全自動(dòng)成型灌裝封口包裝機(jī)中自動(dòng)間隙式封口膜傳送機(jī)構(gòu)的設(shè)計(jì)【含CAD圖紙、SW三維、說明書】
本科畢業(yè)設(shè)計(jì)(論文)外文參考文獻(xiàn)譯文及原文學(xué) 院專 業(yè)年級(jí)班別學(xué) 號(hào)學(xué)生姓名指導(dǎo)教師液體灌裝機(jī)智能控制系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)摘要:隨著社會(huì)經(jīng)濟(jì)的發(fā)展和人民生活水平的不斷提高,對(duì)飲料和酒精的需求量也在不斷增加。因此,高端的工業(yè)自動(dòng)化灌裝設(shè)備也被推廣。本文設(shè)計(jì)并制造了一種啤酒灌裝機(jī)自動(dòng)生產(chǎn)線的智能控制系統(tǒng)。本系統(tǒng)由和利時(shí) lm3106a PLC(可編程邏輯控制器)和 hollyview 工業(yè)控制組態(tài)軟件和士林 ss22-023-0.75k 逆變器組成。我們進(jìn)行了能耗試驗(yàn)和罐裝啤酒生產(chǎn)試驗(yàn)的控制。實(shí)驗(yàn)證明該系統(tǒng)的生產(chǎn)效率提高了 11.27。能源消耗的系統(tǒng)也減少了。因此,該系統(tǒng)具有較高的工作效率和節(jié)約能源的優(yōu)點(diǎn),可以應(yīng)用于未來的生產(chǎn)中。關(guān)鍵詞:灌裝機(jī),可編程邏輯,控制器(可編程序控制器) ,運(yùn)動(dòng)控制,小型機(jī)械,設(shè)備制造1 簡(jiǎn)介灌裝機(jī)屬于包裝機(jī)械的范疇,是灌裝材料的機(jī)械,是灌裝生產(chǎn)線最重要的方面之一。我國(guó)的包裝機(jī)械已經(jīng)發(fā)展成了液體食品產(chǎn)業(yè),對(duì)世界有著重要的影響并在市場(chǎng)上有較高占有率。它已經(jīng)發(fā)展成液體食品行業(yè),對(duì)世界有著重要的影響并在市場(chǎng)上有較高占有率 1。因此,液體灌裝機(jī)市場(chǎng)有很好的發(fā)展?jié)摿?。目前,各種灌裝機(jī)生產(chǎn)廠生產(chǎn)的灌裝機(jī)在灌裝能力、效率、適用范圍和自動(dòng)化程度等方面,各有優(yōu)缺點(diǎn)。在很大程度上制約了生產(chǎn)質(zhì)量和生產(chǎn)效率。使用灌裝機(jī)不僅可以提高勞動(dòng)生產(chǎn)率,減少產(chǎn)品損失,保證包裝質(zhì)量,而且可以減少環(huán)境污染和包裝材料的使用量。因此,現(xiàn)代包裝行業(yè)一般采用機(jī)械化灌裝機(jī)。該灌裝機(jī)用于汽水(啤酒、汽水、啤酒、可樂)灌裝。采用和利時(shí) LM PLC 控制灌裝機(jī)。中央處理器模塊負(fù)責(zé)灌裝機(jī)系統(tǒng)的開關(guān)量控制,包括灌裝頭電磁閥的運(yùn)動(dòng)、電磁閥的氣缸控制、電磁閥可以節(jié)省材料來控制灌裝機(jī)的啟停。并擁有各種光電開關(guān)、液位傳感器檢測(cè)等。本機(jī)配有高精度自動(dòng)等壓灌裝閥,它的灌裝速度,瓶裝的液面高度是穩(wěn)定的,與空氣壓力差恒定。最大灌裝容量 1250 毫升,最小灌裝容量 240 毫升,適合玻璃瓶、寵物瓶、罐等,控制形式包括自動(dòng)控制和手動(dòng)控制 2。本機(jī)驅(qū)動(dòng)系統(tǒng)采用變頻電機(jī),可根據(jù)生產(chǎn)的要求合理調(diào)整電機(jī)轉(zhuǎn)速。液壓缸是配備液位自動(dòng)控制器,如果在這個(gè)過程中,有空瓶現(xiàn)象,機(jī)器即可自動(dòng)停充。本設(shè)計(jì)是基于可編程序控制器的控制系統(tǒng),集成了可編程序控制器、變頻器控制和計(jì)算機(jī)技術(shù)應(yīng)用,多段變頻器調(diào)速控制,使電機(jī)轉(zhuǎn)速的變化作為反饋信號(hào)檢測(cè),從而實(shí)現(xiàn)對(duì)灌裝機(jī)的灌裝速度的控制,使灌裝機(jī)編程方便,提高了工業(yè)生產(chǎn)的效率。同時(shí)使灌裝機(jī)維修方便,節(jié)省了調(diào)整程序的時(shí)間,增加了灌裝機(jī)的靈活性,使其運(yùn)行穩(wěn)定可靠,同時(shí)。灌裝機(jī)是由屬于機(jī)械類,包裝機(jī)械,是灌裝生產(chǎn)線的重要組成部分。我國(guó)的包裝機(jī)械已經(jīng)發(fā)展成了液體食品產(chǎn)業(yè),對(duì)世界有著重要的影響并在市場(chǎng)上有較高占有率。因此,目前各種灌裝機(jī)生產(chǎn)廠生產(chǎn)的灌裝機(jī)在灌裝能力、效率、適用范圍和自動(dòng)化程度等方面,各有優(yōu)缺點(diǎn)。在很大程度上制約了生產(chǎn)質(zhì)量和生產(chǎn)效率。灌裝機(jī)是一種包裝機(jī)械,廣泛用于食品、化工、制藥等行業(yè) 3。這臺(tái)機(jī)器配有各種光電開關(guān)、液位傳感器檢測(cè)設(shè)備,高精度自動(dòng)壓力灌裝閥,灌裝速度快,液體灌裝高度穩(wěn)定,機(jī)器壓力恒定。最大充填量量;240 毫升最低填充量,適用于玻璃瓶、PET、罐等。控制形式包括自動(dòng)控制和手動(dòng)控制兩種方式。電機(jī)傳動(dòng)采用變頻調(diào)速電機(jī),可根據(jù)生產(chǎn)的生產(chǎn),合理調(diào)整電機(jī)轉(zhuǎn)速。由于灌裝缸裝有自動(dòng)電平控制,如果在灌裝過程中出現(xiàn)空瓶子現(xiàn)象,可以自動(dòng)停止 4。本設(shè)計(jì)是基于可編程序控制器的灌裝機(jī)控制系統(tǒng)的研究,采用集成可編程邏輯控制器(可編程控制器) ,通過可編程控制器(可編程控制器)對(duì)變頻器進(jìn)行多段調(diào)速,使電機(jī)轉(zhuǎn)速作為反饋信號(hào)的變化進(jìn)行檢測(cè),從而控制灌裝機(jī)的灌裝速度,從而使灌裝機(jī)編程方便和提高工業(yè)生產(chǎn)效率。同時(shí)使灌裝機(jī)維修方便,節(jié)省了調(diào)整程序的時(shí)間,增加了灌裝機(jī)的靈活性,使其運(yùn)行穩(wěn)定可靠,同時(shí)。灌裝機(jī)是由屬于機(jī)械類,包裝機(jī)械,是灌裝生產(chǎn)線的重要組成部分。2 系統(tǒng)的組成2.1 控制系統(tǒng)的結(jié)構(gòu)在采用 PLC 作為主控設(shè)備的控制系統(tǒng)中,傳感器作為檢測(cè)器件,變頻器作為電機(jī)調(diào)速控制裝置,通過一個(gè)通信協(xié)議或與 ht7a00t 人機(jī)人機(jī)接口連接電腦。圖 2.1 控制系統(tǒng)結(jié)構(gòu)它的作用是監(jiān)控生產(chǎn)線和記錄數(shù)據(jù)處理產(chǎn)品,灌裝控制系統(tǒng)由一個(gè)主可編程邏輯控制器(PLC )和 3 個(gè)輔助擴(kuò)展可編程邏輯控制器(PLC) ,PLC 主要是lm3106a,通過它控制灌裝機(jī)的檢測(cè)開關(guān),面板上的按鈕,變頻器控制電機(jī)和電磁閥??删幊踢壿嬁刂破鳎≒LC)根據(jù)檢測(cè)到的傳感器信號(hào),并通過編輯程序來完成一系列動(dòng)作,如填充圖 2.1。2.2 控制系統(tǒng)算法該系統(tǒng)的電機(jī)轉(zhuǎn)速信號(hào)由變送器轉(zhuǎn)換成電信號(hào),并裝進(jìn)控制器。在信號(hào)的基礎(chǔ)上,可編程邏輯控制器自動(dòng)顯示數(shù)據(jù)。在比較兩種轉(zhuǎn)速的基礎(chǔ)上,根據(jù)控制信號(hào)的偏差,對(duì)變頻器進(jìn)行變頻調(diào)速,以調(diào)節(jié)電機(jī)的轉(zhuǎn)速,用實(shí)際的數(shù)據(jù)來消除轉(zhuǎn)速偏差。通過改變機(jī)械擾動(dòng)引起的偏差,使到生產(chǎn)線的電機(jī)轉(zhuǎn)速恒定,同時(shí)保證生產(chǎn)線效率。本系統(tǒng)是一個(gè)基于電機(jī)轉(zhuǎn)速的閉環(huán)控制系統(tǒng)。本系統(tǒng)采用比例、積分和微分(積分)控制算法在可編程序控制器中實(shí)現(xiàn)。在可編程邏輯控制器(可編程控制器)中,估計(jì)值按照設(shè)定的時(shí)間值采樣。假設(shè)時(shí)間周期為 t,初始值為零。用矩形積分代替精度連續(xù)積分。用差分法代替連續(xù)微分法,可以簡(jiǎn)化為(1) 。在這個(gè)公式里面, 是系統(tǒng)偏移。SB該算法具有 2 個(gè)特點(diǎn),一是快速響應(yīng),另一個(gè)是超調(diào)。在穩(wěn)健的性能和跟蹤性能方面,它表現(xiàn)出良好的控制效果。通過實(shí)際應(yīng)用的控制系統(tǒng)取得了良好的控制效果。該公式在可編程控制器內(nèi)部被解釋為一個(gè)連續(xù)控制系統(tǒng),簡(jiǎn)化為離散控制系統(tǒng)。2.3 機(jī)械結(jié)構(gòu)該灌裝機(jī)采用和利時(shí) LM 系列可編程邏輯控制器(PLC)控制實(shí)現(xiàn)自動(dòng)操作和自動(dòng)控制整個(gè)生產(chǎn)線。這一部分的原理是通過分度撥輪,將空瓶取出再對(duì)其進(jìn)行填充,如圖 2.2,在指令下,將瓶頸抬升,定位裝置的壓料口進(jìn)行填充密封5。再次將瓶子里空氣抽回真空狀態(tài)后,將液體鋼瓶?jī)?nèi)二氧化碳?xì)怏w的背壓注入到瓶子里,當(dāng)氣瓶?jī)?nèi)的氣體壓力等于鋼瓶壓力時(shí),在彈簧的作用下,閥門打開。這時(shí),在重力引導(dǎo)作用下,液體通過形狀的傘反射環(huán)上的消聲器自動(dòng)進(jìn)入瓶?jī)?nèi),在瓶子中的二氧化碳再循環(huán)到液體鋼瓶。當(dāng)瓶子液面達(dá)到一定高度時(shí),它會(huì)使到氣管關(guān)閉,此時(shí),機(jī)器會(huì)自動(dòng)停止在液體灌裝。然后放液閥和閥關(guān)閉,當(dāng)瓶子落下,排水瓶頸為高壓氣體以防止液體與氣體噴涌溢流。填充部分完整實(shí)現(xiàn)。1.行星撥盤 2.撥盤 3.軸圖 2.2 運(yùn)輸瓶的機(jī)械結(jié)構(gòu)3 硬件設(shè)計(jì)3.1 控制器的選擇根據(jù)現(xiàn)場(chǎng)設(shè)備、電氣柜的控制要求,選擇 lm3106a 可編程控制器??删幊绦蜻壿嬁刂破鳎删幊炭刂破鳎┯?14 點(diǎn)輸入和 10 點(diǎn)晶體管輸出,共有 24 個(gè)數(shù)字輸入/輸出點(diǎn),用 24 伏直流電源供電,在終端上做輸出,在終端下是做輸入。LM 系列可編程邏輯控制器(PLC)具有獨(dú)特的保護(hù)功能,可以實(shí)現(xiàn)用戶程序和停電保持區(qū)的數(shù)據(jù)永久保存,機(jī)器消除權(quán)力的原因丟失數(shù)據(jù)丟失現(xiàn)象;同時(shí),它支持五種編程語言國(guó)際化,適合不同的程序員需要;LM 系列應(yīng)用領(lǐng)域廣泛,有良好的客戶基礎(chǔ),因此,可靠性和安全系數(shù)大大好。除了模塊,有三個(gè)輔助模塊,分別是 lm3401,lm3320,和 LM3310。中央處理器模塊集成了一定數(shù)量的輸入/輸出點(diǎn),在同一時(shí)間,一個(gè)部分的輸入 /輸出點(diǎn)具有高速計(jì)數(shù)器,高輸出,和其他功能 6。隨著系統(tǒng)需求的不斷擴(kuò)大,需要更多的輸入/輸出點(diǎn)連接到可編程邏輯控制器(可編程控制器) ,此時(shí)可以通過匹配擴(kuò)展模塊來增加更多的輸入/輸出點(diǎn)和更多的功能,以實(shí)現(xiàn)對(duì)某些條件的控制。3.2 工業(yè)電源選擇本系統(tǒng)采用西門子的 100 的工業(yè)電源,具有高可靠性、高效率、高集成度的特點(diǎn)。滿足了提高工作效率、節(jié)約能源的系統(tǒng)要求。3.3 變頻傳動(dòng)的選型交流伺服電機(jī)驅(qū)動(dòng)永磁同步伺服電機(jī)和交流異步伺服電機(jī)。交流永磁同步電動(dòng)機(jī)轉(zhuǎn)子由永磁體組成,定子繞組形成一個(gè)旋轉(zhuǎn)磁場(chǎng),只要負(fù)載的大小不超過同步轉(zhuǎn)矩。隨旋轉(zhuǎn)磁場(chǎng)的永磁轉(zhuǎn)子同步旋轉(zhuǎn),它類似于基本交流永磁同步電動(dòng)機(jī)。交流異步伺服電機(jī)定子由繞組勵(lì)磁繞組和控制繞組的 90 個(gè)繞組組成。交流繞組的接入和控制的相位差勵(lì)繞組的角度,使定子旋轉(zhuǎn)磁場(chǎng)產(chǎn)生橢圓,轉(zhuǎn)子斷磁,在電磁力的牽引下旋轉(zhuǎn)。目前,在精密計(jì)算機(jī)數(shù)控(數(shù)控)系統(tǒng)中,交流永磁同步電機(jī)被廣泛使用。隨著交流變頻調(diào)速技術(shù)的迅速發(fā)展,有的變頻器在伺服功能、控制精度與傳統(tǒng)的交流伺服系統(tǒng)和沒有明顯的差距,因此它們有集中發(fā)展的趨勢(shì)。采用數(shù)字信號(hào)處理器(數(shù)字信號(hào)處理器)來控制伺服驅(qū)動(dòng)器。它可以實(shí)現(xiàn)復(fù)雜的控制算法,數(shù)字化,網(wǎng)絡(luò)化和智能化。功率器件廣泛應(yīng)用于智能功率模塊驅(qū)動(dòng)電路的核心設(shè)計(jì),內(nèi)部集成的驅(qū)動(dòng)電路,也具有過壓,過電流,過熱,欠壓故障檢測(cè)和保護(hù)電路,在主電路中加入了軟啟動(dòng)電路,以減少啟動(dòng)過程中的影響。首先通過三相全橋功率驅(qū)動(dòng)單元整流電路輸入三相電源或電源整流器,相應(yīng)的直流(DC) 。整流后是良好的三相電流或城市電力,然后通過變頻三相正弦脈寬調(diào)制(脈寬調(diào)制) ,用電壓型逆變器驅(qū)動(dòng)三相永磁同步交流伺服電機(jī)。動(dòng)力驅(qū)動(dòng)單元的整個(gè)過程可以簡(jiǎn)化為交-直-交整流單元(ACDC) ,它是三相橋式整流電路的主電路拓?fù)浣Y(jié)構(gòu)。根據(jù)電機(jī)的工作效率和設(shè)備的要求,變頻器的選擇是石林 ss22-023-0.75 K,三相交流額定電壓是 200-230 伏,適配電機(jī)功率為 1.9 kW,額定電流為 5 A。shss22 型逆變器的體積很小,它屬于小型產(chǎn)品,可以空間小的控制柜,調(diào)試簡(jiǎn)單方便。它的控制方式為正弦波 SPWM,控制性能強(qiáng),其載波頻率范圍為0 至 15 千赫,在降低電機(jī)的電磁噪聲有效,模擬接口的通用性,負(fù)載能力強(qiáng),提供多功能的輸出端子信號(hào)。它主要用于立體倉(cāng)庫(kù)系統(tǒng)行業(yè),食品,飲料和包裝行業(yè)。3.4 觸摸屏的選擇觸摸屏根據(jù)原理和使用材料的不同,可分為電阻式觸摸屏、電容式觸摸屏和聲波傳感器、紅外線觸摸屏觸摸屏。電阻式觸摸屏精度高,但其價(jià)格昂貴且容易損壞,電容式觸摸屏設(shè)計(jì)合理,新穎性更直觀,更有趣,高耐久性,但也容易受到環(huán)境影響和成本較高。電容式觸摸屏功能性方面的全面性和穩(wěn)定性,它已經(jīng)擁有了相當(dāng)?shù)氖袌?chǎng)份額,在各種觸摸屏。紅外線觸摸屏價(jià)格低廉,但其易受光線干擾的影響。聲波感應(yīng)式觸摸屏如果有水滴或塵埃干擾,其反應(yīng)會(huì)變慢,甚至不能工作??偨Y(jié)每一類觸摸屏都有其優(yōu)點(diǎn)和缺點(diǎn),我們根據(jù)需要,選擇和利時(shí)是觸摸屏的觸摸屏,該模型是 ht7a00t。4.3 寸黑白 192x64,輸入電源電壓為 24V 直流。4 程序設(shè)計(jì)4.1 輸入/輸出分配系統(tǒng)表 4.1 灌裝機(jī)輸入/輸出分配表%IX0.0 低液位 %QX0.0 主發(fā)動(dòng)機(jī)%IX0.1 高液位 %QX0.1 液壓泵%IX0.2 主機(jī)故障 %QX0.2 供應(yīng)電磁閥%IX0.3 液體故障泵 %QX0.3 電磁閥%IX0.4 輸送帶故障 %QX0.4 排氣電磁閥%QX0.5 進(jìn)氣電磁閥%QX0.6 輸送帶根據(jù)系統(tǒng)的設(shè)計(jì)要求,根據(jù)我對(duì)輸入和輸出端子的定義,確保布線完成。4.2 主程序框圖圖 4.1 控制系統(tǒng)程序框圖圖 4.1 是沖瓶機(jī)順序程序功能圖。這個(gè)程序是在按下啟動(dòng)按鈕 ym002 和分布式控制系統(tǒng)(DCS)遠(yuǎn)程控制、邏輯與輸出,其次是邏輯或,然后觸發(fā)復(fù)位觸發(fā)器,這一點(diǎn)在遙控狀態(tài),DCS 的狀態(tài)是,在同一時(shí)間以不在本地控制狀態(tài),與 DC 為 0,此時(shí)只有遠(yuǎn)程控制啟動(dòng)噴淋泵工作。局部控制工作時(shí),按下啟動(dòng)按鈕 M004,DCS 以沒有結(jié)果也為 1,此時(shí),觸發(fā)設(shè)置、沖瓶泵啟動(dòng) 7。按下啟動(dòng) ym003 和 DCS 遠(yuǎn)程控制按鈕后,邏輯與可以輸出,其次是邏輯或,然后觸發(fā)復(fù)位,此時(shí)遙控狀態(tài),DCS 系統(tǒng)在狀態(tài) 1,同時(shí)以不在本地控制狀態(tài),和 DC 為 0,此時(shí)只有遠(yuǎn)程控制噴淋泵停止工作 8。局部控制工作時(shí),按下啟動(dòng)按鈕 M003 DCS,因?yàn)闆]有結(jié)果也為 1,此時(shí),觸發(fā)器復(fù)位,沖瓶泵停止。4.3 配置接口設(shè)計(jì)圖 4.2 配置界面根據(jù)系統(tǒng)的要求,我選擇了冬青視圖組態(tài)軟件,完成了組態(tài)設(shè)計(jì) 9。冬青視圖提供了一個(gè)豐富、簡(jiǎn)單、易于使用的界面,提供了大量的圖形元素和圖形庫(kù),同時(shí)也為用戶創(chuàng)造畫廊精靈并提供易于使用的界面;產(chǎn)品的歷史曲線、報(bào)表報(bào)表和網(wǎng)絡(luò)發(fā)布功能都大幅提高,軟件的功能性和可用性都有很大地提高 10實(shí)驗(yàn)的成功率,利用現(xiàn)有的計(jì)算機(jī)就可完成自動(dòng)控制系統(tǒng)實(shí)驗(yàn);它節(jié)省了能源,提高了實(shí)驗(yàn)效率 11。圖 4.2 是配置界面設(shè)計(jì)圖。它將一個(gè)好的程序下載到可編程控制器,當(dāng)觸摸屏程序,有一個(gè)點(diǎn)的接口如圖 4.2,在剛開始時(shí),它是對(duì)每個(gè)開關(guān)運(yùn)行一個(gè)單一的點(diǎn),當(dāng)觸摸屏界面,它需要做一個(gè)模擬的關(guān)鍵點(diǎn)移動(dòng)操作開關(guān) 12??删幊绦蚩刂破骺梢膺B接可編程邏輯控制器輸出。5 測(cè)試從工作效率的角度來看,以瓶容量為 500ml 為例,普通灌裝機(jī)的工作效率平均是 400 瓶每小時(shí)。優(yōu)秀的灌裝機(jī)的工作效率平均可達(dá)到 700 瓶每小時(shí)。經(jīng)過優(yōu)化設(shè)計(jì)和 100 次測(cè)試,每次測(cè)試一小時(shí),智能灌裝機(jī)的工作效率平均可達(dá)到每小時(shí) 779 瓶。該系統(tǒng)提高了工作效率 11.27%。從節(jié)能環(huán)保的角度看,空載功耗,滿載功耗相比傳統(tǒng)的功率轉(zhuǎn)換效率如圖5.1。它減少能源消耗的設(shè)計(jì)要求。圖 5.1 能量消耗對(duì)比圖6 結(jié)果本設(shè)計(jì)主要是采用可編程邏輯控制器(可編程控制器)和變頻器控制電機(jī)做旋轉(zhuǎn)皮帶傳動(dòng),然后將瓶子轉(zhuǎn)移到灌裝機(jī)上,實(shí)現(xiàn)了配瓶的速度和灌裝速度的協(xié)調(diào),提高了生產(chǎn)效率。本設(shè)計(jì)的基本思想是:在系統(tǒng)啟動(dòng)后,按下電機(jī)啟動(dòng)開關(guān),如果電機(jī)是異常的,熱電流繼電器立即切斷和保護(hù)電機(jī),如果電機(jī)是正常的,那么電機(jī)啟動(dòng)下一步工作。電機(jī)開始轉(zhuǎn)動(dòng),在傳送帶作用下驅(qū)動(dòng)灌裝瓶運(yùn)動(dòng),通過光電傳感器,對(duì)瓶子計(jì)數(shù)和發(fā)送的數(shù)據(jù)到可編程邏輯控制器(PLC)進(jìn)行數(shù)據(jù)處理,可編程邏輯控制器(PLC )根據(jù)瓶子的運(yùn)動(dòng)速度在內(nèi)存里進(jìn)行比較,確定是否有調(diào)速的需要,如果不需要控制電機(jī)的速度,它就按照原來的速度運(yùn)行,如果有需要調(diào)速,可編程邏輯控制器(PLC)輸出控制信號(hào)到變頻器進(jìn)行多級(jí)調(diào)速控制,轉(zhuǎn)換器接收控制信號(hào),可編程邏輯器收到后(PLC)發(fā)出的控制信號(hào),進(jìn)行內(nèi)部處理。一個(gè)特定的頻率電壓的輸出,實(shí)現(xiàn)電機(jī)的頻率控制。變頻器輸出反饋信號(hào)輸入到可編程邏輯控制器,實(shí)現(xiàn)對(duì)變頻器的保護(hù)。本設(shè)計(jì)基本符合設(shè)計(jì)要求。該系統(tǒng)具有操作簡(jiǎn)單、工作可靠、界面友好、節(jié)能、綜合保護(hù)等功能,具有較高的自動(dòng)監(jiān)測(cè)程度、生產(chǎn)效率高的特點(diǎn),具有良好的推廣應(yīng)用前景。參考文獻(xiàn)1 Shiro Yamakawa,et al, “Trade of between IM-DD and coherent system in high data rate optical inter orbit links,” SPIE, No.3615, pp.8089, 1999.2 C.Q.Qi, “PLC technology and application,”Beijing: Mechanical Industrial Press, (2000) (In Chinese).3 XU Liang-xiong, “The Electrical Control System PLC Transformation of The XA6132 Milling,” International Journal of Plant Engineering and Management, Vol.18 (2013) No.4, pp.249.4 C.X.Li and B.Q.Li, “The application of PLC to motor of pendent an assembly line”. China Mechanical Engineering. Vol.5 (1994) No.5, pp.38-40.(In Chinese).5 Aijun Xu, “Principle and design of intelligent measuring control instrument,” Beijing University of aeronautics and astronautics press, Vol.127 (2004).6 W.Cai and Y.F.Ju, “PLC distributed control system,” Journal of Xian Highway University, Vol.16 (2006) No.3, pp.140-143. (In Chinese)7 Kambezidis H D, Vera D-P, Adamopoulos A D, “Radiative transfer. Atmospheric transmission monitoring with modeling and ground-based multispectral measurements,” App Opt, Vol.36 (1997) No.27, pp.6976-6982.8 Yifei Wu, Sheng Li, Hua Cai, “Design and implementation of pan- tilt control system based on MSP430 MCU,” Microcomputer Information, Vol.22, No.7, pp.90-93, 2006.9 Chien, Min Lee, “Power-efficient coded modulation for wireless infrared communication,” University Of California, 1998.10 Kindel B C, Qu Z, Goetz A F H, “Direct solar spectral irradiance and transmittance measurements from 350 to 2500 nm,” App Opt, Vol.40(2001) No.21, pp.3483-3494.11 Sijie Shao, Yong Cao, Bin Shen, “Design and realization of control system of laser training simulator for individual-antagonism,” Journal of Academy of Armored Force Engineering, Vol.27, No.1, pp.65-68, 2013.12 C.Q.Qi, “PLC technology and application,”Beijing: Mechanical Industrial Press, (2000) (In Chinese).
收藏