲獲勝的概率是13,則甲不輸?shù)母怕蕿?)A.56B.25C.16D.13答案A3.(2018天津文,15,13分)已知某校甲、乙、丙三個年級的學(xué)生志愿者人數(shù)分別為240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學(xué)去某敬老院參加獻(xiàn)愛心活動.(1)應(yīng)從甲、乙、丙三個年級的學(xué)生志愿者中分別抽取多少人?(2)設(shè)抽出的7名同學(xué)分別用A,B,C,D,E,F,G表示,現(xiàn)從中隨機(jī)抽取2名同學(xué)承擔(dān)敬老院的衛(wèi)生工作.試用所給字母列舉出所有可能的抽取結(jié)果;設(shè)M為事件“抽取的2名同學(xué)來自同一年級”,求事件M發(fā)生的概率.解析(1)由已知,甲、乙、丙三個年級的學(xué)生志愿者人數(shù)之比為322,由于采用分層抽樣的方法從中抽取7名同學(xué),因此應(yīng)從甲、乙、丙三個年級的學(xué)生志愿者中分別抽取3人,2人,2人.(2)從抽出的7名同學(xué)中隨機(jī)抽取2名同學(xué)的所有可能結(jié)果為A,B,A,C,A,D,A,E,A,F,A,G,B,C,B,D,B,E,B,F,B,G,C,D,C,E,C,F,C,G,D,E,D,F,D,G,E,F,E,G,F,G,共21種.由(1),不妨設(shè)抽出的7名同學(xué)中,來自甲年級的是A,B,C,來自乙年級的是D,E,來自丙年級的是F,G,則從抽出的7名同學(xué)中隨機(jī)抽取的2名同學(xué)來自同一年級的所有可能結(jié)果為A,B,A,C,B,C,D,E,F,G,共5種.所以,事件M發(fā)生的概率P(M)=521.易錯警示解決古典概型問題時,易出現(xiàn)以下錯誤:(1)忽視基本事件的等可能性導(dǎo)致錯誤;(2)列舉基本事件考慮不全面導(dǎo)致錯誤;(3)在求基本事件總數(shù)和所求事件包含的基本事件數(shù)時,一個按有序,一個按無序處理導(dǎo)致錯誤.4.(2015天津文,15,13分)設(shè)甲、乙、丙三個乒乓球協(xié)會的運(yùn)動員人數(shù)分別為27,9,18.現(xiàn)采用分層抽樣的方法從這三個協(xié)會中抽取6名運(yùn)動員組隊(duì)參加比賽.(1)求應(yīng)從這三個協(xié)會中分別抽取的運(yùn)動員的人數(shù);(2)將抽取的6名運(yùn)動員進(jìn)行編號,編號分別為A1,A2,A3,A4,A5,A6.現(xiàn)從這6名運(yùn)動員中隨機(jī)抽取2人參加雙打比賽.(i)用所給編號列出所有可能的結(jié)果;(ii)設(shè)A為事件“編號為A5和A6的兩名運(yùn)動員中至少有1人被抽到”,求事件A發(fā)生的概率.解析(1)應(yīng)從甲、乙、丙三個協(xié)會中抽取的運(yùn)動員人數(shù)分別為3,1,2.(2)(i)從6名運(yùn)動員中隨機(jī)抽取2人參加雙打比賽的所有可能結(jié)果為A1,A2,A1,A3,A1,A4,A1,A5,A1,A6,A2,A3,A2,A4,A2,A5,A2,A6,A3,A4,A3,A5,A3,A6,A4,A5,A4,A6,A5,A6,共15種.(ii)編號為A5和A6的兩名運(yùn)動員中至少有1人被抽到的所有可能結(jié)果為A1,A5,A1,A6,A2,A5,A2,A6,A3,A5,A3,A6,A4,A5,A4,A6,A5,A6,共9種.因此,事件A發(fā)生的概率P(A)=915=35.評析本題主要考查分層抽樣、用列舉法計算隨機(jī)事件所含的基本事件數(shù)、古典概型及其概率計算公式等基礎(chǔ)知識.考查運(yùn)用概率、統(tǒng)計知識解決簡單實(shí)際問題的能力.5.(2014天津文,15,13分)某校夏令營有3名男同學(xué)A,B,C和3名女同學(xué)X,Y,Z,其年級情況如下表:一年級二年級三年級男同學(xué)ABC女同學(xué)XYZ現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識競賽(每人被選到的可能性相同).(1)用表中字母列舉出所有可能的結(jié)果;(2)設(shè)M為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,求事件M發(fā)生的概率.解析(1)從6名同學(xué)中隨機(jī)選出2人參加知識競賽的所有可能結(jié)果為A,B,A,C,A,X,A,Y,A,Z,B,C,B,X,B,Y,B,Z,C,X,C,Y,C,Z,X,Y,X,Z,Y,Z,共15種.(2)選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)的所有可能結(jié)果為A,Y,A,Z,B,X,B,Z,C,X,C,Y,共6種.因此,事件M發(fā)生的概率P(M)=615=25.評析本題主要考查用列舉法計算隨機(jī)事件所含的基本事件數(shù)、古典概型及其概率計算公式等基礎(chǔ)知識.考查運(yùn)用概率知識解決簡單實(shí)際問題的能力.B組統(tǒng)一命題、省(區(qū)、市)卷題組考點(diǎn)一事件與概率1.(2015湖北,2,5分)我國古代數(shù)學(xué)名著數(shù)書九章有“米谷粒分”題:糧倉開倉收糧,有人送來米1534石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷28粒,則這批米內(nèi)夾谷約為()A.134石B.169石C.338石D.1365石答案B2.(2014課標(biāo),5,5分)4位同學(xué)各自在周六、周日兩天中任選一天參加公益活動,則周六、周日都有同學(xué)參加公益活動的概率為()A.18B.38C.58D.78答案D考點(diǎn)二古典概型1.(2017課標(biāo)文,11,5分)從分別寫有1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為()A.110B.15C.310D.25答案D2.(2016課標(biāo)文,5,5分)小敏打開計算機(jī)時,忘記了開機(jī)密碼的前兩位,只記得第一位是M,I,N中的一個字母,第二位是1,2,3,4,5中的一個數(shù)字,則小敏輸入一次密碼能夠成功開機(jī)的概率是()A.815B.18C.115D.130答案C3.(2015課標(biāo),4,5分)如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù).從1,2,3,4,5中任取3個不同的數(shù),則這3個數(shù)構(gòu)成一組勾股數(shù)的概率為()A.310B.15C.110D.120答案C4.(2016四川文,13,5分)從2,3,8,9中任取兩個不同的數(shù)字,分別記為a,b,則logab為整數(shù)的概率是.答案16C組教師專用題組1.(2017山東,8,5分)從分別標(biāo)有1,2,9的9張卡片中不放回地隨機(jī)抽取2次,每次抽取1張.則抽到的2張卡片上的數(shù)奇偶性不同的概率是()A.518B.49C.59D.79答案C2.(2015廣東文,7,5分)已知5件產(chǎn)品中有2件次品,其余為合格品.現(xiàn)從這5件產(chǎn)品中任取2件,恰有一件次品的概率為()A.0.4B.0.6C.0.8D.1答案B3.(2018江蘇,6,5分)某興趣小組有2名男生和3名女生,現(xiàn)從中任選2名學(xué)生去參加活動,則恰好選中2名女生的概率為.答案3104.(2013課標(biāo),14,5分)從n個正整數(shù)1,2,n中任意取出兩個不同的數(shù),若取出的兩數(shù)之和等于5的概率為114,則n=.答案85.(2017山東文,16,12分)某旅游愛好者計劃從3個亞洲國家A1,A2,A3和3個歐洲國家B1,B2,B3中選擇2個國家去旅游.(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;(2)若從亞洲國家和歐洲國家中各任選1個,求這2個國家包括A1但不包括B1的概率.解析本題考查古典概型.(1)由題意知,從6個國家中任選兩個國家,其一切可能的結(jié)果組成的基本事件有:A1,A2,A1,A3,A2,A3,A1,B1,A1,B2,A1,B3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,B1,B2,B1,B3,B2,B3,共15個.所選兩個國家都是亞洲國家的事件所包含的基本事件有:A1,A2,A1,A3,A2,A3,共3個,則所求事件的概率P=315=15.(2)從亞洲國家和歐洲國家中各任選一個,其一切可能的結(jié)果組成的基本事件有:A1,B1,A1,B2,A1,B3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,共9個.包括A1但不包括B1的事件所包含的基本事件有:A1,B2,A1,B3,共2個,則所求事件的概率為P=29.6.(2015福建文,18,12分)全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國網(wǎng)民中影響力的綜合指標(biāo).根據(jù)相關(guān)報道提供的全網(wǎng)傳播2015年某全國性大型活動的“省級衛(wèi)視新聞臺”融合指數(shù)的數(shù)據(jù),對名列前20名的“省級衛(wèi)視新聞臺”的融合指數(shù)進(jìn)行分組統(tǒng)計,結(jié)果如表所示.組號分組頻數(shù)14,5)225,6)836,7)747,83(1)現(xiàn)從融合指數(shù)在4,5)和7,8內(nèi)的“省級衛(wèi)視新聞臺”中隨機(jī)抽取2家進(jìn)行調(diào)研,求至少有1家的融合指數(shù)在7,8內(nèi)的概率;(2)根據(jù)分組統(tǒng)計表求這20家“省級衛(wèi)視新聞臺”的融合指數(shù)的平均數(shù).解析(1)融合指數(shù)在7,8內(nèi)的“省級衛(wèi)視新聞臺”記為A1,A2,A3;融合指數(shù)在4,5)內(nèi)的“省級衛(wèi)視新聞臺”記為B1,B2.從融合指數(shù)在4,5)和7,8內(nèi)的“省級衛(wèi)視新聞臺”中隨機(jī)抽取2家的所有基本事件是A1,A2,A1,A3,A2,A3,A1,B1,A1,B2,A2,B1,A2,B2,A3,B1,A3,B2,B1,B2,共10個.其中,至少有1家融合指數(shù)在7,8內(nèi)的基本事件是A1,A2,A1,A3,A2,A3,A1,B1,A1,B2,A2,B1,A2,B2,A3,B1,A3,B2,共9個.所以所求的概率P=910.(2)這20家“省級衛(wèi)視新聞臺”的融合指數(shù)平均數(shù)等于4.5220+5.5820+6.5720+7.5320=6.05.評析本題主要考查古典概型、頻數(shù)分布表、平均數(shù)等基礎(chǔ)知識,考查數(shù)據(jù)處理能力、運(yùn)算求解能力、應(yīng)用意識等.7.(2014四川文,16,12分)一個盒子里裝有三張卡片,分別標(biāo)記有數(shù)字1,2,3,這三張卡片除標(biāo)記的數(shù)字外完全相同.隨機(jī)有放回地抽取3次,每次抽取1張,將抽取的卡片上的數(shù)字依次記為a,b,c.(1)求“抽取的卡片上的數(shù)字滿足a+b=c”的概率;(2)求“抽取的卡片上的數(shù)字a,b,c不完全相同”的概率.解析(1)由題意知,(a,b,c)所有可能的結(jié)果為(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27種.設(shè)“抽取的卡片上的數(shù)字滿足a+b=c”為事件A,則事件A包括(1,1,2),(1,2,3),(2,1,3),共3種.所以P(A)=327=19.因此,“抽取的卡片上的數(shù)字滿足a+b=c”的概率為19.(2)設(shè)“抽取的卡片上的數(shù)字a,b,c不完全相同”為事件B,則事件B包括(1,1,1),(2,2,2),(3,3,3),共3種.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的數(shù)字a,b,c不完全相同”的概率為89.【三年模擬】一、選擇題(每小題5分,共30分)1.(2018天津十二區(qū)縣二模,2)從大小相同的紅、黃、白、紫、粉5個小球中任選2個,則取出的兩個小球中沒有紅色球的概率為()A.25B.35C.56D.910答案B2.(2018天津河北質(zhì)量檢測(2),4)從數(shù)字1,2,3,4,5中任取2個組成一個沒有重復(fù)數(shù)字的兩位數(shù),則這個兩位數(shù)大于30的概率是()A.15B.25C.35D.45答案C3.(2017天津和平一模,2)一個口袋中裝有2個白球和3個黑球,這5個球除顏色外完全相同,從中摸出2個球,則這2個球顏色相同的概率為()A.310B.35C.12D.25答案D4.(2018天津一中3月月考,3)若從集合1,2,3,5中隨機(jī)選出三個元素,則滿足其中兩個元素的和等于第三個元素的概率為()A.14B.12C.34D.13答案B5.(2017天津河北一模,2)兩個袋中各裝有編號為1,2,3,4,5的5個小球,分別從每個袋中摸出一個小球,所得兩球編號之和小于5的概率為()A.15B.725C.625D.25答案C6.(2017天津十二區(qū)縣一模,2)若從2個海濱城市和2個內(nèi)陸城市中隨機(jī)選2個去旅游,那么恰好選1個海濱城市的概率是()A.13B.23C.14D.12答案B二、填空題(每小題5分,共10分)7.(2017天津河西一模,11)一個口袋內(nèi)裝有除顏色外完全相同的2個白球和2個黑球,從中一次隨機(jī)取出2個球,則至少取到1個黑球的概率為.答案568.(2017天津紅橋一模,10)經(jīng)統(tǒng)計,在銀行一個營業(yè)窗口每天上午9點(diǎn)鐘排隊(duì)等候的人數(shù)及相應(yīng)概率如下表:排隊(duì)人數(shù)012345概率0.10.160.30.30.10.04則該營業(yè)窗口上午9點(diǎn)鐘時,至少有2人排隊(duì)的概率是.答案0.74三、解答題(共80分)9.(2018天津部分區(qū)縣質(zhì)量檢測(2),16)某區(qū)的區(qū)人大代表有教師6人,分別來自甲、乙、丙、丁四個學(xué)校,其中甲校教師記為A1,A2,乙校教師記為B1,B2,丙校教師記為C,丁校教師記為D.現(xiàn)從這6名教師中隨機(jī)選出3名教師組成十九大報告宣講團(tuán),要求甲、乙、丙、丁四個學(xué)校中,每校至多選出1名.(1)請列出十九大報告宣講團(tuán)組成人員的全部可能結(jié)果;(2)求教師A1被選中的概率;(3)求宣講團(tuán)中沒有乙校教師的概率.解析(1)從6名教師中隨機(jī)選出3名教師組成十九大報告宣講團(tuán),組成人員的全部可能結(jié)果有A1,B1,C,A1,B1,D,A1,B2,C,A1,B2,D,A1,C,D,A2,B1,C,A2,B1,D,A2,B2,C,A2,B2,D,A2,C,D,B1,C,D,B2,C,D,共12種.(2)由(1)可知A1被選中的結(jié)果有A1,B1,C,A1,B1,D,A1,B2,C,A1,B2,D,A1,C,D,共5種,所以所求概率P=512.(3)由(1)可知宣講團(tuán)中沒有乙校教師的結(jié)果有A1,C,D,A2,C,D,共2種,所以所求概率P=212=16.10.(2018天津南開統(tǒng)練,15)甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客,兩家商場的獎勵方案如下:甲商場:顧客轉(zhuǎn)動如圖所示的圓盤,指針指向陰影部分(圖中四個陰影部分均為扇形,且每個扇形圓心角均為15,邊界忽略不計)即為中獎.乙商場:從裝有3個白球3個紅球的盒子中一次性摸出2個球(球除顏色外不加區(qū)分),如果摸到的是2個紅球,即為中獎.問:購買該商品的顧客在哪家商場中獎的可能性大?解析如果顧客去甲商場,設(shè)題圖中圓盤的半徑為R,則抽獎的全部結(jié)果構(gòu)成的區(qū)域?yàn)閳A盤的面積R2,陰影部分的面積為415R2360=R26,則在甲商場中獎的概率P1=R26R2=16;如果顧客去乙商場,記3個白球?yàn)閍1,a2,a3,3個紅球?yàn)閎1,b2,b3,記(x,y)為一次摸球的結(jié)果,則全部可能的結(jié)果有(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a1,b3),(a2,a3),(a2,b1),(a2,b2),(a2,b3),(a3,b1),(a3,b2),(a3,b3),(b1,b2),(b1,b3),(b2,b3),共15種,摸到的是2個紅球的事件有(b1,b2),(b1,b3),(b2,b3),共3種,則在乙商場中獎的概率P2=315=15.因?yàn)镻1P2,所以購買該商品的顧客在乙商場中獎的可能性大.解題分析首先分別計算兩種方案中獎的概率(記錄事件發(fā)生的全部結(jié)果的個數(shù)與滿足條件的事件的個數(shù),由等可能事件的概率公式求得相應(yīng)概率),然后比較概率大小,得結(jié)果.評析本題考查等可能事件的概率計算以及幾何概率的求法,關(guān)鍵是正確列舉事件的全部情況.11.(2018天津河?xùn)|二模,15)小明非常喜歡葫蘆娃七兄弟的人偶玩具,小明的媽媽答應(yīng)小明買其中的兩個,小明面對紅、橙、黃、綠、青、藍(lán)、紫七個造型各異的玩偶舉棋不定.(1)請列舉出小明購買人偶的所有結(jié)果;(2)記事件X為“小明至少從紅、橙、黃三個人偶中購買一個”,求事件X發(fā)生的概率.解析(1)設(shè)紅、橙、黃、綠、青、藍(lán)、紫七個玩偶分別為A、B、C、D、E、F、G,則選擇其中兩個的情況為21種,分別為A,B、A,C、A,D、A,E、A,F、A,G、B,C、B,D、B,E、B,F、B,G、C,D、C,E、C,F、C,G、D,E、D,F、D,G、E,F、E,G、F,G.(2)事件X為“小明至少從紅、橙、黃三個人偶中購買一個”,其發(fā)生的情況為A,B、A,C、A,D、A,E、A,F、A,G、B,C、B,D、B,E、B,F、B,G、C,D、C,E、C,F、C,G,共計15種,故事件X發(fā)生的概率P(X)=1521=57.12.(2019屆天津一中1月月考文,16)某中學(xué)一位高三班主任對本班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:積極參加班級工作不積極參加班級工作合計學(xué)習(xí)積極性高18725學(xué)習(xí)積極性不高61925合計242650(1)如果隨機(jī)調(diào)查這個班的一名學(xué)生,求事件A:抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率;(2)若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項(xiàng)活動,請用字母代表不同的學(xué)生,列舉出抽取的所有可能結(jié)果;(3)在(2)中,求事件B:兩名學(xué)生中恰有一名男生的概率.解析(1)由題表可得隨機(jī)調(diào)查這個班的一名學(xué)生,有50種情況,抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生有19種情況,故P(A)=1950.(2)設(shè)這7名學(xué)生分別為a,b,c,d,e,A,B(大寫為男生),則從中抽取兩名學(xué)生的所有基本事件有ab,ac,ad,ae,aA,aB,bc,bd,be,bA,bB,cd,ce,cA,cB,de,dA,dB,eA,eB,AB,共21種.(3)事件B包含的基本事件有10種,分別為aA,aB,bA,bB,cA,cB,dA,dB,eA,eB,故P(B)=1021.13.(2018天津部分區(qū)縣期末,15)某公司需要對所生產(chǎn)的A,B,C三種產(chǎn)品進(jìn)行檢測,三種產(chǎn)品數(shù)量(單位:件)如下表所示:產(chǎn)品ABC數(shù)量(件)18027090采用分層抽樣的方法從以上產(chǎn)品中共抽取6件.(1)求分別抽取三種產(chǎn)品的件數(shù);(2)將抽取的6件產(chǎn)品按種類A,B,C編號,分別記為Ai,Bi,Ci,i=1,2,3,現(xiàn)從這6件產(chǎn)品中隨機(jī)抽取2件.(i)用所給編號列出所有可能的結(jié)果;(ii)求這兩件產(chǎn)品來自不同種類的概率.解析(1)設(shè)C產(chǎn)品抽取了x件,則A產(chǎn)品抽取了2x件,B產(chǎn)品抽取了3x件,則有x+2x+3x=6,解得x=1,所以A,B,C三種產(chǎn)品分別抽取了2件,3件,1件.(2)(i)A產(chǎn)品編號為A1,A2;B產(chǎn)品編號為B1,B2,B3;C產(chǎn)品編號為C1.則從這6件產(chǎn)品中隨機(jī)抽取2件的所有結(jié)果如下:A1,A2,A1,B1,A1,B2,A1,B3,A1,C1,A2,B1,A2,B2,A2,B3,A2,C1,B1,B2,B1,B3,B1,C1,B2,B3,B2,C1,B3,C1,共15個.(ii)根據(jù)題意,可知(i)中基本事件的出現(xiàn)是等可能的,其中兩件產(chǎn)品來自不同種類的有A1,B1,A1,B2,A1,B3,A1,C1,A2,B1,A2,B2,A2,B3,A2,C1,B1,C1,B2,C1,B3,C1,共11個.因此這兩件產(chǎn)品來自不同種類的概率P=1115.14.(2019屆天津耀華中學(xué)第一次月考文,16)一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.(1)從袋中隨機(jī)取兩個球,求取出的球的編號之和不大于4的概率;(2)先從袋中隨機(jī)取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機(jī)取一個球,該球的編號為n,求nm+2的概率.解析(1)從袋中隨機(jī)取兩個球,可能的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6個,從袋中取出的球的編號之和不大于4的事件有1和2,1和3,共2個,因此所求事件的概率P=26=13.(2)先從袋中隨機(jī)取一個球,記下編號為m,放回后,再從袋中隨機(jī)取一個球,記下編號為n,其所有可能的情況(m,n)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16個,其中滿足條件nm+2的情況為(1,3),(1,4),(2,4),共3個,所以滿足條件nm+2的事件的概率為316.故滿足條件nm+2的事件的概率為1-316=1316.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 天津?qū)S?020版高考數(shù)學(xué)大一輪復(fù)習(xí) 11.1 隨機(jī)事件與古典概型精練 天津 專用 2020 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 隨機(jī) 事件 古典 精練
鏈接地址:http://m.italysoccerbets.com/p-3934742.html