多功能機(jī)械手設(shè)計-新型氣壓四自由度立柱式工業(yè)機(jī)械手【含19張CAD圖帶開題報告-獨(dú)家】.zip
多功能機(jī)械手設(shè)計-新型氣壓四自由度立柱式工業(yè)機(jī)械手【含19張CAD圖帶開題報告-獨(dú)家】.zip,含19張CAD圖帶開題報告-獨(dú)家,多功能,機(jī)械手,設(shè)計,新型,氣壓,自由度,立柱,工業(yè),19,CAD,開題,報告,獨(dú)家
目錄
1英文文獻(xiàn)翻譯 1
1.1 Research on a new 6 degrees of freedom combined parallel manipulator 1
1.2中文翻譯 14
2專業(yè)閱讀書目 24
2.1機(jī)械制造基礎(chǔ) 24
2.2機(jī)械原理 24
2.3機(jī)械設(shè)計 25
2.4現(xiàn)代工程圖學(xué) 25
2.5機(jī)電傳動控制 26
2.6材料力學(xué) 26
2.7互換性與技術(shù)測量 26
2.8理論力學(xué) 27
2.9機(jī)械設(shè)計課程設(shè)計 27
2.10機(jī)械制造技術(shù) 28
1英文文獻(xiàn)翻譯
1.1 Research on a new 6 degrees of freedom combined parallel manipulator
(Robotics and bionics, 2008, international society of robotics and biomimetic technology, 2008, IEEE International Conference).
Abstract - a new type of six degree of freedom parallel manipulator, consisting of two free degree of freedom manipulator, is presented in this paper. The degree of freedom of the manipulator is analyzed and the position kinematics is modeled. The vector loop equation is derived through the Jacobi matrix. The working interval is determined by numerical.
Key words: parallel manipulator;kinematics; working area;dexterity; reconfigurable structur
1: Brief introduction
Degree of freedom manipulator has been studied. Fang, Miller, Kong and Kok-Meng Lee have proposed a framework for reducing the degree of freedom, such as Tricept parallel mechanisms, which have been widely used in aircraft and automobiles.
Flexible fixtures based on combined fixtures have become the main elements of modern development. In this paper, the author applies a six degree of freedom parallel manipulator to the design of flexible fixture. It consists of a space 3-RRS manipulator and a plane 3-RRR manipulator. Some properties of this mechanism are studied in detail: freedom, Jacobian matrix, working area and dexterity. Finally, two reconfigurable structures based on this mechanism are also proposed. These two reconfigurable structures can be applied to different industria.
2:Description of a new type of parallel manipulator
Figure 1 shows the robotic arm studied in this article. It consists of two parallel manipulator arms. One of them is the planar 3-RRR manipulator and the other is the 3-RRS type manipulator. In addition to the ball joints associated with the mobile platform, all joints are rotated joints, and their axes are parallel to each other.
Figure1:mechanical arm mode
If the ball joint is replaced by three intersecting unit spinor, there will be five spinor associated with each arm of the 3-RRS type manipulator. Therefore, there is a special rotation that is opposite to all the joint rotation. It represents a point of force applied to the center of the space joint and the axis parallel to the rotating joint. Then, there will be three binding roles on the mobile platform. Generally speaking, the three power spinor is heterogeneous and linearly independent. So the possible movement is the translation of the normal fixed platform and the two-dimensional rotation of the space on a certain root line, which can be intersected at the same time at the same time.
The planar 3-RRR manipulator has three degrees of freedom, including two-dimensional translational and one-dimensional rotation. Since the two combinations of manipulator have different degrees of freedom, the manipulator considered in this paper has six degrees of freedom.
3: inverse kinematics
A schematic diagram of kinematics is given in Figure 2. All joints of the manipulator are represented in the diagram. Here are six movable rotatable joint variables, expressed as theta I and ETA I, where i= 1, 2, 3. The moving coordinate system {m} is at the center of the triangle P1P2P3, the coordinate system {o} is at the center of the triangle C1C2C3, and the base coordinate system {O} is fixed on the ground and the origin is the same as {o} in the initial condition state, and the I and zeta I are passive auxiliary joint angles, which can be used for computer simulation calculation or for the calculation of velocity and dynamics. . As shown, the length of the link is expressed in terms of 1, L, a and B.
Figure 2: six degrees of freedom parallel manipulator
The inverse kinematics problem gives the mobile platform posture needed to calculate the required joint angle. Since the secondary arm is made up of two robotic arms, the position of the platform C1C2C3 needs to be obtained from the first step, and then all the angles of the driving joints can be known.
In the spherical joint coordinate system UVW, the coordinates are PI (i=1,2,3). If we convert the homogeneous transformation matrix T to the coordinate system {o} in the Euler angle (alpha, beta, gamma) in the X-Y-Z, the spherical joint coordinates can be written as:
In here:
The (XM, YM, ZM) T here represents the position of UVW in the coordinate system {o}. C and s represent the sin and COS functions, respectively. The link DiEi-EiPi (i=1,2,3) is constrained by the rotational joints of plane y=0, y = x and y = x, respectively. The relationship between the six postural variables can be derived from the constraint equation.
The length of the EiPi of the link is equal to the distance between the ith spherical joint Pi and Ei. So there are three equations in this relation, and then we can get the expression of driving joint angle theta I:
Pij (I = 1, 2, 3 J = x, y, z) indicates the position of Pi with J in the coordinate system {o}. It is assumed that the posture of the mobile platform in the coordinate system {O} is (Xm, Ym, Zm, Zm), and the posture in the coordinate system is (XM, YM, ZM, alpha, beta, gamma) T, and the pose of the platform C1C2C3 can be expressed as:
The angle of the ETA I in the 3-RRR manipulator can also be obtained by the above method.
Here: Dij (J = 1, 2, 3) is an equation of the same form as eij in 3.
Now there is a general solution to the configuration of a corner and two arms, so we can conclude that there are 64 possible robotic arm positions corresponding to a given end actuators position.
4: The Jacobian matrix
According to Fig. two, the vector link in the manipulator arm can be written as:
The differential of time on both sides of the equation is used. Then the Li and Bi points are used to eliminate the passive variables by the two sides equation.
It can be simplified to:
Here, Omega theta and Omega are the angular variables that drive joints. Jiq and Jix are matrices derived from Eq. (8). Vo1 and VO2 respectively represent the output variables of the two arms. The first variable represents the coordinate system {o}, and the other represents the coordinates {O}.
Here, the 3-RRR type planar manipulator has only three outputs, so VO2 can be written as J2x.
Here is the third column, bij (J = 1, 2) is the jth column of Bi.
Then the second equations of (9) can be written as:
Because Jacobian matrix represents the relationship between input speed and output speed, we can describe the input speed in an equation.
Because the output speed v = Vo1 + VO2, equation (11) becomes:
From the equation (10) we can come to the following:
The right form of (13) in the first matrix is described by J3, and (13) is replaced by (12).
Then we can get the Jacobian matrix of the manipulator.
5:Work interval
As we all know, compared with the same series, the parallel manipulator has a smaller working range. Therefore, it is necessary to analyze the shape of the working area to enhance the performance of the parallel manipulator.
The workable interval is defined as such a space, which can be reached by reference points in at least one direction. We select a point on the w axis, which is a distance from the center of gravity m of the mobile platform as a reference point. Here are three steps to get the working space of this manipulator. The first step is to find the boundary of the 3-RRS type manipulator and use the spherical coordinates query method. The boundary of planar 3-RRR manipulator can easily be calculated from the normal boundary search method. This is the second step. Then, the working area is moved along the boundary of the plane curve obtained in the second step, and the final envelope is the working area of the parallel manipulator. Of course, the constraints of practical situations need to be considered when designing practical arms.
The structural parameters of the manipulator are selected as follows: r=50mm, R=80mm, R '=260mm, L=l=130mm, a=b=140mm. Assuming that the orientation is 0, the working range of the manipulator can be programmed by MATLAB, as shown in Figure three (a), (b), and (c), which represent the forward view, the overlook and the left view respectively. It can be observed from Fig. 3 that the workable interval is about the symmetry of the movement direction of the three drives.
Figure 3: a workable range of workable arms
6: Dexterity
The dexterity of a manipulator can be considered as the ability of a manipulator to change its position and direction, or the force and torque in any direction. This can be measured by the kinematic performance index of the manipulator. The Jacobian matrix represents the mapping between the speed and force between the actuator and the actuator at the end of the manipulator, so its characteristics are usually used to measure dexterity.
The exponent of dexterity of manipulator is taken as the condition number, and the minimum singularity and maneuverability are proposed. The conditional number of Jacobian matrix can be obtained from 1 (isotropy) to infinity (singularity), which measures the degree of morbidity. This is used as the dexterity index in this article. The condition number of the Jacobian matrix can be defined as:
The sigma Max and sigma min represent the largest and minimum singular values of Jacobian matrix respectively.
The condition number is restricted to 1 to infinity, from the singular configuration at infinity to the dexterity at 1. The structural parameters of the manipulator are the same as those shown in Figure four. We assume that the mobile platform is parallel to the fixed platform, and the height of Z is 200mm, and the condition number of the Jacobian matrix of the work area is shown in Figure four.
It is clear that the dexterity is the best in the center of the workspace and decreases gradually as the center moves outward. However, the number of these conditions can satisfy the requirements of parallel manipulator.
Figure 4: dexterity under the initial parameter setting
7:Reconfigurable analysis
A: 3-RRRS parallel mechanism with six degrees of freedom
As shown in Figure five, the 3-RRRS mechanism has a reconfigurable composite mechanism for help, as shown in Figure 1. The first R joint axis vector is perpendicular to plane B1B2B3, and the second and third R key axis vectors are parallel to B1B2B3. Finally, the arm is connected to the mobile platform through joints. Suppose that the reference coordinate system of each arm is at the center of the second R joints, similar to the B-xiyizi shown in Figure five. Under initial configuration, the kinematic spinor of each chain can be expressed as follows:
The matrix T is a full rank matrix, which represents the linear independence of the kinematic spinor of each chain. There is no inverse helix that acts on kinematic constraints. Therefore, the degree of freedom of the 3-RRRS mechanism is 6. joints of each chain, which can be flexibly selected as the actuated joints of two.
Figure 5: a six degree of freedom mechanism with three arms
B: 3-RRRS-UPR parallel mechanism with four degrees of freedom
Fig.6: four degree of freedom mechanism for three arms with a beam chain.
This constraint chain has a U joint, a P joint and a R joint. The rest of the structure and
The 3-RRRS mechanism is the same. This binding force acting on 3RRRS-UPR can be analyzed by the spinor theory. The reference coordinate system of the constraint chain is located at the center of the U joint, similar to the xoyozo shown in Figure six. Under initial configuration, the kinematic spinor of each chain can be expressed as follows:
From (13), mobile platforms do not move along the x0 axis and the Y0 axis. This mechanism has three rotational freedoms and a translational freedom along the Z0 axis.
1.2中文翻譯
(機(jī)器人技術(shù)和仿生學(xué),2008,機(jī)器人與仿生技術(shù)國際學(xué)會,2008,IEEE國際會議)
摘要——本文提出了由兩個少自由度機(jī)械臂組成的一種新型六自由度并聯(lián)機(jī)械臂,對這種機(jī)械臂的自由度進(jìn)行了分析和位置運(yùn)動學(xué)建模。通過雅可比矩陣導(dǎo)出了矢量環(huán)方程。工作區(qū)間通過數(shù)值方法被確定為考慮干擾檢查。此外,根據(jù)靈巧度標(biāo)準(zhǔn)來評估機(jī)制的性能。為了滿足不同的配置需求,基于提出的六自由度并聯(lián)機(jī)構(gòu)。給出了兩個可重構(gòu)的結(jié)構(gòu)。這項(xiàng)工作提供了新型機(jī)械臂的發(fā)展基礎(chǔ)。
關(guān)鍵詞——并聯(lián)機(jī)械臂,運(yùn)動學(xué),工作區(qū)間,靈巧度,可重構(gòu)結(jié)構(gòu)
一、簡介
并聯(lián)機(jī)構(gòu)已經(jīng)在許多領(lǐng)域被廣泛使用,例如飛機(jī)模擬器,機(jī)器人,機(jī)床。由于其更好的剛度和精度,較輕的重量,更大的承載,更高的速度和加速度以及不那么
強(qiáng)有力的執(zhí)行器。最經(jīng)典的六自由度并聯(lián)機(jī)構(gòu)機(jī)械臂是Gough的輪胎試驗(yàn)機(jī)Stewart的運(yùn)動模擬器。但有些并聯(lián)機(jī)械臂少于六自由度,例如Delta和3-UPU型機(jī)械臂。最近幾年,縮減自由度的機(jī)械臂尤其是三自由度機(jī)械臂已經(jīng)被集中研究。Fang, Miller,Kong和Kok-Meng Lee已經(jīng)提出集中縮減自由度的架構(gòu),如Tricept并聯(lián)機(jī)構(gòu)已經(jīng)被廣泛地應(yīng)用于飛機(jī)和汽車。
基于組合固定裝置的柔性固定裝置已成為現(xiàn)代發(fā)展方向的主要元素。在本文中,作者應(yīng)用一種六自由度并聯(lián)機(jī)械臂到柔性固定裝置的設(shè)計中。它由一個空間的3-RRS型機(jī)械臂和一個平面的3-RRR型機(jī)械臂構(gòu)成。這種機(jī)制的一些特性被具體研究:自由度,雅克比矩陣,工作區(qū)間以及靈巧度等。最后,基于這種機(jī)制的兩種可重構(gòu)結(jié)構(gòu)也被提出來,這兩種可重構(gòu)結(jié)構(gòu)可以用于不同的工業(yè)領(lǐng)域。
二、新型并聯(lián)機(jī)械臂的描述
圖一展示了本文中研究的機(jī)械臂。它由兩個并聯(lián)機(jī)械臂組成。其中一個是平面的3-RRR型機(jī)械臂,另一個是空間的3-RRS型機(jī)械臂。除了與移動平臺相聯(lián)系的球關(guān)節(jié),所有關(guān)節(jié)都是轉(zhuǎn)動關(guān)節(jié),而且它們的軸都是互相平行的。
圖一:機(jī)械臂模型
如果球關(guān)節(jié)被三個相交的單元旋量代替,那會有五個與3-RRS型機(jī)械臂的每個臂聯(lián)系的旋量。因此存在一個特別的旋量與所有的關(guān)節(jié)旋量相反,它代表了一個力應(yīng)用于空間關(guān)節(jié)中心的一個點(diǎn)和平行于轉(zhuǎn)動關(guān)節(jié)的軸。然后,然后,就會有三個約束力作用于移動平臺。通常來說,這三力旋量是異面和線性獨(dú)立的。所以可能的運(yùn)動是順著正常固定的平臺的平移和關(guān)于某根線的空間二維旋轉(zhuǎn),這種于東可以是三力旋量在同一時間相交。
平面的3-RRR型機(jī)械臂有三個自由度,包括平面二維的平移和一維旋轉(zhuǎn)。由于兩組合機(jī)械臂分別有不同的自由度,因此本文中所考慮的機(jī)械臂都擁有六個自由度。
三、逆運(yùn)動學(xué)
在圖二中給出了運(yùn)動學(xué)的圖解示意圖。機(jī)械臂的所有關(guān)節(jié)都在圖中有所表示。這里有六個活動的可旋轉(zhuǎn)的關(guān)節(jié)變量,表示為θi 和ηi ,這里i= 1, 2, 3。移動的坐標(biāo)系{m}是在三角形P1P2P3的中心,坐標(biāo)系{o}是在三角形C1C2C3的中心,而且基坐標(biāo)系{O}被固定在地面上且原點(diǎn)同一樣{o}在初始條件狀態(tài)下,φi和ζi是被動輔助關(guān)節(jié)角,可以被用來計算機(jī)仿真計算或者用于速度和動力學(xué)計算。如圖所示,鏈接的長度用1,L,a和b表示。
圖二:六自由度并聯(lián)機(jī)械臂圖解
逆運(yùn)動學(xué)問題給出了計算所需要的驅(qū)動關(guān)節(jié)角度的移動平臺姿勢。由于次機(jī)械臂是由兩個機(jī)械臂組成,因此平臺C1C2C3的姿勢需要從第一步得出,然后所有的驅(qū)動關(guān)節(jié)的角度都可以知道。
在球關(guān)節(jié)坐標(biāo)系uvw中的坐標(biāo)是pi(i=1,2,3) ,如果我們將它們根據(jù)X-Y-Z中的歐拉角(α,β,γ)用齊次變換矩陣T轉(zhuǎn)換到坐標(biāo)系{o}中,這個球關(guān)節(jié)坐標(biāo)可以寫為:
在這里:
這里的(xm, ym, zm)T表示uvw在坐標(biāo)系{o}中原點(diǎn)的位置。c和s分別表示sin和cos函數(shù)。鏈接DiEi-EiPi(i=1,2,3)被分別在平面y=0, y = -3x和y = 3x的旋轉(zhuǎn)關(guān)節(jié)所約束。六個姿勢變量的關(guān)系可以由約束方程推導(dǎo)出來:
鏈接的EiPi長度等于 ith球關(guān)節(jié)Pi 和Ei間的距離。因此在這關(guān)系中存在三個方程,然后我們可以得到驅(qū)動關(guān)節(jié)角θi的表達(dá)式:
這里:
Pij(i = 1, 2, 3 j = x, y, z)表示在坐標(biāo)系{o}中Pi伴隨j的位置。假設(shè)在坐標(biāo)系{O}中的移動平臺的姿勢是(Xm, Ym, Zm, ?, ?, ψ)T,它在坐標(biāo)系{o}中的姿勢是(xm, ym, zm, α, β, γ)T,平臺C1C2C3的姿勢可以表示為:
3-RRR型機(jī)械臂中ηi 的角度可以同樣由上述方法得出:
在這里:Dij(j = 1, 2, 3)是同(3)式中eij 一樣形式的等式。
現(xiàn)在已有一個角和兩個臂的配置的通用解決方法,因此我們可以得出結(jié)論:對應(yīng)于一個給出的末端執(zhí)行器位置,總共存在64種可能的機(jī)械臂姿勢。
四、雅克比矩陣
根據(jù)圖二,機(jī)械臂中鏈接的矢量環(huán)可以寫為:
對等式兩邊進(jìn)行關(guān)于時間的微分,然后分別用li和bi點(diǎn)乘兩邊等式消掉被動變量得:
這里ki表示平行于特殊機(jī)械臂ith驅(qū)動關(guān)節(jié)軸的單位向量,k是指向正Z軸的單位向量。然后我們可以得到兩個方程:
可以簡化為:
這里ωθ 和 ωη 是驅(qū)動關(guān)節(jié)的角變量,Jiq 和Jix 是由Eq. (8) 推導(dǎo)出的矩陣。vo1 和vo2 分別表示兩個機(jī)械臂的輸出變量,第一個變量代表坐標(biāo)系{o} 另一個代表坐標(biāo)是{O}。
這里3-RRR型平面機(jī)械臂只有三個輸出,因此vo2 可以寫為,J2x變?yōu)椋?
這里是的第三列,bij(j = 1, 2)是bi 的jth列。
然后(9)的第二個等式可以寫為:
由于雅克比矩陣表示了輸入速度和輸出速度的關(guān)系,因此我們可以在一個方程式中描述輸入速度
因?yàn)檩敵鏊俣葀 = vo1 + vo2 ,等式(11) 變?yōu)椋?
從等式(10)中我們可以得出:
由J3 來描述第一個矩陣中(13)的右式,并把(13)代入(12),可得:
然后我們可以得到機(jī)械臂的雅克比矩陣:
五、工作區(qū)間
眾所周知,與同系列的相比,并聯(lián)機(jī)械臂有較小的工作區(qū)間。因此,有必要分析工作區(qū)間的形狀來加強(qiáng)并聯(lián)機(jī)械臂的表現(xiàn)。
可獲得的工作區(qū)間被定義為這樣一塊空間,它能被參考點(diǎn)至少在一個方向上達(dá)到。我們在w軸選取一個點(diǎn),這在移動平臺的重心m 作為參考點(diǎn)之上的一段距離。這里有三個步驟來得到這個機(jī)械臂的工作區(qū)間。第一步是尋找空間3-RRS型機(jī)械臂的邊界,使用球坐標(biāo)查詢方法。平面3-RRR機(jī)械臂的邊界很容易從普通邊界查找方法算出,這是第二步。然后,沿著第二步得到的平面曲線的邊界移動空間工作區(qū),最終的包絡(luò)線是并聯(lián)機(jī)械臂的工作區(qū)間。當(dāng)然,實(shí)際情況的約束在設(shè)計實(shí)用的機(jī)械臂時需要被考慮。
機(jī)械臂的架構(gòu)參數(shù)被選取為:r=50mm,R=80mm,R‘=260mm,L=l=130mm,a=b=140mm。假設(shè)取向是0,機(jī)械臂的工作區(qū)間可以通過MATLAB編程得到,如圖三(a), (b), (c)所示,它們分別表示正視圖,俯視圖和左視圖。從圖三中可以觀察到,可達(dá)到的工作區(qū)間是關(guān)于三個驅(qū)動器的移動方向勻稱的。
圖三:機(jī)械臂可達(dá)到的工作區(qū)間
六、靈巧度
機(jī)械臂的靈巧度可以被認(rèn)為是機(jī)械臂可以任意改變其位置和方向,或者任意方向的作用力和扭矩的能力。這已經(jīng)可以用機(jī)械臂的運(yùn)動學(xué)性能指標(biāo)來測量。雅克比矩陣表示了在機(jī)械臂的末端執(zhí)行器和驅(qū)動器之間速度和力兩者的映射,因此它的特性通常被用來衡量靈巧度。
機(jī)械臂靈巧度不同的指數(shù)作為條件數(shù),最小奇異性和可操縱性被提出。雅克比矩陣的條件數(shù)可以從1(各向同性)到無窮(奇異性),這衡量了病態(tài)性程度。這被用來作為本文中靈巧度指標(biāo)。雅克比矩陣的條件數(shù)可以被定義為:
在這里σmax 和σmin 分別表示雅克比矩陣的最大和最小奇異值。
條件數(shù)被限制在1到無窮,它從在無窮處的奇異位形到在1處的靈巧。機(jī)械臂的架構(gòu)參數(shù)和如圖四給出的一樣。我們假設(shè)移動平臺平行于固定平臺而且Z的高度是200mm,工作區(qū)間的雅克比矩陣的條件數(shù)如圖四所示。
圖中很明顯的顯示了靈巧度在工作區(qū)間的中心是最好的,且按照中心向外移動逐漸減小。但是這些條件數(shù)的值可以滿足并聯(lián)機(jī)械臂的要求。
圖四:初始參數(shù)設(shè)定下的靈巧度
七、可重構(gòu)分析
A、具有六自由度的3-RRRS平行機(jī)制
如圖五所示的3-RRRS機(jī)制,它有可重構(gòu)的組合機(jī)制求助,如圖一所示。第一個R關(guān)節(jié)的軸向量垂直于平面B1B2B3,第二個和第三個R關(guān)鍵的軸向量平行于B1B2B3。最后,臂通過關(guān)節(jié)被連接到移動平臺。假設(shè)每個臂的參考坐標(biāo)系處于第二個R關(guān)節(jié)的中心,類似于圖五所示的B-xiyizi。在初始配置下,每條鏈的運(yùn)動學(xué)旋量可以如下表示:
螺旋矩陣可以如下表示為:
矩陣T是一個滿秩矩陣,它代表了每條鏈的運(yùn)動學(xué)旋量的線性無關(guān)。這里沒有作用于運(yùn)動學(xué)約束的反螺旋。因此,3-RRRS機(jī)制的自由度是6.每條鏈的兩個關(guān)節(jié)可以被靈活地選為驅(qū)動關(guān)節(jié)。
圖五:具有三臂的六自由度機(jī)制
B、具有四自由度的3-RRRS-UPR平行機(jī)制
進(jìn)一步的重構(gòu),3RRRS-UPR型具有中心約束鏈的平行機(jī)制如圖6所示。
圖六:有約束鏈的三臂的四自由度機(jī)制
這個約束鏈有一個U關(guān)節(jié),一個P關(guān)節(jié)和一個R關(guān)節(jié)構(gòu)成。剩下的結(jié)構(gòu)和
3-RRRS機(jī)制相同。這個通過約束鏈作用于3RRRS-UPR的約束力可以通過旋量理論被分析。約束鏈的參考坐標(biāo)系被定位在U關(guān)節(jié)的中心,類似于如圖六所示的xoyozo。在初始配置下,每條鏈的運(yùn)動學(xué)旋量可以如下表示:
反螺旋可以由下面公式獲得:
從(13)中看,移動平臺不會沿著x0軸和y0軸移動。這個機(jī)制有三個旋轉(zhuǎn)自由和沿z0軸的一個平移自由。
2專業(yè)閱讀書目
2.1機(jī)械制造基礎(chǔ)
內(nèi)容摘要:
本書根據(jù)高等教育人才培養(yǎng)目標(biāo)及規(guī)格要求進(jìn)行編寫。在吸收近年來高等教
育教學(xué)改革經(jīng)驗(yàn)的基礎(chǔ)上,根據(jù)企業(yè)生產(chǎn)線對應(yīng)用型高等技術(shù)人才在機(jī)械制造技
術(shù)方面的技能要求,結(jié)合機(jī)械制造技術(shù)的發(fā)展趨勢,將傳統(tǒng)教材《金屬切削原理
與刀具》、《金屬切削機(jī)床》、《機(jī)械制造工藝學(xué)》、《機(jī)床夾具設(shè)計》、《數(shù)
控技術(shù)》等的相關(guān)內(nèi)容有機(jī)地結(jié)合在一起,以項(xiàng)目、課題、案例為主線。本書內(nèi)
容涵蓋有:金屬切削加工基本定義、機(jī)械加工工藝規(guī)程制訂、典型零件加工工藝、
機(jī)械加工質(zhì)量分析、裝配工藝基礎(chǔ)、機(jī)床夾具設(shè)計基礎(chǔ)、常用機(jī)械加工方法及其
裝備、數(shù)控加工工藝、現(xiàn)代加工技術(shù)九個項(xiàng)目??晒└叩仍盒C(jī)電類專業(yè)使用,
也可作為普通高等院校及有關(guān)工程技術(shù)人員參考。每個項(xiàng)目后附有知識點(diǎn)、技能
點(diǎn)、課題分析、相關(guān)知識及項(xiàng)目驅(qū)動題目,可使廣大讀者更好地掌握所學(xué)的知識
和技能。
2.2機(jī)械原理
內(nèi)容摘要:
本書除緒論外共十三章,包括機(jī)構(gòu)的結(jié)構(gòu)分析、平面機(jī)構(gòu)的運(yùn)動分析、平面
連桿機(jī)構(gòu)及其設(shè)計、凸輪機(jī)構(gòu)及其設(shè)計、齒輪機(jī)構(gòu)及其設(shè)計、輪系及其設(shè)計、其他常用機(jī)構(gòu)、機(jī)械運(yùn)動方案的擬定、平面機(jī)構(gòu)的力分析、平面機(jī)構(gòu)的平衡、機(jī)器的機(jī)械效率、機(jī)器的運(yùn)轉(zhuǎn)及其速度波動的調(diào)節(jié)、計算機(jī)在機(jī)構(gòu)分析和綜合中的應(yīng)用。此外,書未還附有各章思考題和習(xí)題以及常用的圖表。《機(jī)械原理》是一門介紹各類機(jī)械產(chǎn)品中常用機(jī)構(gòu)設(shè)計的基本知識、基本理論和基本方法的重要技術(shù)基礎(chǔ)課程。《機(jī)械原理》以高等學(xué)校機(jī)械類專業(yè)的學(xué)生為對象,以機(jī)構(gòu)系統(tǒng)運(yùn)動方案設(shè)計為主線,面向產(chǎn)品設(shè)計,強(qiáng)調(diào)學(xué)科之間的交叉融合,注重相關(guān)課程教學(xué)內(nèi)容的邊界再設(shè)計,通過啟發(fā)創(chuàng)新思維,培養(yǎng)學(xué)生主動實(shí)踐的工程設(shè)計能力?!稒C(jī)械原理》重點(diǎn)討論連桿機(jī)構(gòu)、凸輪機(jī)構(gòu)、齒輪機(jī)構(gòu)、間歇機(jī)構(gòu)等常用機(jī)構(gòu)的設(shè)計和機(jī)構(gòu)系統(tǒng)動力學(xué)、機(jī)構(gòu)創(chuàng)新設(shè)計的一般規(guī)律和方法,將設(shè)計基本知識、基本理論與設(shè)計方法有機(jī)地融合,通過理論學(xué)習(xí)與不斷實(shí)踐加強(qiáng)創(chuàng)新思維和工程設(shè)計能力的訓(xùn)練,為機(jī)械產(chǎn)品創(chuàng)新設(shè)計提供必要的基礎(chǔ)知識與方法。(魏兵,熊禾根.機(jī)械原理[M].武漢:華中科技大學(xué)出版社,2007)
2.3機(jī)械設(shè)計
內(nèi)容摘要:
機(jī)械設(shè)計(machinedesign),根據(jù)用戶的使用要求對專用機(jī)械的工作原理、結(jié)
構(gòu)、運(yùn)動方式、力和能量的傳遞方式、各個零件的材料和形狀尺寸、潤滑方法等進(jìn)行構(gòu)思、分析和計算并。機(jī)械設(shè)計,將其轉(zhuǎn)化為具體的描述以作為制造依據(jù)的工作過程。機(jī)械設(shè)計是機(jī)械工程的重要組成部分,是機(jī)械生產(chǎn)的第一一步,是快定機(jī)械性能的最主要的因素。機(jī)械設(shè)計的努力目標(biāo)是:在各種限定的條件(如材料、加工能力、理論知識和計算手段等)下設(shè)計出最好的機(jī)械,即做出優(yōu)化設(shè)計。優(yōu)化設(shè)計需要綜合地考慮許多要求,一般有:最好工作性能、最低制造成本、最小尺寸和重量、使用中最可靠性、最低消耗和最少環(huán)境污染。這些要求常是互相矛盾的,而且它們之間的相對重要性因機(jī)械種類和用途的不同而異。設(shè)計者的任務(wù)是按具體情況權(quán)衡輕重,統(tǒng)籌兼顧,使設(shè)計的機(jī)械有最優(yōu)的綜合技術(shù)經(jīng)濟(jì)效果。過去,設(shè)計的優(yōu)化主要依靠設(shè)計者的知識、經(jīng)驗(yàn)和遠(yuǎn)見。隨著機(jī)械工程基礎(chǔ)理論和價值工程、系統(tǒng)分析等新學(xué)科的發(fā)展,制造和使用的技術(shù)經(jīng)濟(jì)數(shù)據(jù)資料的積累,以及計算機(jī)的推廣應(yīng)用,優(yōu)化逐漸舍棄主觀判斷而依靠科學(xué)計算。(王為,旺建曉.機(jī)械設(shè)計[M].武漢:華中科技大學(xué)出版社,2007)
2.4現(xiàn)代工程圖學(xué)
內(nèi)容摘要:
本書是全國教育科學(xué)“十五”規(guī)劃教育部重點(diǎn)課題的研究成果,是根據(jù)教育
部2005年制定的“普通高等院校工程圖學(xué)課程教學(xué)基本要求”,并總結(jié)作者多
年來教學(xué)改革的經(jīng)驗(yàn)編寫而成的,是2007年江蘇省高等學(xué)校立項(xiàng)精品教材。全
書共10章,主要內(nèi)容包括制圖基本知識、正投影法基礎(chǔ)、立體的投影、組合體
的視圖、軸測圖、機(jī)件常用表達(dá)方法、標(biāo)準(zhǔn)零件與常用零件、零件圖、裝配圖、計算機(jī)繪圖。與本書配套的《現(xiàn)代工程圖學(xué)習(xí)題集》同時由清華大學(xué)出版社出版。多元一體,融漢語、英語和德語教學(xué)于一體。本書突出應(yīng)用型特色,注重立體構(gòu)形能力、圖視思維表達(dá)能力、自主學(xué)習(xí)能力和專業(yè)外語交流能力的培養(yǎng)。(趙大興,高成慧,趙成剛.現(xiàn)代工程圖學(xué)[M].武漢:湖北科學(xué)技術(shù)出版社,2006)
2.5機(jī)電傳動控制
內(nèi)容摘要:
《機(jī)電傳動控制》是2001年高等教育出版社出版的一本圖書。該書緊密結(jié)
合典型機(jī)電自動控制系統(tǒng),詳細(xì)介紹了控制系統(tǒng)的組成以及設(shè)計方法。既有常用的電氣控制方法,又有先進(jìn)的控制技術(shù)。具有系統(tǒng)性、實(shí)用性和先進(jìn)性。全書除緒論和附錄外共分5章,第1章機(jī)電傳動斷續(xù)控制,第2章可編程序控制器(PLC)及其應(yīng)用,第3章步進(jìn)電動機(jī)傳動控制,第4章機(jī)電傳動速度連續(xù)控制,第5章機(jī)電傳動伺服系統(tǒng)。每章末均有思考題和習(xí)題。該書是高等工科院校機(jī)械工程及自動化專業(yè)的系列教材之一,也可供機(jī)電相關(guān)專業(yè)選用及有關(guān)科研和工程技術(shù)人員參考。
2.6材料力學(xué)
內(nèi)容摘要:
劉鴻文浙江大學(xué)教授。長期從事固體力學(xué)教學(xué)工作。曾任教育部教材編審委
員會委員,國家教委(教育部)工科力學(xué)課程教學(xué)指導(dǎo)委員會主任委員兼材料力學(xué)課程教學(xué)指導(dǎo)組組長。1989年被授子全國優(yōu)秀教師。1991年起享受政府特殊
津貼。杭州市第六屆人大代表,浙江省第四屆政協(xié)常委,全國政協(xié)第六、七、八屆委員。全書分I、11兩冊,共分18章。第1冊包含了材料力學(xué)課程中的基本內(nèi)容,內(nèi)容包括:緒論,拉伸、壓縮與剪切,扭轉(zhuǎn),彎曲內(nèi)力,彎曲應(yīng)力,彎曲變形,應(yīng)力和應(yīng)變分析,強(qiáng)度理論,組合變形,壓桿穩(wěn)定,動載荷,交變應(yīng)力,平面圖形的幾何性質(zhì)等。第11冊包含了材料力學(xué)課程較深入的內(nèi)容,內(nèi)容包括:彎曲的幾個補(bǔ)充問題,能量方法,超靜定結(jié)構(gòu),平面曲桿,厚壁圓簡和旋轉(zhuǎn)圈盤,矩陣位移法,桿件的塑性變形等。(劉鴻文.材料力學(xué)[M].北京高等教育出版社,2009)
2.7互換性與技術(shù)測量
內(nèi)容摘要:
本書根據(jù)“互換性與技術(shù)測量”課程學(xué)時壓縮的情況,編寫時盡量貫徹既完
整全面又簡潔實(shí)用的思想。其主要內(nèi)容包括:互換性與標(biāo)準(zhǔn)化概論、圓柱體結(jié)合
尺寸精度的控制與評定、測量技術(shù)基礎(chǔ)、幾何公差及檢測、表面輪廓特征的控制與評定、典型零部件的幾何精度設(shè)計、圓柱齒輪傳動誤差的評定與齒輪的精度設(shè)計、機(jī)械系統(tǒng)的精度設(shè)計和機(jī)械精度設(shè)計與實(shí)例分析。附錄中還列出“常用詞匯中英文對照”和若干工程示意圖,書中所有工程實(shí)例可利用索引查找,并為任課教師免費(fèi)提供電子課件。本書是機(jī)械工程及其自動化專業(yè)的教學(xué)用書,也可以作為近機(jī)類專業(yè)如輕工機(jī)械、化工機(jī)械等專業(yè)的教學(xué)用書,同時可供科研及生產(chǎn)單位從事產(chǎn)品設(shè)計和計量測試等工作的工程技術(shù)人員使用。(陳于萍,周兆元.互換性與測量技術(shù)基礎(chǔ)[M].北京:機(jī)械工業(yè)出版社,2009)
2.8理論力學(xué)
理論力學(xué)(theoreticalmechanics)是研究物體機(jī)械運(yùn)動的基本規(guī)律的學(xué)
科。力學(xué)的一個分支。它是一般力學(xué)各分支學(xué)科的基礎(chǔ)。理論力學(xué)通常分為三個部分:靜力學(xué)、運(yùn)動學(xué)與動力學(xué)。靜力學(xué)研究作用于物體上的力系的簡化理論及力系平衡條件,運(yùn)動學(xué)只從幾何角度研究物體機(jī)械運(yùn)動特性而不涉及物體的受力:動力學(xué)則研究物體機(jī)械運(yùn)動與受力的關(guān)系。動力學(xué)是理論力學(xué)的核心內(nèi)容。理論力學(xué)的研究方法是從一些由經(jīng)驗(yàn)或?qū)嶒?yàn)歸納出的反映客觀規(guī)律的基本公理或定律出發(fā),經(jīng)過數(shù)學(xué)演繹得出物體機(jī)械運(yùn)動在一一般情況下的規(guī)律及具體問題中的特征。理論力學(xué)中的物體主要指質(zhì)點(diǎn)、剛體及剛體系,當(dāng)物體的變形不能忽略時,則成為變形體力學(xué)(如材料力學(xué)、彈性力學(xué)等)的討論對象。靜力學(xué)與動力學(xué)是工程力學(xué)的主要部分。(李卓球.理論力學(xué)[M].武漢:武漢理工大學(xué)出版社,2012)
2.9機(jī)械設(shè)計課程設(shè)計
內(nèi)容摘要:
綜合運(yùn)用機(jī)械設(shè)計課程設(shè)計和其他有關(guān)選修課程的理論及生產(chǎn)實(shí)踐的知識
去分析和解決機(jī)械設(shè)計問題,了解和掌握常用機(jī)械零部件、機(jī)械傳動裝置或簡單機(jī)械的設(shè)計過程和進(jìn)行方式,培養(yǎng)正確的設(shè)計思想和分析問題的能力,特別是總體設(shè)計和零部件設(shè)計的能力。任何設(shè)計都不可能是設(shè)計者獨(dú)出心裁、憑空設(shè)想、不依靠任何資料所能實(shí)現(xiàn)的。設(shè)計時,要認(rèn)真閱讀參考資料,繼承或者借鑒前人的設(shè)計經(jīng)驗(yàn)和成果,但不能盲目地全盤抄襲,應(yīng)根據(jù)具體的設(shè)計條件和要求,獨(dú)立思考,大膽地進(jìn)行改進(jìn)和創(chuàng)新。只有這樣,才能做出高質(zhì)量的設(shè)計。任何機(jī)械零部件的結(jié)構(gòu)和尺寸,除了考慮它的強(qiáng)度和剛度外,還應(yīng)綜合考慮零件本身及整個部件的工藝性要求(如加工和裝配公益性)、經(jīng)濟(jì)性要求(如制造成本低)、使用要求(如維護(hù)方便)等才能確定。(唐增寶,常建娥.機(jī)械設(shè)計課程設(shè)計[M].2016)
2.10機(jī)械制造技術(shù)
內(nèi)容摘要:
機(jī)械制造技術(shù)內(nèi)涵廣泛、學(xué)科交叉,并且不斷地發(fā)展與完備,在激烈的國際
市場競爭中,制造業(yè)要求生存和發(fā)展,必須掌握并科學(xué)運(yùn)用最先進(jìn)的制造技術(shù)。先進(jìn)制造技術(shù)也是改造傳統(tǒng)產(chǎn)業(yè)的有力武器。先進(jìn)制造技術(shù)的發(fā)展與產(chǎn)業(yè)化,將對國民經(jīng)濟(jì)的發(fā)展產(chǎn)生越來越大的影響。本書系統(tǒng)介紹各種先進(jìn)制造技術(shù)的理念和裝備技術(shù),旨在使學(xué)生熟悉國內(nèi)外先進(jìn)制造技術(shù)前沿,開闊學(xué)生思維,拓寬知識面,掌握先進(jìn)的方法,培養(yǎng)學(xué)生創(chuàng)新思維和工程實(shí)踐的能力。全書共分六章,主要介紹先進(jìn)技術(shù)的內(nèi)涵、虛擬制造技術(shù)、微細(xì)加工技術(shù)、納米制造技術(shù)、快速成型技術(shù)、制造自動化技術(shù)。本書可以作為機(jī)械設(shè)計及理論、機(jī)械
收藏