2000噸每天印染廢水處理工藝設計【含CAD圖紙+文檔】
壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
目錄1 在濕空氣中氧化的可降解的印染廢水11.1 概述11.2 理論11.3 實驗21.4 結果及討論31.5 結論51 ON THE DEGRADABILITY OF PRINTING AND DYEINGWASTEWATER BY WET AIR OXIDATION61.1 INTRODUCTION61.2 THEORY71.3 EXPERIMENTAL81.4 RESULTS AND DISCUSSION81.5 CONCLUSIONS112 鎂氯化物使顏料及工業(yè)顏料廢物的轉(zhuǎn)移132.1 概述132.2 材料及方法152.3 結果及討論162.4 結論192 REMOVAL OF DYES AND INDUSTRIAL DYE WASTES BYMAGNESIUM CHLORIDE212.1 INTRODUCTION212.2 MATERIALS AND METHODS232.3 RESULTS AND DISCUSSION252.4 CONCLUSION30311 在濕空氣中氧化的可降解的印染廢水摘要用第一次序的動力學模型來修正濕空氣氧化中的印染廢水的模擬與實驗的數(shù)據(jù)吻合,結果指出印染廢水的一個有機污染物質(zhì)的特定分數(shù)是無法離開甚至是提高了溫度而且延長了反應時間的,發(fā)現(xiàn)能不依賴溫度和使用改良催化劑的可以降解的有機物質(zhì)。關鍵字:濕氣氧化,廢水治療, 催化劑1.1 概述紡織廢水從印刷和染色程序后放出,具有高化學需氧量 (COD) 、低的生物化學的需氧量 (BOD) 和深色度的特點。 它是紡織工業(yè)中污染物質(zhì)的主要來源之一。在個別項目中,廢水的COD和色度用傳統(tǒng)的廢水處理是很難達到預期效果的。 濕空氣氧化法 (WAO) 已經(jīng)被實驗證實是一個能在提高的溫度和壓力把有機污染物質(zhì)轉(zhuǎn)換成水和二氧化碳的方法 (蘭德爾和 knopp,1980; Skaates et al,1981; Dietrich al,1985; Levec,1990; Mantzavinos et al。,1996)。 因為它能達到非常高的轉(zhuǎn)變率,濕空氣氧化程序比傳統(tǒng)的方法典型地需要少很多的空間。此外,在運用生物學程序的情況之下,沒有多于的泥或廢物生產(chǎn)。 WAO 已經(jīng)用實驗證明是處理來自紡織工業(yè)的廢水的退漿、漂白、染色和印刷工藝的一個可行的程序 (lei et al,1997, 1998,2000). WAO 需要高溫 (大約 3000C) 和高壓 (超過 10 MPa), 在一個合理的時間段里達到高化學需氧量的需求。 而采用一個適當?shù)拇呋瘎┠芨淖兎磻獪囟群蛪毫?(Chu et al,1998; 匈牙利,1999)。因為染料的結構非常穩(wěn)定, 所以在一般的文學中都用了第一次序反應動力學模型來模擬,而不用那個印染廢水的經(jīng)驗數(shù)據(jù)(Mishra et al,1995; Ingale et al,1996; Lei et al.,2000)在這一個運用中, 第一次序反應動力學模型增加一個非可氧化性的分數(shù)來修正過去一直研究的有機的印染廢水的 WAO。1.2 理論在印染工藝中產(chǎn)生許多不同的有機化合物包括各種不同的染料的廢水。 在這一項研究中,總有機碳 (TOC) 用來表示印染廢水有機濃度的綜合指標。Mantzavinos (1996)和lei et al (2000)證明,由于氧是過量的,則大量的轉(zhuǎn)移干擾是可以忽略的。由WAO法和假定的第一次序反應, 我們有 (1)前提條件是t=0; Y=Y0; (2)Y 和 Y0是可氧化有機濃度,對應的反應時間是 t 和0;k 是比率常數(shù), 遵循阿倫尼烏斯公式 (3)k0為指前因子(也稱頻率因子), E為表觀活化能, R 為摩爾氣體常量和,T為熱力學溫度。求得(1)的微分方程解為: (4)在印染廢水中含有一些非可氧化性的WAO成份。假設是可氧化有機物中TOC的分數(shù), 則有: (5)TOC0 是反應時間為0時的TOC值。TOC 價值隨時間變化的: (6)在任意時間轉(zhuǎn)移的TOC量為: (7)TOCi不同于廢水的開始 TOC值TOC0,是因為在加熱期間廢水的熱分解不同(lei et al,2000)。1.3 實驗WAO實驗是在一個有冷卻裝備盤繞和一個有活潑磁性的2-l的高壓鍋系統(tǒng)中實行的。該設備功能和它的操作程序在我們的早先工作中是得到預期效果 (lei et al ,1997)。樣本廢水是直接從香港的一家紡織公司印染程序收集來。它有11100mg/l 的COD值, 3204mg/l 的 TOC值,BOD5為440mg/l 和pH值為6.6。1.4 結果及討論圖 1 為在四個不同的溫度下表示的印染廢水中 WAO與TOC轉(zhuǎn)移關系,分別為1500C、2000C、2500C 和 3000C。 需氧部分壓力是2.65MPa(以2000C 為參考溫度), 是理論總需氧量的兩倍。實驗的數(shù)據(jù)體現(xiàn)出當符號和樣板的配件為使用最少的正方形方法時當做標準線。TOC 的轉(zhuǎn)移在 t 0 時有非零值。這是因為在程序上的熱解過程中有一些廢水進行了熱分解 (lei et al,2000)。 熱的分解在較高的溫度中表現(xiàn)得更重要。圖1中模型和實驗的數(shù)據(jù)反映得很好。 要選取的參數(shù)在表 1 中清楚的列出。 可氧化的有機印染廢水的分數(shù),大約為0.35時幾乎不受溫度的影響。這意味著只有大約 35% 的有機物在熱分解之后才能被氧化。 增加溫度能加速氧化速度但是不能夠增加有機物被氧化的分數(shù)。 反應率常數(shù)在各種不同的溫度下獲得氧化反應的活化能的理論值是 43.7 kJ/mol (圖 2) 。 活化能比 25 kJ/mol大很多, 其值對于轉(zhuǎn)移阻能可被忽略 (Satterfield,1991; Shende 和 Mahajani,1994).。在動力學控制之下假定的印染廢水WAO,是包括完全被供應的過度氧量的模擬值。因為有機印染廢水轉(zhuǎn)換率不能夠由增加溫度 (常數(shù))以及嘗試使用一些催化劑而提高或改善氧化率。 圖 3表示在2000C接觸反應的 WAO和2.65 MPa 的需氧部分壓力下的印染廢水的實驗數(shù)據(jù) (符號)。催化劑是濃度為200mg/l 的Cu(NO3)2 和 CuO,Cu2+。兩種催化劑能明顯地提高氧化率而且達成較好的 TOC 轉(zhuǎn)移率。相應的模型如圖3,而且模型與實驗數(shù)據(jù)表現(xiàn)得極一致。動力學參數(shù)和k,對于Cu(NO3)2是 0.434 和 0.0559/min, 對于CuO是 0.435 和 0.0492/min。當沒有催化劑作用的時候,CuO 的參數(shù)值最小,分別的相對值為 0.34 和 0.0066/min。 催化劑能同時提高可氧化有機的分數(shù)和反應率。1.5 結論用第一次序的動力學模型來修正濕空氣氧化中的印染廢水的模擬與實驗的數(shù)據(jù)吻合。 因為一些顏料的高的穩(wěn)定結構, 特定的部分有機物質(zhì)在廢水中不能分離,甚至在提高溫度時也不能被氧化,而且延長反應時間。 雖然增加溫度能加速它的氧化速度,但不能夠增加而且有可能降低有機物質(zhì)的比。 然而,氧化有機廢水的分數(shù)能因增加一個催化劑而得到改良。 1 ON THE DEGRADABILITY OF PRINTING AND DYEINGWASTEWATER BY WET AIR OXIDATIONXIJUN HU*, LECHENGLEI, GUOHUA CHEN and PO LOCK YUEDepartment of Chemical Engineering, Hong Kong University of Science and Technology,Clear Water Bay, Kowloon, Hong Kong(First received 13 January 2000; accepted in revised form 6 September 2000)AbstractA modified first-order kinetics model was used to study the wet air oxidation of printing and dyeing wastewater. The model simulations are in good agreement with experimental data. The results indicate that a certain fraction of organic pollutants in the printing and dyeing wastewater could not be removed even at elevated temperature and prolonged reaction time. The ratio of degradable organic matter is found independent of temperature and can be improved by using a catalyst. # 2001 Elsevier Science Ltd. All rights reservedKey wordswet oxidation, wastewater treatment, catalyst1.1 INTRODUCTIONThe textile wastewater discharged from printing and dyeing processes is characterized by high chemical oxygen demand (COD), low biochemical oxygen demand (BOD), and heavy colour. It is one of the major sources of pollutants in the textile industry. In particular, the COD and colour of the wastewater are resistant to conventional wastewater treatment. Wet air oxidation (WAO) has been shown to be a feasible method to convert the organic pollutants into water and carbon dioxide at elevated temperatures and pressures (Randall and knopp, 1980; Skaates et al., 1981; Dietrich et al., 1985; Levec, 1990; Mantzavinos et al., 1996). Since it can achieve very high conversion rates, the wet air oxidation process typically requires much less space. Furthermore, no additional sludge or concentrated waste is produced as in the case of biological processes. WAO has been demonstrated to be a viable process for the treatment of desizing, scouring, dyeing and printing wastewater from the textile industry (Lei et al., 1997, 1998, 2000). WAO requires high temperatures (about 3008C) and high pressures (over 10 MPa), to achieve a high COD removal within a reasonable time scale. A suitable catalyst can be added to reduce the reaction temperature and pressure (Chu et al., 1998; Hu et al., 1999).Because of the very stable structure of dyes, the first-order reaction kinetics model commonly used in the literature (Mishra et al., 1995; Ingale et al., 1996; Lei et al., 2000) does not fit our experimental data with the printing and dyeing wastewater. In this note, the first-order reaction kinetics model is modified by adding a fraction of non-oxidizable organics and used to study the WAO of printing and dyeing wastewater.1.2 THEORYThere are many different organic compounds in the printing and dyeing wastewater including various dyestuffs. In this study, the total organic carbon (TOC) is used to represent the organic concentration in the printing and dyeing wastewater. The mass transfer resistance is negligible because oxygen is in excess, as demonstrated by Mantzavinos et al. (1996) and Lei et al. (2000). By assuming that the WAO follows the first-order reaction, we have (1)with the initial condition ast=0; Y=Y0; (2)where Y and Y0 are the oxidizable organic concentrations at reaction time t and zero, t is reaction time and k is the rate constant, which follows the Arrhenius equation: (3)with k0 being the pre-exponential factor, E the activated energy, R the gas constant and T the temperature.The solution for equation (1) is (4)There are some components in the printing and dyeing wastewater which are non-oxidizable by WAO. Let a be the fraction of oxidizable organic among TOC, we have (5)where TOC0 is the TOC value at reaction time zero.The TOC value at any time is (6)The total removal of TOC at any time is (7)where the initial TOC value of the wastewater, TOCi, is different from TOC0 because of the thermal decomposition of wastewater during the heating up period (Lei et al., 2000).1.3 EXPERIMENTALWAO experiments were carried out in a 2-l autoclave equipped with a cooling coil and a magnetic stirring system. The equipment description and its operation procedures were available in our previous work (Lei et al., 1997). The wastewater was collected directly from the printing and dyeing process of one textile company in Hong Kong. It has a COD value of 11100 mg/l, TOC of 3204 mg/l, BOD5 of 440 mg/l and pH of 6.6.1.4 RESULTS AND DISCUSSIONFigure 1 shows the TOC removal of printing and dyeing wastewater by WAO at four different temperatures, 150, 200, 250, and 3008C. The oxygen partial pressure is 2.65MPa (at a reference temperature of 2008C), which is twice the theoretical amountof oxygen required to completely oxidize the organics in the wastewater. The experimental data are presented as symbols and the model fitting using the least-square method as solid lines. The TOC removal has a non-zero value at t 0. This is so because there is some thermal decomposition of wastewater during the heating up process (Lei et al., 2000). The thermal decomposition is more significant at a higher temperature. It can be seen in Fig. 1 that the model fits the experimental data well. The extracted parameters are listed in Table 1. The fraction of oxidizable organic in the printing and dyeing wastewater, a, is about 0.35 and nearly independent of temperature. This means that only about 35% of the organics can be oxidized after the thermal decomposition. Increasing the temperature can accelerate the oxidation speed but is unable to increase the fraction of organics oxidized.The extracted reaction rate constants at various temperatures are then used to obtain the activated energy of the oxidation reaction, which is found to be 43.7 kJ/mol (Fig. 2). The activated energy is much larger than 25 kJ/mol, a value where mass transfer resistance can be ignored (Satterfield, 1991; Shende and Mahajani, 1994). This together with the excess oxygen supplied fully support the model assumption that the WAO of printing and dyeing wastewater is under kinetics control.Because the conversion of organics in the printing and dyeing wastewater cannot be enhanced by increasing temperature (constant a), some catalysts are tried to improve the oxidation rate. Figure 3 shows the catalytic WAO experimental data (symbols) of printing and dyeing wastewater at 2008C andan oxygen partial pressure of 2.65 MPa. The catalysts used are Cu(NO3)2 and CuO with a Cu2+ concentration of 200 mg/l. Both catalysts can significantly increase the oxidation rate and achieve better TOC removals. The model fitting is also plotted in Fig. 3 as lines. Again the model is in excellent agreement with experimental data. The kinetic parameters, a and k, are 0.434 and 0.0559/min for Cu(NO3)2, and 0.435 and 0.0492/min for CuO, respectively, compared with the values of 0.34 and 0.0066/min when no catalyst is present. The catalysts can enhance both the fraction of oxidizable organics and the reaction rate.1.5 CONCLUSIONSA modified first-order kinetics model has been used to study the wet air oxidation of printing and dyeing wastewater. The model fits the experimental data well. Because of the highly stable structure of some dyes, a certain portion of organics in the wastewater cannot be oxidized even at elevated temperature and prolonged reaction time. Although increasing the temperature can accelerate the oxidation speed it cannot increase the ratio of degradable organic matter. However, the fraction of oxidizable organics of wastewater can be improved by adding a catalyst.AcknowledgementsThe authors are grateful to the Industry and Technology Development Council of Hong Kong for its financial support for this research.REFERENCESChu H. P., Lei L., Hu X. and Yue P. L. (1998) Metalloorganic chemical vapor deposition (MOCVD) for the development of heterogeneous catalyst. Energy Fuels 12, 11081113.Dietrich M. J., Randall T. L. and Canney P. J. (1985) Wet air oxidation of hazardous organics in wastewater. Environ. Prog. 4, 171177.Hu X., Lei L., Chu H. P. and Yue P. L. (1999) Copper/activated carbon as catalyst for organic wastewater treatment. Carbon 37, 631637.Ingale M. N., Joshi J. B., Mahajani V. V. and Gada M. K. (1996) Waste treatment of an aqueous waste stream from a cyclohexane oxidation unit: a case study. Trans. IchemE 74, 265272.Lei L., Hu X., Chen G., Porter J. F. and Yue P. L. (2000) Wet air oxidation of desizing wastewater from the textile industry. Ind. Eng. Chem. Res. 39, 28962901.Lei L., Hu X., Chu H. P. and Yue P. L. (1997) Catalytic wet air oxidation of dyeing and desizing wastewater. Water Sci. Technol. 65, 311319. Lei L., Hu X. and Yue P. L. (1998) Improved wet oxidation for the treatment of dyeing wastewater concentrate from membrane separation process. Water Res. 32, 27532759.Levec J. (1990) Catalytic oxidation of toxic organic in aqueous solution. Appl. Catal. 63, L1L5.Mantzavinos D., Livingston A. G., Hellenbrand R. and Metcalfe I. S. (1996) Wet air oxidation of polyethylene glycols: mechanisms, intermediates and implications for integrated chemical-biological wastewater treatment. Chem. Engng. Sci. 51, 42194236.Mishra V. S., Mahajani V. V. and Joshi J. B. (1995) Wet air oxidation. Ind. Engng. Chem. Res. 34, 248.Randall T. L. and Knopp P. V. (1980) Detoxification of specific organic substances by wet oxidation. J. WPCF 52, 21172129.Satterfield C. N. (1991) Heterogeneous Catalysis in Industrial Practice. McGraw-Hill, New York. Shende R. V. and Mahajani V. V. (1994) Kinetics of wet air oxidation of glyoxalic acid and oxalic acid. Ind. Engng. Chem. Res. 33, 31253130.Skaates J. M., Briggs B. A., Lamparter R. A. and Baillod C. R. (1981) Wet oxidation of glucose. Can. J. Chem. Engng. 59, 517521.2 鎂氯化物使顏料及工業(yè)顏料廢物的轉(zhuǎn)移摘要鎂的氯化物, 在廢水處理的領域中與明礬和聚合氯化鋁相比較是一個比較普遍使用的凝結劑,而且價格在明礬和聚合氯化物鋁之間。 它已經(jīng)被用于研究顏料的轉(zhuǎn)移物質(zhì)在化學的快速合成方法中的一種凝結劑。顏料能解決的色度能被光度分光技術測量出。 參數(shù) ,如 pH 值的影響,凝結劑的作用和凝結劑所需藥量和不同凝結劑的作用已經(jīng)被分別研究出來。 結果表示 MgCl2 能夠在pH值為11時,用一份 4 g MgCl2/l 的劑量除去顏料中超過90%的有色材料。研究表明,在反應時間和總堿度量已經(jīng)確定的情況下,MgCl2的作用比明礬和聚合氯化物鋁更有效。 最佳的操作是在特定的PH值、凝結劑量聚合(高分子)電解質(zhì)條件下的效果。根據(jù)測量,一個印染廢水廠在不同的時間段被水合MgCl2處理的濃度不同。工業(yè)廢物的處理是使COD降低88%和SS降低95%。 關鍵字-化學凝結劑,褪色, 紡織品廢水2.1 概述在馬來西亞的快速增長的紡織工業(yè)能生產(chǎn)大量的深色度的污水。馬來西亞的周圍環(huán)境無法接受這樣深色度的紡織污水,而且它的指標參數(shù),如COD、BOD、總鐵量都超過了規(guī)定的排放指數(shù),深色度污水從印染工藝后必須進行脫色處理才能排放到市政水管中, 后處理方法如吸附和生物處理。脫色處理操作應包括吸附 (Ahmed 和Ram,1992; Mohammed,1991; McKay,1981,1982,1984; Rodman,1971; William,1979), 臭氧氧化(Lin和Lin,1993; Snider 和Porter,1974) 和化學合成 (Dziubek 和 Kowal,1983; Lu et al.,1989; Wang和Chen,1983). 而它們在應用中又各自存在優(yōu)點和缺點。在一項化學合成技術方面的研究中證實。 這技術是一個凝結劑連同顏料材料一起使用的而且會產(chǎn)生絮狀物,然后絮狀物在自由沉淀中與水溶液分離。 在這一項研究中, MgCl2 被當作凝結劑來使用。作為凝結劑的 MgCl2 的應用已經(jīng)廣為人知, 和明礬和聚合氯化鋁一樣。 MgCl2 是一種比較普遍用于工業(yè)廢水處理中的凝結劑。 一些研究員已經(jīng)證明出它可提高污染物的轉(zhuǎn)移或污染物質(zhì)在出現(xiàn)前已經(jīng)被鎂置換出來。 Liao和 Randtke(1986) 和其它人 (Folkman and Wachs,1973; Black和 Christman,1961)通過實驗證明出好的凝結劑能使污水處理系統(tǒng)中存在充足的 Mg2+ 離子。 白云石和鷺鷥, 由于富含鎂離子,被發(fā)現(xiàn)在處理混濁和色彩物質(zhì)的方面的作用非常有效 (Dziubek 和 Kowal,1983; Wang和Chen,1983).。明礬(Al2(SO4)3 .H2O)是目前最廣泛應用的凝結劑(Edzwald,1993)。 由于注入的廢水具有不同特性和考慮處理的低成本,實驗證明,明礬能廣泛地被應用于飲用水和廢水處理中。 最近,聚合氯化鋁已經(jīng)逐漸地應用在世界各處的污水處理廠中。 它是一種鋁的聚合物。 這種前期合成的鋁聚合物優(yōu)于鋁是由于明礬上的聚合鋁在聚合過程發(fā)生之后,水中的部分凝結劑能被吸附。 (Viraraghavan 和Wimmer,1988; Benschoten 和 Edzwald,1990) 來自紡織的最后工序的工業(yè)廢水包含各種難處理的化學藥品和顏料材料。 這一中廢水的特性已經(jīng)被Lin和Lin (1993) 以及Lin和Chen 討論證明過(1997)。 典型的紡織印染廢水流程圖如圖1所示。主要產(chǎn)生色度的廢水來自印染工藝。 來自這些工藝的廢水與其他的廢水溶解物應該進行分離、脫色再排進生物的處理單元進行處理。 這種廢水的分離能讓廢水注入脫色池的量減少和能夠減少化學處理的費用?,F(xiàn)在工作的目標是測試MgCl2作為凝結劑對色度的去除能力。 研究把重心集中在pH的影響上 ,比較凝結劑的藥量, 凝結的作用和不同類型凝結劑的效果上。 以 MgCl2 作為一個凝結劑與明礬的聚合氯化鋁的效果作比較。2.2 材料及方法鎂氯化物可從 R&M 市場獲得,艾塞克斯,英國, 明礬或Al2(SO4)316H2O由Fluka and polyaluminium供給,氯化物(PAC250AD)由加勒比共同市場供給,聚合(高分子)電解質(zhì)Koaret PA 3230 來自 Giulini Chemie, 均被當作助凝劑使用。 然而聚合氯化鋁和聚合(高分子)電解質(zhì)是有工業(yè)等級區(qū)分的, 而MgCl2 和明礬是有分析等級區(qū)分的。 NaOH 和 H2SO4是有試藥等級區(qū)分的。起反應的顏料,Levafix Brill Blue EBRA是用來準備處理顏料,而且它由Bayer供應了。 工業(yè)的顏料廢水在 Prai ,馬來西亞被從一個印染池收集。 顏料集中在對最大的吸光率lmax ,符合的一個波長, 由一個分光光度計 (Shimadzu 紫外線 -160 A)測量 。 當吸光率超過了 1.5 的時候就會被稀釋。 顏色被轉(zhuǎn)移的百分比由表面的懸浮物的吸光率值和被已知顏料濃度獲得的標準的曲線計算。 處理所需的 pH 值由 pH 標準測量確定。 (細粒透鏡 pH 值為 220) 對于工業(yè)污水的取樣,色度集中在以(Pt/Co)為單位的點色HACH DR/2000中,能用分光光度計測量。 COD和 SS 去除依照標準的方法被處理。(APHA,1980)這一項研究用一套六大廣口瓶測試裝置來做實驗。 每個廣口瓶裝有了 150 毫升的處理顏料。凝結劑混合3分鐘,NaOH和樣品在 8085 rpm下進行10分鐘攪拌后,并加入聚合(高分子)電解質(zhì)在3035rpm下慢速攪拌。攪拌后自由沉淀,而且沉淀物( 達成一半的大口杯高度) 的時候被記錄。 懸浮物已經(jīng)被分解。2.3 結果及討論用測量色度的分光光度技術對染料中的EBRA進行分析,結果表明色度吸光率在長波的最大吸光率(lmax=600 nm )與色度成比例。 這一種現(xiàn)象意味著在這一項研究中的顏料的水溶解物服從多種的調(diào)查得到的朗伯-比爾定律。朗伯-比爾定律能被表示成: A=abc, 其中A是處理溶液的吸光率, b 是液層厚度, a和 c 分別地是處理溶液的吸收系數(shù)和濃度。 pH 對色度轉(zhuǎn)移的效果來自 1.0 g/l 的 EBRA 顏料的專業(yè)色度的水在 不同的 pH 值下應用MgCl2 處理已經(jīng)被研究。圖 2 是處理溶液的pH 與EBRA 的轉(zhuǎn)移的百分比的相應情況。它表示PH值小于9時沒有顏色能被轉(zhuǎn)移。如要解決增加的酸堿值到9 - 11,顏色轉(zhuǎn)移率就增加。 如 pH 的比率增加大于11.這或許是使在酸堿值超過 10.5被期望的鎂氫氧化物沉淀物的形成, 這與它的可溶性常數(shù)有關。當含有MgCl2的處理溶液的堿度加入NaOH ,就會出現(xiàn)Mg(OH)2 沉淀物。Mg(OH)2 的溶解度可表示為Ksp . =Mg2+.OH-2Ksp 是氫氧化物的分解常數(shù)。 增加Mg2 + 離子或OH-離子濃度,超過 Ksp 值的離子濃度就形成氫氧化物Mg(OH)2。 當酸堿值在范圍10.5-11.0 的時候,就會產(chǎn)生好絮凝。這能在圖 2看出,在PH值為11時,大概有97% 的色度被轉(zhuǎn)移。在這個PH值中, 幾乎所有鎂離子轉(zhuǎn)換成 可沉淀的氫氧化物。它已經(jīng)經(jīng)過一個吸附的凝結機制被報告 (Leentvaar 和 Rebhun,1982) 那Mg(OH)2 就是沉淀物。它的結構提供一個大的吸附表面的區(qū)域和它的大靜電的表面費用使它能夠擔任一有力的和較好的凝結劑。 在 pH 值超過11.0時, 結果表現(xiàn)出比較低的轉(zhuǎn)移速率。這一種現(xiàn)象或許是由于鎂沉淀物的可溶性的增加。 可溶性在明礬和聚合氯化鋁上的研究也表示超過他們的最適宜價值PH的這一種現(xiàn)像。(Benschoten 和 Edzwald,1990)。轉(zhuǎn)移率決定于MgCl2 的量。 它是顯然的能處理超過90% 的 1.0 g/l EBRA的數(shù)量染料, 顏料解決必需的3.0 g/l MgCl2最小量一份。MgCl2 藥量的進一步的增加不一定產(chǎn)生生較好的移動率, 因為幾乎所有顏料已經(jīng)在現(xiàn)階段被移動。 過度的 MgCl2 的出現(xiàn)將會形成可能產(chǎn)生的太多絮狀物而使沉降時間變得較長的。聚合(高分子)電解質(zhì)產(chǎn)生的絮狀物對沉淀時間的作用, Koaret PA 普遍被當作一個凝結過程的改進和提高后來產(chǎn)出的絮狀物的沉降速度。 運用比較高的沉降速度,以便使沉淀容積的減少。 圖 4 看得出應用的凝結劑產(chǎn)生的絮狀物對沉降時間的效果。 pH 和 MgCl2 藥量分別保持在 11.0 和 4.0g/l。 結果表示 Koaret PA 的1ppm的附加量能使沉淀時間從 1230秒鐘降到90秒鐘。這意味著以極好的投資使對應的解決沉淀中的維持時間減少,而且產(chǎn)生的清潔的水為后來的程序供應。不同凝結劑的應用的比較不同的凝結劑用圖 5 表示 EBRA 的移動比率的情況和酸堿值比較。對于明礬、聚合氯化鋁、MgCl2有效PH范圍分別是4.0-6.0,6.0-9.0 和 10.5-11.0。 如果凝結劑 ,如明礬,聚合氯化鋁或 MgCl2 在凝結期間增加澆水, 由于過度氫離子的出現(xiàn),水的 pH 被降低。 因此, 堿總是被增加抵抗在凝結期間發(fā)生的 pH 而消耗。 在這情況,常用的堿是 NaOH 。 圖 5 表示 MgCl2 在較高的 pH 范圍中更有效,然而堿度的必需量在與明礬和聚合氯化鋁相較比較少。這能在凝結劑的酸堿值增加后用于對抗 NaOH量的圖 6 看出, 增加pH值所需NaOH量在含有MgCl2中較含有明礬或據(jù)聚合氯化鋁中少。圖 7可看出不同凝結劑和不同的凝結劑量的產(chǎn)生的絮狀物使沉淀的時間不同,在相同數(shù)量的 Koaret PA ,1ppm應用條件下。 被以聚合氯化鋁和明礬處理產(chǎn)生的絮狀物的沉淀時間是差不多的, 在MgCl2 處理中沉淀時間的范圍是13-24 分鐘,那沉淀時間比前兩者少于的3 分鐘。較高的藥量MgCl2 需要較高的沉淀時間的。 這可能是由于過度的Mg(OH)2 被溶解了。在一個工業(yè)的顏料廢物上的處理一個相似的測試已經(jīng)從一個染料污水上被應用到印染程序。 顏色污水從印染廠的出水池收集。 一個初步的測試表示廢水應用1.5 g MgCl2/l 最適宜的條件是在pH值為11.0的情況下。因此樣品在不同的時間上被收集而且在pH 值為11.0時用1.5 g MgCl2/l 進行處理。 結果是在表 1 中概述.色度的平均減少率為97.9% ,COD為88.4%和SS為95.5%。2.4 結論化學合成技術的反應的顏料的移動率主要取決于顏料的酸堿值。 MgCl2 處理的pH值的有效范圍是在 10.5 和 11.0之間,超過該范圍,顏色移動的百分比會急劇降低。在用 MgCl2 處理中產(chǎn)生的絮狀物能使整個過程的處理時間比用明礬和聚合氯化鋁處理所用的時間短。 MgCl2 已經(jīng)在工業(yè)的印染污水處理中廣泛應用,色度降低了97.9%,COD降低了88.4% , 和SS的降低率達到 95.5%。2 REMOVAL OF DYES AND INDUSTRIAL DYE WASTES BYMAGNESIUM CHLORIDEBOON HAI TAN, TJOON TOW TENG* and A. K. MOHD OMARMSchool of Industrial Technology, University Science of Malaysia, 11800 Minden, Penang, Malaysia(First received 1 June 1998; accepted in revised form 1 March 1999)AbstractMagnesium chloride, as compared to alum and polyaluminium chloride (PAC) is a less commonly used coagulant in the eld of wastewater treatment, with a cost in between alum and PAC. It has been used in this study as a coagulant to investigate the e.ectiveness in the chemical precipitation method for the removal of colouring matters. The colour concentration of dye solutions was measured by visible spectrophotometry. Parameters such as the e.ect of pH, the e.ect of coagulant and coagulant aid dosages and the e.ect of di.erent coagulants have been studied. The results show that MgCl2 is capable of removing more than 90% of the colouring material at a pH of 11 and a dose of 4 g MgCl2/l of dye solution. MgCl2 is shown to be more e.ective in removing reactive dye than alum and PAC in terms of settling time and amount of alkalinity required. Optimal operating conditions such as pH value, coagulant dose and e.ect of polyelectrolyte have been determined. Wastewaters of a dyeing and printing mill on di.erent days have been treated by MgCl2 aqueous solution in bench scale. The treatment of the industrial waste has shown a reduction of 88% in COD and 95% of suspended solids. # 1999 Elsevier Science Ltd. All rights reservedKey wordschemical coagulation, colour reduction, textile waste e.uent2.1 INTRODUCTIONThe rapidly growing textile industries in Malaysia produce large amounts of colour e.uent. The colour of the textile e.uent is unacceptable under Malaysia environmental regulation besides other parameters such as COD, BOD, total iron, etc. The colour e.uent from the dyeing and printing processes has to be decolored before being fed to the subsequent treatment units, such as the adsorption and the biological treatment. Decolorization treatment operati
壓縮包目錄 | 預覽區(qū) |
|
請點擊導航文件預覽
|
編號:4297486
類型:共享資源
大小:1.16MB
格式:ZIP
上傳時間:2020-01-05
50
積分
積分
- 關 鍵 詞:
- 含CAD圖紙+文檔 每天 天天 印染 廢水處理 工藝 設計 cad 圖紙 文檔
- 資源描述:
-
壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
展開閱讀全文
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://m.italysoccerbets.com/p-4297486.html